用户名: 密码: 验证码:
几种肿瘤细胞和蛋白质纳米生物传感的压电电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞传感分析新方法的建立、细胞兼容性界面的构建对促进生物医药、生物技术及组织材料工程发展具有重要作用。研究肿瘤相关抗原的高效电化学免疫分析新方法对临床癌症早期预警具有现实意义。纳米材料因其特殊的光、电、磁、热、力学等性能,在生化分析与生物传感领域显示出重大的应用潜力。本学位论文在简要综述了细胞传感分析以及电化学免疫分析的进展、压电传感技术以及纳米材料在生化分析领域的应用等的基础上,利用石英晶体微天平(QCM)和电化学技术在细胞行为监测以及蛋白质免疫传感等方面开展了一些研究工作,主要内容如下:
     1.以QCM对人乳腺癌细胞(MCF-7)在裸金电极上的粘附、生长行为进行了实时监测。结合显微镜对照实验讨论了QCM响应与细胞数目和表面覆盖度的关系。结果发现,在细胞粘附过程中,频率(f_0)和动态电阻(R_1)改变是电极表面质量、粘密度以及应力综合作用的结果,并且一定范围内与细胞的覆盖度成正比。
     2.以QCM实时、动态监测了MCF-7细胞在壳聚糖/多壁碳纳米管(CS/MWCNTs)和壳聚糖(CS)修饰电极上的粘附生长行为。讨论了同步记录的谐振频率和动态电阻响应,发现细胞在CS/MWCNTs修饰电极上粘附所引起的压电响应均大于CS修饰电极,表明前者更适于细胞的粘附和生长。采用MTT实验、荧光显微镜、循环伏安以及电化学阻抗谱(EIS)对细胞培养前后的电极进行了表征,支持了QCM法的结论。
     3.提出了一种悬浮细胞的磁固定和电化学检测新方法。制备了正电性磁性纳米粒子(CMNPs),利用其与细胞的静电作用,在电极上磁固定悬浮细胞人白血病K562细胞,以QCM技术监测了磁固定过程。对所固定K562细胞进行循环伏安测试,所得阳极电流峰峰高与细胞活性成正比,籍此考察了抗肿瘤药5-氟尿嘧啶(5-FU)的细胞毒性,与常规MTT法吻合。
     4.提出了一种仿生复合纳米材料界面固定贴壁肿瘤细胞和电化学检测的新方法。通过溶液吸附法合成羟基磷灰石-多壁碳纳米管(HA-MWCNTs)并将其修饰在电极表面,以QCM技术研究了成骨肉瘤细胞MG-63在HA-MWCNTs修饰电极上的粘附生长过程。HA-MWCNTs具有良好的生物亲和性和导电性。对所固定的MG-63细胞进行循环伏安测试,所得阳极电流峰峰高与细胞活性成正比,优化了实验条件,考察了细胞培养过程中细胞活性以及抗肿瘤药5-氟尿嘧啶(5-FU)的细胞毒性,与常规MTT分析法结果一致。
     5.以QCM-EIS联用技术原位动态监测了抗人IgG在几种修饰电极上的吸附和与人IgG的免疫反应。分别制备了戊二醛、纳米金(nanoAu)以及多壁碳纳米管(MWCNTs)修饰金电极,记录和讨论了抗体吸附及免疫反应所引起压电石英晶体(PQC)的谐振频率(f_0)、动态电阻(R_1)以及电化学阻抗等参数。以循环伏安以及电化学阻抗谱法对抗体吸附和抗体-抗原反应前后的电极进行了表征。比较了抗人IgG在不同表面的吸附量以及免疫活性,结果表明,纳米金修饰电极的吸附量最大,其次是多壁碳纳米管修饰电极,而抗体在几种表面的活性基本一致。同时,利用所得频率和界面阻抗参数计算了免疫反应的结合常数。
     6.基于金微电极以及纳米金制备了一种超灵敏阻抗型甲胎蛋白(AFP)免疫传感器。通过金微电极(100μm直径)自组装纳米金,实现AFP抗体固定,循环伏安扫描以及原子力显微镜(AFM)对纳米金固定抗体前后的电极表面进行了表征。优化了实验条件,与常规金圆盘电极进行了比较,并对不同浓度AFP抗原进行了检测,线性范围为0.005-50 ng mL~(-1),检测限为0.76 pg mL~(-1)。结果表明,该免疫传感器具有超高灵敏度、良好的重现性和抗非特异性吸附性能,有一定的潜在应用价值。
     7.基于载有电子媒介体的纳米复合物膜制备了一种新型无标记安培型癌胚抗原(CEA)免疫传感器。首先合成金纳米粒子和甲苯胺蓝掺杂二氧化硅纳米粒子,以壳聚糖为交联剂,将两者混合滴干成膜制备了免疫修饰电极。考察优化了实验条件,并对CEA进行了检测,线性范围为1-80 ngmL~(-1),检测下限为0.65 ng mL~(-1)。实验结果表明,该免疫传感器具有良好的伏安响应,纳米粒子的协同作用使响应电流信号大大提高。这种传感器检测时的非特异性吸附小,灵敏度和稳定性较高。
Researches on novel cytosensors and biocompatible interfaces are of great significance for advances of biomedical engineering,biotechnology,and tissue engineering.The development of new and effective electrochemical biosensors for tumor relevant antigens is important for tumor's early diagnosis in practice. Nanomaterials of special nanostructure possess interesting physical and chemical properties,making them highly promising in bioanalysis and biosensing applications.In this dissertation,the recent progress of cell-based biosensing and electrochemical immunoassay,application of nanomaterials and quartz crystal microbalance(QCM)in bio/chemo fields are reviewed,and a series of studies on cell adhesion,detection of cell viability,adsorption of proteins and immunosensor fabrication were carried out with QCM and electrochemical techniques.The studies are summarized as follows.
     1.The gold-electrode QCM was used to monitor the one-day incubation of human breast cancer cells(MCF-7).In combination with an optical microscope simulation experiment that shows the cell-population pictures at various stages,the QCM responses to the cells' adhesion,spreading and proliferation on the electrode surface are discussed.The resonant frequency(△f_0)and the motional resistance(△R_1)responses were found mainly from mixed effects of mass,viscodensity and surface stress,and in proportion to the cell coverage.
     2.The QCM was used to monitor the adhesion of mammalian cells on a chitosan(CS)/multiwalled carbon nanotubes(MWCNTs)composite modified gold electrode.The human breast cancer cells(MCF-7)were adhered to and grown on the CS/MWCNTs film modified gold surface or a net CS film modified gold surface,and the process of which was continuously monitored and displayed by changes of the△f_0 and△R_1 of the QCM.The attachment rate and viability of the cells when proliferating on the two surfaces were detected by the MTT assay.The presence and state of cells on the electrode surface were confirmed by the fluorescent microscopy.Cyclic voltammetry and electrochemical impedance spectroscopy of the ferricyanide/ferrocyanide couple were examined before and after the cell adhesion.
     3.A simple protocol was proposed for rapid magnetic isolation,immobilization and electrochemical detection of leukemia K562 cells via their decoration with cationic magnetic nanoparticles(CMNPs).The CMNPs modified living cells could be rapidly isolated from the medium and immobilized firmly on the electrode surface via a magnetic field.The cyclic voltammetric experiments of the cells immobilized at glassy carbon electrode exhibited an irreversible anodic current peak whose height is proportional to cell viability, and the 5-fluorouracil cytotoxicity results obtained from the proposed magnetic-electrochemical method were supported by conventional MTT assays.
     4.A new biocompatible interface made up of hydroxyapitite-multiwalled carbon nanotubes(HA-MWCNTs)nanocomposite was developed for adhesion and electrochemical detection of human osteoblast-like cells (MG-63).The HA-MWCNTs nanocomposite was synthesized by self-assembling nano-hydroxyapatite onto multiwalled carbon nanotubes in solution.The QCM was used to monitor the adhesion of MG-63 cells on HA-MWCNTs modified gold electrode.The nanocomposites interface showed improved immobilization capacity for cells and good biocompatibility for preserving the activity of immobilized living cells.The living cells immobilized on an HA-MWCNTs modified glassy carbon electrode exhibited an irreversible anodic peak response being positively associated with the density and viability of cells,which was used to describe the cells growth and evaluate the effectiveness of antitumor drug 5-fluorouracil(5-FU)on the cells.The obtained 5-FU cytotoxicity results agreed well with those from conventional MTT assays.
     5.The QCM,in combination with electrochemical impedance spectroscopy (EIS),has been utilized to monitor in situ anti-human IgG adsorption on several Au-based surfaces,bare Au,nanogold/4-aminothiophenol(4AT)/Au, and multi-walled carbon nanotubes(MWCNT)/Au,and succeeding human IgG reactions.The resonant frequency(f_0)and the motional resistance(R_1)of the piezoelectric quartz crystal(PQC)as well as electrochemical impedance parameters were measured and discussed.Cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)of the ferricyanide/ferrocyanide couple were examined before and after electrode modification,antibody adsorption and antibody-antigen reactions.We found that the amount for antibody adsorption was the greatest on the colloid Au modified surface,and that at MWCNT ranked the second,while the specific bioactivity was almost identical on the four kinds of surfaces.Two parameters simultaneously obtained at the colloid Au modified surface,△f_0 and△C_s(interfacial capacitance),have been used to estimate the association constant of the immunoreaction.
     6.An ultrasensitive impedance immunosensor for the detection of human alpha fetoprotein(AFP)has been fabricated based on Au microelectrode and gold nanoparticle(nanoAu).A nanoAu monolayer was assembled on the Au microelectrode(d=100μm)to immobilize AFP antibody(anti-AFP),the electrode before and after anti-AFP modification was characterized by cyclic voltammetry(CV)and atom force microscopy(AFM).The factors influencing the performance of the immunosensor were studied in detail. Different concentrations of AFP antigen were determined and the results were compared with the normal Au disk electrode.The Rot response was proportional to logarithm of AFP concentration ranging from 0.005-50 ng mL~(-1)and the detection limit was 0.76 pg mL~(-1).The presented immunosensor is ultrasensitive,selective,and promising for clinical immunoassays.
     7.A novel lable-free amperometric immunosensor for the determination of carcinoembryonic antigen(CEA)based on nanocomposite containing electron mediator has been developed.Firstly gold nanoparticle(nanoAu) and toluidine blue doped-silica nanoparticle(TB-silica)were synthesized, after mixing with chitosan(CS),the nanoAu/CS/TB-silica nanocomposite was cast on the electrode surface to prepare immuno electrode.The factors influencing the performance of the amperometric immunosensor were studied in detail.Different concentrations of CEA antigen were determined and the current response was proportional to CEA concentration ranging from 1 to 80 ng mL~(-1)and the detection limit was 0.65 pg mL~(-1).The nanocomposite modified electrode exhibited excellent redox reversibility and sensitivity due to synergistic effect of nanoparticles.Tests performed with this immunosensor showed high selectivity and stability.
引文
[1]S.R Mohanty and E.Kougianos.Biosensors:A Tutorial Review.IEEE Potentials,2006,25:35-40.
    [2]B.D.Malhotra,R.Singhal,A.Chaubey,S.K.Sharma and A.Kumar.Recent Trends in Biosensors.Curr.Appl.Phys.,2005,5(2):92-97.
    [3]C.A.Marquette and L.J.Blum.State of the Art and Recent Advances in Immunoanalytical Systems.Biosens.Bioelectron.,2006,21:1424-1433.
    [4]C.Bartic and G.Borghs.Organic Thin-Film Transistors as Transducers for(Bio)Analytical Applications.Anal.Bioanalytical Chem.,2006,384(2):354-365.
    [5]G Wagner,and G G Guilbaut,“Food Biosensor Analysis”,1991,Dekker,New York.
    [6]J.M.Van Emon and V.Lopez-Avila.Immunochemical methods for environmental analysis.Anal.Chem.,1992,64:79A-88A.
    [7]M.Santandreu,F.Cespedes and S.Alegret.Amperometric Immunosensors Based on Rigid Conducting Immunocomposites.Anal.Chem.,1997,69:2080-2085.
    [8]D.Athey,M.Ball,C.J.McNeil and R.D.Armstrong.A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement.Electroanalysis,1997,7:270-273.
    [9]F.J.Hayes,H.B.Halsall and W.R.Heineman.Simultaneous Immunoassay Using Electrochemical Detection of Metal Ion Labels.Anal.Chem.,1994,66:1860-1865.
    [10]N.Kaneki,X.Yan,A.Kumari,H.B.Halsall and W.R.Heineman.Electrochemical enzyme immunoassay using sequential saturation technique in a 20-μl capillary:digoxin as a model analyte.Anal.Chim.Acta,1994,287:253-258.
    [11]S.Babacan,P.Pivamik,S.Letcher and A.G.Rand.Evaluation of antibody immobilization methods for piezoelectric biosensor application.Biosens.Bioelectron.,2000,15:615-621.
    [12]B.G.Healey and D.R.Walt.Improved fiber-optic chemical sensor for penicillin.Anal.Chem.,1995,67:4471-4476.
    [13]E.T.Powner,F.Yalcinkaya.Intelligent biosensors.Sensor Review,1997,17:107-116.
    [14]X.Fan,I.M.White,S.I.Shopova,H.Zhu,J.D.Suter,Y.Sun.Sensitive optical biosensors for unlabeled targets:A review.Anal.Chim.Acta,2008,620:8-26.
    [15]V.M.N.Passaro,F.Dell'Olio,B.Casamassina,F.De Leonardis.Guided-Wave Optical Biosensors.Sensors,2007,7:508-536.
    [16]W.Tan,K.Wang,T.J.Drage.Molecular beacons.Curr.Opin.Chem.Biol.,2004,8:547-553.
    [17]J.J.Li,X.Fang,W.Tan.Molecular aptamer beacons for real-time protein recognition.Biochem.Biophys.Res.Commun.,2002,292:31-40.
    [18]K.Durick,P.Negulescu.Cellular biosensors for drug discovery.Biosens.Bioelectron.,2001,16:587-592.
    [19]H.A.Clark,S.L.R.Baker,M.Brasuel,M.T.Miller,E.Monson,R.Kopelman,et al.Subcellular optochemical nanobiosensors:probes encapsulated by biologically localised embedding.Sens.Actuators B.,1998,51:12-16.
    [20]R.Antiochia,L.Gorton.Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages.Biosens.Bioelectron.,2007,22:2611-2617.
    [21]E.Karakus,P.E.Erden,S.Pekyardimci,E.Kilic.Determination of creatine in commercial creatine powder with new potentiometric and amperometric biosensors.Artif.Cells Blood Substit.Immobil.Biotechnol.,2006,34:337-347.
    [22]P.Connolly,P.Clark,A.S.G Curtis,et al.An extracellular microelectrode array for monitoring electrogenic cells in culture.Biosens.Bioelectron.,1990,5:223-234.
    [23]M.Lehmann,W.Baumann,M,Brischwein,et al.Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications.Biosens.Bioelectron.,2000,15:117-124.
    [24]L.Lorenzelli,B.Margesin,S.Martinoia,et al.Bioelectrochemical signal monitoring of in-vitro cultured cells by means of an automated microsystem based on solid state sensor-array.Biosens.Bioelectron.,2003,18:621-626.
    [25]P.J.M.Van Haastert.Transduction of the chemotactic cAMP signal across the plasma membrane of dictyostelium cells.Experientia,1995,51:1144-1154.
    [26]S.Cudmore,P.Cossart,G.Griffiths,et al.Actin-based motility of vaccinia virus.Nature,1995,378:636-638.
    [27]M.D.Antonik,N.P.D'Costa,J.H.Hoh.A biosensor based on micromechanical interrogation of living cells.IEEE Eng.Med.Biol.,1997,16:66-72.
    [28]C.R.Keese,K.Bhawe,J.Wegener,et al.Real-time impedance assay to follow the invasive activities of metastatic cells in culture.Biotechniques,2002,33:842-850.
    [29]D.E.Woolley,L.C.Tetlow,D.J.Adlam,et al.Electrochemical monitoring of anticancer compounds on the human ovarian carcinoma cell line A2780 and its adriamycin-and cisplatin-resistant variants.Exp.Cell Res.,2002,273:65-72.
    [30]J.Rishpon.Electrochemical biosensors for environmental monitoring.Rev.Environ.Health,2002,17:219-247.
    [31]R.Kizek,L.Trnkov(?),S.(?)ev(?)(?)kov(?),et al.Silver electrode as a sensor for determination of zinc in cell cultivation medium.Anal.Biochem.,2002,301:8-13.
    [32]S.Lee,K.Sode,K.Nakanishi,et al.A novel microbial sensor using luminous bacteria.Biosens.Bioelectron.,1992,7:273-277.
    [33]T.Mosmann.Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays.J.Immunol.Methods,1983,65(1-2):55-63.
    [34]T.Matsunaga,A.Shigematsu,N.Nakamura.Detection of rat basophilic leukemia by cyclic voltammetry for monitoring allergic reaction.Anal.Chem.,1989,61(22):2471-2474.
    [35]H.N.Li,Y.X.Ci,J.Feng,et al.The voltammetric behavior of bone marrow of leukaemia and its clinical application.Bioelectrochem.Bioenerg.,1999,48(1):171-175.
    [36]Y.X.Ci,H.N.Li,J.Feng.Electrochemical method for determination of erythrocytes and leukocytes.Electroanalysis,1998,10(13):921-925.
    [37]J.Feng,J.L.Lou,et al.Voltammetric behavior of mammalian tumor cells and bioanalytical applications in cell metabolism.Bioelectrochem.Bioenerg.,1999,48(1):217-222.
    [38]H.N.Li,Y.X.Ci.Electrochemical method for analyzing intracellular redox activity changes of the etoposide-induced apoptosis in HL-60 cells.Anal.Chim.Acta,2000,416(2):221-226.
    [39]Y.Ci,Q.Zhai,S.Wang,et al.Voltammetric studies of the effect of Cisplatin-liposome on Hela cells.Talanta,2001,55(4):693-698.
    [40]J.Feng,G.A.Luo,H.Y.Jian,et al.Voltammetric behavior of tumor cells U937 and its usefulness in evaluating the effect of caffeic acid.Electroanalysis,2000,12(7):513-516.
    [41]J.Li,X.Liu,M.Guo,et al.Electrochemical study of breast cancer cells MCF-7 and its application in evaluating the effect of diosgenin.Anal.Sci.,2005,21(5):561-564.
    [42]F.Yan,J.Chen,H.X.Ju.Immobilization and electrochemical behavior of gold nanoparticles modified leukemia K562 cells and application in drug sensitivity test.Electrochem.Commun.2007,9:293-298.
    [43]D.Du,S.Liu,J.Chen,et al.Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability.Biomaterials,2005,26(33):6487-6495.
    [44]L.Ding,W.Cheng,X.J.Wang,S.J.Ding,H.X.Ja Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrates.J.Am.Chem.Soc.,2008,130:7224-7225.
    [45]K.Chen,J.Chen,M.Guo,et al.Electrochemical behavior of MCF-7 cells on carbon nanotube modified electrode and application in evaluating the effect of 5-fluorouracil.Electroanalysis,2006,18(12):1179-1185.
    [46]X.E.Jia,Y.P.Zhou,L.Tan,Q.J.Xie,H.Tang,S.Z.Yao.Hydroxyapitite-multiwalled carbon nanotubes nanocomposite for adhesion and electrochemical study of human osteoblast-like cells(MG-63).Electrochem.Acta,2009,54(13):3611-3617.
    [47]P.Mitra,C.R.Keese,I.Giaever.Electric measurements can be used to monitor the attachment and spreading of cells in tissue-culture.Biotechniques,1991,11(4): 504-510.
    [48]J.Wegener,C.R.Keese,I.Giaever.Electric cell-substrate impedance sensing(ECIS)as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces.Exp.Cell Res.,2000,259(1):158-166.
    [49]I.Giaever,C.R.Keese.Micromotion of mammalian cells measured electrically.Proc.Natl.Acad.Sci.USA,1991,88(17):7896-7900.
    [50]C.M.Lo,C.R.Keese,I.Giaever.Monitoring motion of confluent cells in tissue-culture.Exp.Cell Res.,1993,204(1):102-109.
    [51]C.Tiruppathi,A.B.Malik,P.J.D.Vecchio,et al.Electrical method for detection of endothelial cell shape change in real time:assessment of endothelial barrier function.Proc.Natl.Acad.Sci.USA,1992,89(17):7919-7923.
    [52]I.Giaever,C.R.Keese.A morphological biosensor for mammalian cells.Nature,1993,366(6455):591-592.
    [53]C.M.Lo,C.R.Keese,I.Giaever.Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing.Biophys.J.,1995,69(6):2800-2807.
    [54]J.H.T.Luong,M.Habibi-Rezaei,J.Meghrous,et al.Monitoring motility,spreading,and mortality of adherent insect cells using an impedance sensor.Anal.Chem.,2001,73(8):1844-1848.
    [55]C.Xiao,B.Lachance,G Sunahara,et al.An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells.Anal.Chem.,2002,74(6):1333-1339.
    [56]C.Xiao,B.Lachance,G Sunahara,et al.Assessment of cytotoxicity using electric cell-substrate impedance sensing:concentration and time response function approach.Anal.Chem.,2002,74(22):5748-5753.
    [57]C.Xiao,J.H.T.Luong.On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing(ECIS).Biotechnol.Prog.,2003,19(3):1000-1005.
    [58]C.Xiao,J.H.T.Luong.Assessment of cytotoxicity by emerging impedance spectroscopy.Toxicol.Appl.Pharm.,2005,206(2):102-112.
    [59]J.H.T.Luong,C.Xiao,B.Lachance,et al.Extended applications of electric cell-substrate impedance sensing for assessment of the structure-function of α2β1 integrin.Anal.Chim.Acta,2004,501(1):61-69.
    [60]J.H.T.Luong.An emerging impedance sensor based on cell-protein interactions:applications in cell biology and analytical biochemistry.Anal.Lett.,2003,36(15):3147-3164.
    [61]J.H.Yeon,J.K.Park.Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip.Anal.Biochem.,2005,341(2):308-315.
    [62]J.M.Atienza,J.Zhu,X.Wang,X.Xu,Y.Abassi.Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays.J.Biomol.Screen.,2005,10(8):795-805.
    [63]C.Tlili,K.Reybier,A.G(?)lo(e|¨)n,et al.Fibroblast cells:a sensing bioelement for glucose detection by impedance spectroscopy.Anal.Chem.,2003,75(14):3340-3344.
    [64]T.Yasukawa,T.Kaya,T.Matsue.Characterization and imaging of single cells with scanning electrochemical microscopy.Electroanalysis,2000,12(9):653-659.
    [65]S.Amemiya,J.D.Guo,H.Xiong,et al.Biological applications of scanning electrochemical microscopy:chemical imaging of single living cells and beyond.Anal.Bioanal.Chem.,2006,386(3):458-471.
    [66]M.Tsionsky,Z.G.Cardon,A.J.Bard,et al.Photosynthetic electron transport in single guard cells as measured by scanning electrochemical microscopy.Plant Physiol.,1997,113(3):895-901.
    [67]J.Mauzeroll,A.J.Bard.Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells.Proc.Natl.Acad.Sci.USA,2004,101(21):7862-7867.
    [68]J.Mauzeroll,A.J.Bard,O.Owhadian,et al.Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy.Proc.Natl.Acad.Sci.USA,2004,101(51):17582-17587.
    [69]D.P.Zhan,X.Li,W.Zhan,F.Fan,and A.J.Bard.Scanning Electrochemical Microscopy.58.Application of a Micropipet-Supported ITIES Tip To Detect Ag~+ and Study Its Effect on Fibroblast Cells.Anal.Chem.,2007,79(14):5225-5231.
    [70]B.Liu,S.A.Rotenberg,M.V.Mirkin.Scanning electrochemical microscopy of living cells:different redox activities of nonmetastatic and metastatic human breast cells.Proc.Natl.Acad.Sci.USA,2000,97(18):9855-9860.
    [71]B.Liu,W.Cheng,S.A.Rotenberg,et al.Scanning electrochemical microscopy of living cells:Part 2.Imaging redox and acid/basic reactivities.J.Electroanal.Chem.,2001,500(1-2):590-597.
    [72]B.Liu,S.A.Rotenberg,M.V.Mirkin.Scanning electrochemical microscopy of living cells.4.Mechanistic study of charge transfer reactions in human breast cells.Anal.Chem.,2002,74(24):6340-6348.
    [73]W.Feng,S.A.Rotenberg,M.V.Mirkin.Scanmng electrochemical microscopy of living cells.5.Imaging of fields of normal and metastatic human breast cells.Anal.Chem.,2003,75(16):4148-4154.
    [74]S.A.Rotenberg,M.V.Mirkin.Scanning electrochemical microscopy:detection of human breast cancer cells by redox environment.J.Mammary Gland Biol.,2004,9(4):375-382.
    [75]H.Shiku,T.Shiraishi,H.Ohya,et al.Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy.Anal.Chem.,2001,73(15):3751-3758.
    [76]H.Shiku,T.Shiraishi,S.Aoyagi,et al.Respiration activity of single bovine embryos entrapped in cone-shaped microwell monitored by scanning electrochemical microscopy.Anal.Chim.Acta,2004,522(1):51-58.
    [77]T.Kaya,Y.Torisawa,D.Oyamatsu,et al.Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy(SECM).A comparison with fluorescence viability monitoring.Biosens.Bioelectron.,2003,18(11):1379-1383.
    [78]Y.Takii,K.Takoh,M.Nishizawa,et al.Characterization of local respiratory activity of PC 12 neuronal cell by scanning electrochemical microscopy.Electrochim.Acta,2003,48(20-22):3381-3385.
    [79]Y.Torisawa,T.Kaya,Y.Takii,et al.Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures.Anal.Chem.,2003,75(9):2154-2158.
    [80]Y.Takahashi,T.Miyamoto,H.Shiku,R.Asano,T.Yasukawa,I.Kumagai and T.Matsue Electrochemical Detection of Epidermal Growth Factor Receptors on a Single Living Cell Surface by Scanning Electrochemical Microscopy Anal.Chem.,Articles ASAP(As Soon As Publishable).
    [81]X.L.Zhang,F.C.Sun,X.W.Peng,W.R.Jin.Quantitative Determination of Enzyme Activity in Single Cells by Scanning Microelectrode Coupled with a Nitrocellulose Film-Covered Microreactor by Means of a Scanning Electrochemical Microscope.Anal.Chem.,2007,79(3):1256-1261.
    [82]祭永广,徐云华,劳逸.血清肿瘤标志物在肺癌中的检测和临床意义.宁夏医学杂志.2007,29(2):118-120.
    [83]文国泰.肝病患者甲胎蛋白和癌胚抗原肿瘤标志物检测分析.四川医学,2008,29(7):914-916.
    [84]S.Tyagi,F.R.Kramer.Molecular beacons:probes that flu2oresce upon hybridization.Nat.Biotechnol.,1996,14:303-308.
    [85]D.Bader,A.Riskin,O.Vafsi,A.Tamir,B.Peskin,N.Israel,R.Merksamer,H.Dar,M.David.a-Fetoproteinin the early neonatalperiod:A large study and review of the literature.Clin.Chim.Acta,2004,349:15-23.
    [86]X.W.Wang,B.Xu,Stimulationof tumor-cell growth by a-fetoprotein.Intl.J.Cancer,1998,75:596-599.
    [87]F.R.Ffitzsche,A.Thomas,K.J.Winzer,etal.Co-expression and prognostic value of gross cystic disease fluid Protein 15and mammaglobin in Primary breast caneer.Histology and histopathology,2007,22(11):1221-1230.
    [88]鞠熀先.电分析化学与生物传感技术.北京,科学出版社,2006,382-385.
    [89]彭图治,祝方猛,杨丽菊,何巧红,程琼.测定甲胎蛋白的非标记电位型免疫传感器.应用化学,1998,01:47-49.
    [90]唐点平,袁若,柴雅琴等.纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫 传感器的研究.化学学报,2004,62:2062-2066.
    [91]Y.Fu,R.Yuan,D.Tang,et al.Study on the immobilization ofanti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor,cyclic voltammetry and electrochemical impedance technique.Colloids Surf.B:Biointerfaces,2005,40:61-66.
    [92]E.P.Medyantseva,E.V.Khaldeeva,N.I.Glushko,et al.Amperometric enzyme immunosensor for the determination of the antigen of the pathogenic fungi Trichophyton rubrum.Anal.Chim.Acta,2000,411:13-18.
    [93]Z.Dai,F.Yan,H.Yu,et al.Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen.J.Immunol.Methods,2004,287:13-20.
    [94]D.P.Tang,R.Yuan,and Y.Q.Chai Ultrasensitive Electrochemical Immunosensor for Clinical Immunoassay Using Thionine-Doped Magnetic Gold Nanospheres as Labels and Horseradish Peroxidase as Enhancer.Anal.Chem.,2008,80(5):1582-1588.
    [95]R.G.Sandberg.A conductive polymer-based immunosensor for the analysis of pesticide residues.Am.Chem.Soc.Symp.Ser.,1992,511:81-88.
    [96]H.Tang,J.H.Chen,L.H.Nie,Y.F.Kuang,S.Z.Yao.A label-free electrochemical immunoassay for carcinoembryonic antigen(CEA)based on gold nanoparticles (AuNPs)and nonconductive polymer film Biosens.Bioelectron.2007,22:1061-1067.
    [97]H.He,Q.Xie,Y.Zhang,et al.A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction,J.Biochem.Biophys.Methods,2005,62:191-205.
    [98]S.Iijima,T.Ichihashi.Single-shell carbon nanotubes of 1 nm diameter.Nature,1993,363:603-605.
    [99]Y.D.Li,Y.T.Qian,H.W.Liao,et al.A reduction-pyrolysis-catalysis synthesis of diamond.Science,1998,281:246-247.
    [100]Y.Xie,Y.T.Qian,W.Z.Wang,et al.A benzene-thermal synthetic route to nanocrystalline GaN.Science,1996,272:1926-1927.
    [101]王君,陈红亮.21世纪的前沿材料-纳米材料.当代化工,2001,30(1):12-13.
    [102]朱宏伟,吴德海,徐才录.纳米碳管.第一版.北京:机械工业出版社,2003,1-6.
    [103]M.C.Daniel,D.Astruc.Gold nanoparticles:assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem Rev.,2004,104:293-346.
    [104]Y.Xiao,H.X.Ju,H.Y.Chen,et al.Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer.Anal.Chim.Acta,1999,391:73-82.
    [105]Y.Xiao,H.X.Ju,H.Y.Chen,et al.Direct electrochemistry of horseradish peroxidase immobilized on colloid/cysteamine modified gold electrode.Anal.Biochem.,2000,278:22-28.
    [106]S.Bharathi,M.Nogami.A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme.Analyst,2001,126:1919-1922.
    [107]M.B.Gonzalez-Garcia,C.Fernandez-Sanchez,A.Costa-Garcia.Colloidal gold as an electrochemical label of streptavidin-biotin interaction.Biosens.Bioelectron.,2000,15:315-321.
    [108]H.Cai,C.Xu,P.He,et al.Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA.J.Electroanal.Chem.,2001,510:78-85.
    [109]J.Wang.Nanoparticle-based electrochemical DNA detection.Anal.Chim.Acta,2003,500:247-257.
    [110]M.Gao,L.Dai,G G Wallace.Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers.Electroanalysis,2003,15:1089-1094.
    [111]S.Hrapovic,Y.Liu,K.Male,et al.Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.Anal.Chem.,2004,76:1083-1088.
    [112]Y Lin,F.Lu,Y Tu,et al.Glucose biosensor based on carbon nanotube nanoelectrode ensembles.Nano Lett.,2004,4:191-195.
    [113]J.Wang,M.Musameh.Enzyme-dispersed carbon nanotube electrodes:a needle microsensor for monitoring glucose.Analyst,2003,128:1382-1385.
    [114]M.D.Rubianes,G A.Rivas.Carbon nanotubes paste electrode.Electrochem. Commun.,2003,5:689-694.
    [115]J.Wang,G.Liu,M.Jan.Ultrasensitive electrical biosensing of proteins and DNA:carbon-nanotube derived amplification of the recognition and transduction events.J.Am.Chem.Soc,2004,126:3010-3011.
    [116]K.Yamamoto,G Shi,T.S.Zhou,et al.Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors.Analyst,2003,128:249-254.
    [117]Y.Lin,F.Lu,J.Wang.Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents.Electroanalysis,2004,16:145-149.
    [118]H.Cai,X.Cao,Y Jiang,et al.Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection.Anal.Bioanal.Chem.,2003,375:287-293.
    [119]J.Wang,A.Kawde,M.Mustafa.Carbon nanotube modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization.Analyst,2003,128:912-916.
    [120]M.Pedano,G A.Rivas.Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste eletrodes.Electrochem.Commun.,2004,6:10-16.
    [121]J.Wang,M.Li,Z.Shi,et al.Electrochemistry of DNA at single-wall carbon nanotubes.Electroanalysis,2004,16:140-144.
    [122]A.Ito,M.Shinkai,H.Honda,T.Kobayashi.Medical application of functionalized magnetic nanoparticles.J.Biosci.Bioeng.,2005,100(1):1-11.
    [123]P.Tartaj,T.Gonzalez-Carreno,C.J.Serna.Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties.Adv.Mater.,2001,13(21):1620-1624.
    [124]X.Battle,A.Labarta.Finite-size effects in fine particles:magnetic and transport properties.J.Phys.D:Appl.Phys.,2002,35(6):R15-R42.
    [125]J.M.Nam,S.I.Stoeva,C.A.Mirkin.Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity.J.Am.Chem.Soc,2004,126(19):5932-5933.
    [126]A.Fan,C.Lau,J.Lu.Magnetic Bead-Based Chemiluminescent Metal Immunoassay with a Colloidal Gold Label.Anal.Chem.,2005,77(10):3238-3242.
    [127]F.Patolsky,Y.Weizmann,E.Katz,et al.Magnetically Amplified DNA Assays (MADA):Sensing of Viral DNA and Single-Base Mismatches by Using Nucleic Acid Modified Magnetic Particles.Angew.Chem.Int.Edit.,2003,42(21):2372-2376.
    [128]K.E.McCloskey,J.J.Chalmers,M.Zborowski.Magnetic Cell Separation:Characterization of Magnetophoretic Mobility.Anal.Chem.,2003,75(24):6868-6874.
    [129]J.M.Perez,F.J.Simeone,Y.Saeki,et al.Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media.J.Am.Chem.Soc.2003,125(34):10192-10193.
    [130]H.Gu,P.L.Ho,K.W.T.Tsang,et al.Using Biofunctional Magnetic Nanoparticles to Capture Gram-negative Bacteria at an Ultra-Low Concentration.Chem.Commum.,2003,15:1966-1967.
    [131]H.Gu,P.L.Ho,K.W.T.Tsang,et al.Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration.J.Am.Chem.Soc.,2003,125(51):15702-15703.
    [132]J.Richardson,P.Hawkins,R.Luxton.The use of coated paramagnetic particles as a physical label in a magneto-immunoassay.Biosens.Bioelectron.,2001,16(9-12):989-993.
    [133]L.Joseph.son,C.H.Tung,A.Moore,et al.High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates.Bioconjugate Chem.,1999,10(2):186-191.
    [134]P.Wunderbaldinger,L.Josephson,R.Weissleder.Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles.Bioconjugate Chem.,2002,13(2):264-268.
    [135]M.Zhao,M.F.Kircher,L.Josephson,et al.Differential Conjugation of Tat Peptide to Superparamagnetic Nanoparticles and Its Effect on Cellular Uptake.Bioconjugate Chem.,2002,13(4):840-844.
    [136]W.H.King.Piezoelectric sorption detector.Anal.Chem.,1964,36:1735-1739.
    [137]W.H.King.Monitoring of hydrogen,methane,and hydrocarbons in the atmosphore. Environ.Sci.Technol.,1970,4:1136-1141.
    [138]W.H.King,L.W.Corbett.Relative oxygen absorption and volatility of submicron films of asphalt using the crystal microbalance.Anal.Chem.,1969,41:580-583.
    [139]G G Guibault.Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector.Anal.Chem.,1983,55:1682-1684.
    [140]J.Ngeh-Ngwainbi,R H.Foley,S.S.Kuan,et al.Parathion antibodies on piezoelectric crystal.J.Am.Chem.Soc,1986,108:5444-5447.
    [141]R L.Konash,G J.Bastiaans.Piezoelectric crystal as detectors in liquid chromatography.Anal.Chem.,1980,52:1929-1931.
    [142]T.Nomura.Single-DRUP method for determination of cyanide in solution with a piezoelectric quartz crystal.Anal.Chim.Acta,1981,124:81-84.
    [143]G.Sauerbrey.The use of quartz oscillators for weighing thin layers and for microweighing.Z.Phys.,1959,155:206-222.
    [144]G.G.Guilbault,in C.S.Liu,A.W.Czandema eds.Applications of piezoelectric quartz crystal microbalances.Amsterdam,Oxford,New York and Tokyo:Elsevier,1984.
    [145]K.K.Kanazawa,J.Gordon.Frequency of a quartz microbalance in contact with liquid.Anal.Chem.,1985,57:1770-1771.
    [146]S.Bruckenstein,M.Shay.Experimental aspects of use of the quartz crystal microbalance in solution.Electrochim.Acta,1985,30:1295-1300.
    [147]R.Schumacher.The quartz microbalance:A novel approach to the in-situ investigation of interfacial phenomena at the solid/liquid junction.Angew.Chem.Int.Ed.Engl.,1990,29:329-343.
    [148]H.E.Hager.Fluid property evaluation by piezoelectric crystals operating in the thickness shear mode.Chem.Eng.Commun.,1986,43:25-38.
    [149]Z.A.Shana,N.E.Radtke,U.R.Kelkar,et al.Theory and application of a quartz as a sensor for viscosity liquids.Anal.Chim.Acta,1990,231:317-320.
    [150]H.Muramatsu,E.Tamiya,I.Karube.Computation of equivalent circuit parameters of quartz crystal in contact with liquids and study of liquids properties.Anal.Chem.,1988,60:2142-2146.
    [151]S.Z.Yao,T.A.Zhou.Dependence of the oscillation frequency of a piezoekctric crystal on the physical properties of liquids.Anal.Chim.Acta,1988,212:61-67.
    [152]H.E.Heusler,A.Grzegorzewski,L.Jackel,et al.Measurement of mass and s(?)face stress at one electrode of a quartz oscillator.Ber.Bunsen-Ges.Phys.Chem.,1983,92:1218-1225.
    [153]C.Gabrieli,F.Huet,M.Keddam,et al.Investigation of water electrolysis by spectral analysis.l.Influence of the current density.J.Appl.Electrochem.,1989,19:683-696.
    [154]M.Thompson,C.L.Arthur,G.K.Dhaliwal.Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry.Anal.Chem.,1986,58:1206-1209.
    [155]姚守拙,压电化学与生物传感.湖南师范大学出版社,长沙,1997.
    [156]M.Thompson,G K.Dhaliwal,C.L.Arthur,et al.The potential of the bulk acoustic wave device as a liquid-phase immunosensor.IEEE.Trans.Ultrason.Ferroelec.Freq.Contr.UFFC,1987,34:128-135.
    [157]S.J.Martin,V.E.Granstaff,G.C.Frye.Characterization of quartz crystal microbalance with simultaneous mass and liquid loading.Anal.Chem.,1991,63:2272-2281.
    [158]S.J.Martin,J.J.Spates,K.O.Wessendorf,et al.Resonator/oscillator response to liquid loading.Anal.Chem.,1997,69:2050-2054.
    [159]H.L.Bandey,S.J.Martin,R.W.Cemosek,et al.Modeling the responses of thickness-shear mode resonators under various loading conditions.Anal.Chem.,1999,71:2205-2214.
    [160]S.J.Martin,H.L.Bandey,R.W.Cernosek,et al.Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.Anal.Chem.,2000,72:141-149.
    [161]D.Shen,L.Nie,S.Yao.A new type of piezoelectric detector in liquid:Ⅲ.Computation of equivalent circuit parameters of a piezoelectric crystal with separated electrode and series piezoelectric sensors in electrolyte solution.J.Electroanal.Chem.,1994,367:31-40.
    [162]D.Shen,S.Lin,Q.Kang,et al.Frequency characteristics of an electrode-separated piezoelectric crystal sensor in contact with a liquid.Analyst,1993,118:1143-1147.
    [163]Y.Xu,D.Shen,Q.Xie,et al.Frequency-temperature coefficient of an electrode-separated piezoelectric sensor in the liquid phase.J.Electroanal.Chem.,1995,387:23-28.
    [164]D.Shen,M.Huang,L.Nie,et al.Equivalent circuits of piezoelectric quartz crystals in a liquid and liquid properties:Part 2.A unified equivalent circuit model for piezoelectric sensors.J.Electroanal.Chem.,1994,371:117-125.
    [165]D.Shen,L.Nie,S.Yao.A new type of piezoelectric detector in liquid:Part 2.Computation of the equivalent circuit parameters of a piezoelectric crystal with a separated electrode and of series piezoelectric sensors in a non-electrolyte solution.J.Electroanal.Chem.,1993,360:71-87.
    [166]D.Shen,W.Zhu,L.Nie,et al.Behavior of a series piezoelectric sensor in electrolyte solution.Part I.Theory.Anal.Chim.Acta,1993,276:87-97.
    [167]D.Shen,Y Xu,L.Nie,et al.An impedance analyzer method to simulate the oscillating characteristic of a series piezoelectric sensor in oscillators with zero or non-zero phases.Talanta,1994,41:1993-1998.
    [168]D.Shen,Q.Kang,Z.Liu,et al.Oscillation condition for a series piezoelectric sensor.Application to the determination of urease activity in plant seeds.Anal.Chim.Acta,1997,340:55-60.
    [169]J.H.Kaufman,K.K.Kanazawa,G.B.Street.Gravimetric electrochemical voltage spectroscopy:In situ mass measurements during electrochemical doping of the conducting polymer polypyrrole.Phys.Rev.Lett.,1984,53:2461-2464.
    [170]S.Bruckenstein,M.Shay.An in situ weighing study of the mechanism for the formation of the adsorbed oxygen monolayer at a gold electrode.J.Electroanal.Chem.,1985,188:131-136.
    [171]M.R.Deakin,D.A.Buttry.Electrochemical applications of the quartz crystal microbalance.Anal.Chem.,1989,61:1147-1154.
    [172]D.A.Buttry,M.D.Ward.Measurement of interracial processes at electrode surfaces with the electrochemical quartz crystal microbalance.Chem.Rev.,1992,92:1355-1379.
    [173]J.J.Donohue,D.A.Buttry.Adsorption and micellization influence the electrochemistry of redox surfactants derived from ferrocene.Langmuir,1989,5:671-678.
    [174]Y.He,Y.Wang,G.Zhu,et al.Electrochemical scanning tunneling microscopy and electrochemical quartz crystal microbalance study of the adsorption of phenanthraquinone accompanied by an electrochemical redox reaction on the Au electrode.J.Electroanal.Chem.,1997,440:65-72.
    [175]Q.Xie,D.Shen,L.Nie,et al.A new technique of absorption spectroelectrochemistry at grazing incidence in combination with piezoelectric quartz crystal detection:electrodeposition and stripping process.Electrochimica Acta,1993,38:2277-2280.
    [176]Z.Jusys,H.Massong,H.Baltruschat.A new approach for simultaneous DEMS and EQCM:Electro-oxidation of adsorbed CO on Pt and Pt-Ru.J.Electrochem.Soc.,1999,146:1093-1098
    [177]Q.Xie,Y.Zhang,M.Xu,et al.Combined quartz crystal impedance and electrochemical impedance measurements during adsorption of bovine serum albumin onto bare and cysteine-or thiophenol-modified gold electrodes.J.Electroanal.Chem.,1999,478:1-8.
    [178]周安宏.压电谐波传感及压电、电化学双阻抗联用新技术及其应用:[湖南大学博士学位论文].长沙:湖南大学化学化工学院,2000.
    [179]M.Yang,F.L.Chung,M.Thompson.Acoustic network analysis as a novel technique for studying protein adsorption and denaturation as surface.Anal.Chem.,1993,65:3713-3716.
    [180]Y.Ebara,Y.Okahata.In situ surface-detecting technique by using quartz-crystal microbalance interaction behaviors of protein onto a phospholipids monolayer at the air-water interface.Langmuir,1993,9:571-576.
    [181]B.S.Murray,L.Cros.Adsorption of beta-lactoglobulin to metal-surface and their removal by a nonionic surfactant as monitored via a quartz-crystal microbalance. Colloids Surf.B:Biointerfaces,1998,10:227-241.
    [182]R.R.Seigel,P.Harder,R.Dahint,et al.On-line detection of nonspecific protein adsorption at artificial surfaces.Anal.Chem.,1997,69:3321-3325.
    [183]B.A.Cavic,F.L.Chu,M.Furtado,et al.Acoustic-waves and the real-time study of biochemical macromolecules at the liquid/solid interface.Faraday Discuss.Chem.Soc.,1997,107:159-176.
    [184]F.Caruso,D.N.Furlong,P.Kingshott.Characterization of fenitin adsorption onto gold.J.Colloid Interf.Sci.,1997,186:129-140.
    [185]F.Lacour,R.Torresi,C.Gabrielli,et al.Comparison of the quartz-crystal microbalanee and the double-layer capacitance methods for measuring the kinetics the adsorption of bovine serum albumin onto a gold electrode.J.Eleetrochem.Soc.,1992,139:1619-1622.
    [186]张友玉,谢青季,袁玉等.溶菌酶在裸金电极和巯基乙酸或正十二硫烷基醇修饰金电极上的吸附.应用化学,2002,19:4-9.
    [187]T.Hianik,V.Ostatna,Z.Zajacova.The study of the binding of globular proteins to DNA using mass detection and electrochemical indicator methods.J.Electroanal.Chem.,2004,564:19-24.
    [188]G.V.Lubarsky,M.R.Davidson,R.H.Bradley.Hydration-dehydration of adsorbed protein films studied by AFM and QCM-D.Biosens.Bioelectron.,2007,22:1275-1281.
    [189]F.Hook,J.Voros,M.Rodahl,et al.A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry,optical waveguide lightmode spectroscopy,and quartz crystal mierobalance/dissipation.Colloids Surf.,B,2002,24:155-170.
    [190]M.Lee,S.K.Park,C.Chung,et al.QCM study of β-casein adsorption on the hydrophobic surface:Effect of ionic strength and cations.Bull.Korean Chem.Soc.,2004,25:1031-1035.
    [191]A.Shone,F.Dorman,J.Najarian.An immunospecific microbalance.J.Biomed.Mater.Res.,1971,6:565-570.
    [192]C.Steegborn,P.Skl(?)dal.Construnction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution.Biosens.Bioelectron.,1997,12:19-27.
    [193]B.S.Attili,A.A.Suleiman.A piezoelectric immunosensor for the detection of cortisol.Anal.Lett.,1995,28:2149-2159.
    [194]J.E.Roederer,G J.Bastiaans.Microgravimetric immunoassay with piezoelectric crystals.Anal.Chem.,1983,55:2333-2336.
    [195]M.Muratsugu,F.Ohta,Y.Miya,et al.Quartz crystal microbalance for the detection of microgram quantities of human serum albumin:relationship between the frequency change and the mass of protein adsorbed.Anal.Chem.,1993,65:2933-2937.
    [196]B.K(o|¨)nig,M.Gr(a|¨)tzel.A piezoelectric immunosensor for hepatitis viruses.Anal.Chim.Acta,1995,309:19-25.
    [197]J.L.N.Harteveld,M.S.Nieuwenhuizen,E.R.J.Wils.Detection of staphylococcal enterotoxin B employing a piezoelectric crystal immunoseneor.Biosens.Bioelectron,1997,12:661-667.
    [198]I.Ben-Dov,I.Willner,E.Zisman.Piezoelectric immunosensors for urine specimens of chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses.Anal.Chem.,1997,69:3506-3512.
    [199]吴朝阳,沈国励,俞汝勤等.基于 PEG 凝集的压电免疫传感器用于日本血吸虫抗体的测定.高等学校化学学报,1997,11:1774-1178.
    [200]E.Uttenthaler,C.K(o|¨)βlinger,S.Drost.Quartz-crystal biosensor for detection of the African-swine-fever-disease.Anal.Chim.Acta,1998,362:91-100.
    [201]E.Uttenthaler,C.K(o|¨)βlinger,S.Drost.Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor.Biosens.Bioelectron.,1998,13:1279-1286
    [202]F.Aberl,H.Wolf,S.Drost,et al.HIV serology using piezoelectric immunosensors.Sens.Actuat.B-Chem.,1994,18:271-275.
    [203]J.S.Bovenizer,M.B.Jacobs,G.G.Guibault.The detection of Pseudomonas aeruginosa using the quartz crystal microbalance.Anal.Lett.,1998,31:1287-1295.
    [204]G.Shen,H.Wang,T.Deng,et al.A novel piezoelectric immunosensor for detection of carcinoembryonic antigen.Talanta,2005,67:217-220.
    [205]H.Zeng,H.Wang,F.Chen,et al.Development of quartz-crystal-microbalance-based immunosensor array for clinical immunophenotyping of acute leukemias.Anal.Biochem.,2006,351:69-76.
    [206]莫志宏,黄红稷,钱俊臻等.IgG 免疫纳米探针凝聚反应压电传感检测.高等学校化学学报,2007,28:649-651.
    [207]H.Muramatsu,K.Kajiwara,E.Tamiya,et al.Piezoelectric immunosensor for the detection of candida albicans microbes.Anal.Chim.Acta,1986,188:257-261.
    [208]J.H.T.Loung,E.Prusak-Sochaczewski,G.G.Guilbault.Development of a piezoimmunosensor for the detection of Salmonella typhimurium.Ann.N.Y.Acad.Sci.,1990,613:439-443.
    [209]M.Plomer,G.G.George,H.Bertold.Development of a piezoelectric cryatsl immunosensor for detection of enterbacteria.Enzyme Microb.Technol.,1992,14:230-238.
    [210]R.M.Carter,J.J.Mekalanos.Quartz crystal microbalanee detection ofvibro cholerae O139 serotype.J.Immunol.Meth.,1995,187:121-129
    [211]K.Bemd,G.Michael.A novel immunosensor for Herpes viruses.Anal.Chem.,1994,66:341-348.
    [212]F.He,W.Zhu,Q.Geng,et al.Rapid detection of Escherichia coliform using a series electrode piezoelectric crystal sensor.Anal.Lett.,1994,27:655-669.
    [213]L.Bao,H.Tan,Q.Duan,et al.A rapid method for determination of staphylococcus aureus based on milk coagulation by using a series piezoelectric quartz rystal sensor.Anal.Chim.Acta,1998,369:139-145.
    [214]J.Zhang,W.Wei,Y.Mao,et al.Monitoring ofbio-oxidation process of ferrous ion by using piezoelectric impedance analysis.Current Microbiol.,2001,43:83-88.
    [215]S.Yao,H.Tan,H.Zhang,et al.A bulk acoustic wave ammonia sensor applied to analysis antimicrobial properties of tea.Biotechnol.Prog.,1998,14:639-704.
    [216]Y.Wu,Q.Xie,A.Zhou,et al.Detection and analysis of bacillus growth with piezoelectric quartz crystal impedance based on starch hydrolysis.Anal.Biochem.,2000,285:50-54.
    [217]J.Wang,P.E.Nielsen,M.Jiang,et al.Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance.Anal.Chem.,1997,69:5200-5202.
    [218]N.C.Fawcett,J.A.Evans,L.T.Chien.Nucleic acid hybridization detected by piezoelectric resonance.Anal.Lett.,1988,21(7):1099-1114.
    [219]C.Nicolini,V.Erokhin,P.Facci,et al.Quartz balance DNA sensor.Biosens.Bioelectron.,1997,12:613-618.
    [220]H.Su,K.M.B.Kallury,M.Thompson,et al.Interfacial nucleic acid hybridization by random primer P-32 labelling and liquid-phase acoustic network analysis.Anal.Chem.,1994,66:769-777.
    [221]Y.Okahata,M.Kawase,K.Niikura,F.Furusawa,Y.Ebara.Kinetic measurements of DNA hybridization on an oligonucleotide-Immobilized 27-MHz quartz crystal microbalance.Anal.Chem.,1998,70:1288-1296.
    [222]K.Niikura,H.Matsuno,Y.Okahata.Direct monitoring of DNA polymerase reactions on a quartz crystal microbalance.J.Am.Che.Soc.,1998,120:8537-8538.
    [223]A.Zhou,Q.Xie,Y.Zhang,et al.Piezoelectric crystal impedance analysis for investigating the changes of interfacial properties due to interaction of cobalt salt with DNA immobilized on biosensor.Anal.Sci.,2000,16:467-472.
    [224]梁金玲,周剑章,陈巧琳等.电化学石英晶体微天平研究界面电场对 DNA 杂交的影响.物理化学学报,2007,23:1421-1424.
    [225]X.Mao,L.Yang,X.Su,et al.A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7.Biosens.Bioelectron.,2006,21:1178-1185.
    [226]D.M.Gryte,M.D.Ward,W.Hu.Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance.Biotechnol.Prog.,1993,9:105-108.
    [227]J.Redepenning,T.K.Schlesinger,E.J.Mechalke,et al.Osteoblast attachment monitored with a quartz crystal microbalance.Anal.Chem.,1993,65:3378-3381.
    [228]T.Zhou,K.A.Marx,M.Warren,et al.The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth.Biotechnol.Prog.,2000,16:268-277.
    [229]K.A.Marx,T.Zhou,A.Montrone,et al.A quartz crystal microbalance cell biosensor:detection of microtubule alterations in living cells at nM nocodazole concentrations.Biosens.Bioelectron.,2001,16:773-782.
    [230]K.A.Marx,T.Zhou,M.Warren,et al.Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior:evidence for cell-cell cooperativity in initial adhesion and spreading.Biotechnol.Prog.,2003,19:987-999.
    [231]J.Wegener,A.Janshoff,H.J.Galla.Cell adhesion monitoring using a quartz crystal microbalance:comparative analysis of different mammalian cell lines.Eur.Biophys J.,1998,28:26-37.
    [232]C.Fredriksson,S.Kihlman,M.Rodahl,et al.The piezoelectric quartz crystal mass and dissipation sensor:a means of studying cell adhesion.Langmuir,1998,14:248-251.
    [233]A.S.Cans,F.H(o|¨)(o|¨)k,O.Shupliakov,et al.Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance.Anal.Chem.,2001,73:5805-5811.
    [234]C.G.Marxer,M.C.Coen,T.Greber,et al.Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes.Anal.Bioanal.Chem.,2003,377:578-586.
    [235]A.Alessandrini,M.A.Croce,R.Tiozzo,el al.Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance.Appl.Phys.Lett.,2006,88:83905-84100.
    [236]韦晓兰.肝癌细胞压电传感技术平台的构建与应用:[重庆大学博士学位论文].重庆:重庆大学生物工程学院,2005.
    [237]司徒镇强,吴军正.细胞培养,第二版.世界图书出版公司,西安,2004.
    [238]B.M.Gumbiner.Cell adhesion:the molecular basis of tissue architecture and morphogenesis.Cell,1996,84:345-357.
    [239]M.W.Klymkowsky,B.Parrt.The body language of cells:the intimate connection between cell adhesion and behavior.Cell,1995,83:5-8.
    [240]T.J.Mitchison,L.P.Cramer.Actin-based cell motility and cell locomotion.Cell,1996,84:371-379.
    [241]D.A.Lauffenburger,A.F.Horwitz.Cell migration:a physically integrated molecular process.Cell,1996,84:359-369.
    [242]A.Chiarinia,P.Petrinib,S.Bozzinib,et al.Silk fibroin/poly(carbonatE)-urethane as a substrate for cell growth in vitro interactions with human cells.Biomaterials,2003,24:789-799.
    [243]S.A.Gray,J.K.Kusel,K.M.Shaffer,et al.Design and demonstration of an automated cell-based biosensor.Biosens.Bioelectron.,2001,16:535-542.
    [244]Y.Matsubara,Y.Murakamil,M.Kobayashi,et al.Application of on-chip cell cultures for the detection of allergic response.Biosens.Bioelectron.,2004,19:741-747.
    [245]Y.Yanase,H.Suzuki,T.Tsutsui,et al.The SPR signal in living cells reflects changes,other than the area of adhesion and the formation of cell constructions.Biosens.Bioelectron.,2007,22:1081-1086.
    [246]Y.Ci,C.Zhang,J.Feng.Photoelectric behavior of mammalian cells and its bioanalytical applications.Bioelectrocbem.Bioenerg.,1998,45:247-251.
    [247]A.Janshoff,H.J.Galla,C.Steinem.Piezoelectric mass-sensing devices as biosensorsan alternative to optical biosensors.Angew.Chem.Int.Ed.,2000,39:4004-4032.
    [248]K.A.Marx.Quartz crystal microbalance:a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.Biomacromolecules,2003,4:1099-1120.
    [249]J.Wegener,J.Seebach,A.Janshoff,et al.Analysis of the composite response of shear wave resonators to the attachment of mammalian cells.Biophys.J.,2000,78:2821-2833.
    [250]V.Heitmann,J.Wegener.Monitoring cell adhesion by piezoresonators:impact of increasing oscillation amplitudes.Anal.Chem.,2007,79:3392-3400.
    [251]Z.Fohlerov(?),P.Skl(?)dal,J.Tur(?)nek.Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor.Biosens.Bioelectron.,2007,22:1896-1901.
    [252]X.Wei,Z.Mo,B.Li,et al.Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement.Colloid Surface B,2007,59:100-104.
    [253]A.L.Schofield,T.R.Rudda,D.S.Martin,et al.Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring.Biosens.Bioelectron.,2007,23:407-413.
    [254]M.S.Lord,C.Modin,M.Foss,et al.Extracellular matrix remodeling during cell adhesion monitored by the quartz crystal microbalance.Biomaterials,2008,29:2581-2587.
    [255]L.B.Allison.,M.Y.Kenneth.Cell-matrix adhesion.J.Cell.Physiol.,2007,213:565-573.
    [256]H.Shin.Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions.Biomaterials,2007,28:126-133.
    [257]C.Cozens-Roberts,J.A.Quinn,D.A.Lauffenburger.Receptor-mediated cell attachment and detachment kinetics.Ⅱ.Experimental model studies with the radial-flow detachment assay.Biophys.J.,1990,58:857-872.
    [258]B.J.Dubin-Thaler,G Giannone,H.G Dobereiner,M.P.Sheetz.Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs.Biophys.J.,2004,86:1794-1806.
    [259]A.J.Garcia,P.Ducheyne,D.Boettiger.Quantification of cell adhesion using a spinning-disc device and application to surface-reactive materials.Biomaterials,1997,18:1091-1098.
    [260]F.Moussy,A.W.Neumann,W.Zingg.The force of detachment of endothelial cells from different solid surfaces.ASAIO Trans.,1990,36:568-572.
    [261]L.A.Olivier,G A.Truskey.A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.Biotechnol.Bioeng.,1993,42:963-973.
    [262]P.F.Davies,A.Robotewskyj,M.L.Griem.Endothelial cell adhesion in real time:Measurements in vitro by tandemscanning confocal image analysis.J.Clin.Invest.,1993,9:2640-2652.
    [263]Jr.A.A.Neyfakh,I.S.Tint,T.M.Svitkina,A.D.Bershadsky,V.I.Gelfand.Visualization of cellular focal contacts using a monoclonal antibody to 80 kD serum protein adsorbed on the substratum.Exp.Cell.Res.,1983,149:387-396.
    [264]X.M.T,Q.J.Xie,C.H.Xiang,Y.Y.Zhang,S.Z.Yao.Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine) thin films.J.Phys.Chem.B,2005,109:4053-4063.
    [265]N.G.Karousos,S.Aouabdi,A.S.Way.Quartz crystal microbalance determination of organophosphorus and carbamate pesticides,Anal.Chim.Acta,2002,469:189-196.
    [266]Y.H.Wu,Q.J.Xie,S.Z.Yao.Detection and analysis of bacillus subtilis growth with piezoelectric quartz crystal impedance based on starch hydrolysis.Anal.Biochem.,2000,285:50-57.
    [267]Y.H.Wu,Q.J.Xie,S.Z.Yao.Monitoring of DNA oxidative damage with piezoelectric quartz crystal method.Talanta,2001,54:263-270.
    [268]J.Li,C.Thielemann,U.Reuning,D.Johannsmann.Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators:evaluation in the impedance analysis mode.Biosens.Bioelectron.,2004,20:1333-1337.
    [269]H.Soonjin,E.Ertan,L.Ryszard,A.B.Kenneth.Real-time analysis of cell-surface adhesive interactions using thickness shear mode resonator.Biomaterials,2006,27:5813-5820.
    [270]D.W.Jenkins,S.M.Hudson.Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers.Chem.Rev.,2001,101:3245-3274.
    [271]A.J.Varma,S.V.Deshpande,J.F.Kennedy.Metal complexation by chitosan and its derivatives:a review.Carbohydr.Polym.,2004,55:77-93.
    [272]M.N.V.R.Kumar.A review of chitin and chitosan applications.React.Funct.Polym.,2000,46:1-27.
    [273]K.Kurita.Controlled functionalization of the polysaccharide chitin.Prog.Polym.Sci.,2001,26:1921-1971.
    [274]S.B.Kim,Y.J.Kim,T.L.Yoon,E.J.Kim,I.A.Kim,J.W.Shin.The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.Biomaterials,2004,25:5715-5723.
    [275]J.Wang,J.de Boer,K.de Groot.Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6A14V plates.J.Dent.Res.,2004,83:296-301.
    [276]M.Darder,M.Colilla,E.Ruiz-Hitzky.Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite.Chem.Mater.,2003,15:3774-3780.
    [277]J.X.Wang,M.Li,Z.J.Shi,N.Q.Li,Z.N.Gu.Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes.Anal.Chem.,2002,74:1993-1997.
    [278]J.Wang,M.Musameh.Carbon nanotube/Teflon composite for electrochemical sensors and biosensors.Anal.Chem.,2003,75:2075-2079.
    [279]R.R.Moore,C.E.Banks,R.G.Compton.Basal plane pyrolytic graphite modified electrodes:comparison of carbon nanotubes and graphite powder as electrocatalysts.Anal.Chem.,2004,76:2677-2682.
    [280]F.Valentini,A.Amine,S.Orlanducci,M.L.Terranova,G.Palleschi.Carbon nanotube purification:preparation and characterization of carbon nanotube paste electrodes.Anal.Chem.,2003,75:5413-5421.
    [281]C.Wang,M.Waje,X.Wang,J.M.Tang,R.C.Haddon,Y.S.Yan.Proton exchange membrane fuel cells with carbon nanotube based electrodes.Nano Lett.,2004,4:345-348.
    [282]S.F.Wang,L.Shen,W.D.Zhang,and Y J.Tong.Preparation and mechanical properties of chitosan/carbon nanotubes composites.Biomacromolecules,2005,6:3067-3072.
    [283]S.Hrapovic,Y.L.Liu,K.B.Male,J.H.T.Luong.Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.Anal.Chem.,2004,76:1083-1088.
    [284]A.J.Bard and L.R.Faulkner.“Electrochemical methods:fundamentals and applications”,1980,Wiley,New York.
    [285]E.Katz,I.Willner,Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:routes to impedimetric immunosensors,DNA-sensors,and enzyme,biosensors.Electroanalysis,2003,15:913-947.
    [286]M.L.Guo,J.H.Chen,X.B.Yun,K.Chen,L.H.Nie,S.Z.Yao,Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy.BBA-Gen.Subjects,2006,1760:432-439.
    [287]C.Hao,L.Ding,X.J.Zhang,H.X.Ju.Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing.Anal.Chem.,2007,79:4442-44447.
    [288]F.Li,J.H-C.Wang,Q.M.Wang.Monitoring cell adhesion by using thickness shear mode acoustic wave sensors.Biosen.Bioelectron.,2007,23:42-50.
    [289]Y.Shirosakia,K.Tsurua,S.Hayakawaa,A.Osakaa,M.A.Lopes,J.D.Santos,M.H.Fernandes.In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes.Biomaterials,2005,26:485-493.
    [290]C.C.Berry,A.S.G Curtis.TOPICAL REVIEW:Functionalisation of magnetic nanoparticles for applications in biomedicine.J.Phys.D:Appl.Phys.,2003,36(13):198-206.
    [291]T.Matsunaga,R.Sato,S.Kamiya,T.Tanaka,H.Takeyama.Chemiluminescence enzyme immunoassay using Protein A-bacterial magnetite complex.J.Magn.Magn.Mater.,1999,194:126-131.
    [292]J.I.Taylor,C.D.Hurst,M.J.Davies,N.Sachsinger,I.J.Bruce.Application of magnetite and silica-magnetite composites to the isolation of genomic DNA.J.Chromatogr.A,2000,890:159-166.
    [293]S.Mornet,A.Vekris,J.Bonnet,E.Duguet,F.Grasset,J.H.Choy.DNA-Magnetite nanocomposite materials.Mater.Lett.,2000,42:183-188.
    [294]M.T.Reetz,A.Zonta,V.Vijayakrishnan,K.Schimossek.Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials:magnetic separation of heterogeneous biocatalysts.J.Mol.Catal.A Chem.,1998,134(1-3):251-258.
    [295]N.Sadeghiani,L.S.Barbosa,L.P.Silva,R.B.Azevedo,P.C.Morais,Z.G M.Lacava.Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid.J.Magn.Magn.Mater.,2005,289:466-468.
    [296]L.M.Lacava,Z.G.M.Lacava,M.F.Da Silva,O.Silva,S.B.Chaves,R.B.Azevedo.Magnetic Resonance of a Dextran-Coated Magnetic Fluid Intravenously Administered in Mice.Biophys.J.,2001,80(5):2483-2486.
    [297]L.Babes,B.Denzoit,G Tanguy,J.J.Le Jeune,P.Jallet.Synthesis of iron oxide nanoparticles used as MRI contrast agents:A parametric study.J.Colloid Interface Sci.,1999 212(2):474-482.
    [298]K.M.Kamruzzaman Selima,Y.S.Ha,S.J.Kima,Y.M.Chang,T.J.Kim,G H.Lee,I.K.Kang.Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes.Biomaterials,2007,28(4):710-716.
    [299]K.E.Boubbou,C.Gruden,X.F.Huang.A Unique Tool for Rapid Pathogen Detection,De-contamination and Strain Differentiation.J.Am.Chem.Soc,2007,129:13392-13393.
    [300]I.Safarik,M.Safarikova.Magnetic techniques for the isolation and purification of proteins and peptides.Biomagn.Res.Technol.,2004,2:7.
    [301]S.Arndt,J.Seebach,K.Psathaki,H.J.Galla,J.Wegener.Bioelectrical impedance assay to monitor changes in cell shape during apoptosis.Biosens.Bioelectron.,2004,19(6):583-594.
    [302]S.Andreescu,O.A.Sadik,D.W.M.Gee.Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells.Anal.Chem.,2004,76:2321-2330.
    [303]J.Karasinski,S.Andreescu,O.A.Sadik,B.Lavine,M.N.Vora.Multiarray Sensors with Pattern Recognition for the Detection,Classification and Differentiation of Bacteria at Species and Subspecies Levels.Anal.Chem.,2005,77(24):7941-7949.
    [304]J.Chen,D.Du,F.Yan,H.X.Ju,H.Z.Lian.Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon nanotubes modified electrode.Chem.Eur.J.,2005,11:1467-1472.
    [305]M.Ma,Y.Zhang,W.Yu,H.Y.Shen,H.Q.Zhang,N.Gu.Preparation and characterization of magnetite nanoparticles coated by amino silane.Colloids and Surfaces A:Physicochem.Eng.Aspects,2003,212:219-226.
    [306]X.E.Jia,L.Tan,Q.J.Xie,Y.Y.Zhang and S.Z.Yao.Quartz crystal microbalance and electrochemical cytosensing on a chitosan/multiwalled carbon nanotubes/Au electrode Sens.Actuator B:Chem.,2008,134(1):273-280.
    [307]T.Nishihara,Y.Furuya,K.Yamamoto,Y.Saitoh.Title aggregation patterns of argyrophilic nucleolar organizer regions induced by 5-fluorouracil in the nuclei of MCF-7 human breast cancer cells.Cancer Lett.,1996,100:95-98.
    [308]K.M.L.May,Y.Wang,L.G.Bachas,K.W.Anderson.Development of a Whole-Cell-Based Biosensor for Detecting Histamine as a Model Toxin.Anal.Chem.,2004,76(14):4156-4161.
    [309]T.Neufeld,D.Biran,R.Popovtzer,T.Erez,E.Z.Ron,J.Rishpon.Genetically Engineered pfabA pfabR Bacteria:an Electrochemical Whole Cell Biosensor for Detection of Water Toxicity.Anal.Chem.,2006,78(14):4952-4956.
    [310]H.Thielecke,A.Mack,A.Robitzki.A multicellular spheroid-based sensor for anti-cancer therapeutics.Biosens.Bioelectron.,2001,16(4-5):261-269.
    [311]D.Du,H.X.Ju,X.J.Zhang,J.Chen,J.Cai,H.Y.Chen.Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold nanoparticles modified on a methoxysilyl-terminated butyrylchitosan matrix.Biochemistry,2005,44(34):11539-11545.
    [312]Y.Chen,Y.Q.Zhang,T.H.Zhang,C.H.Gan,C.Y.Zheng,G.Yu.Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon,2006,44(1):37-45.
    [313]D.Tadic,F.Peters,M.Epple.Continuous synthesis of amorphous carbonated apatites.Biomaterials,2002,23(12):2553-2559.
    [314]A.K.Lynn,D.L.DuQuesnay.Hydroxyapatite-coated Ti-6A1-4V part 1:the effect of coating thickness on mechanical fatigue behaviour.Biomaterials,2002,23(9):1937-1946.
    [315]P.Ducheyne,J.Beight,J.Cuckler,B.Evans,S.Radin.Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth.Biomaterials,1990,11(8):531-540.
    [316]K.A.Khor,L.Fu,V.J.P.Lim,P.Cheang,Mater.The effects of ZrO_2 on the phase compositions of plasma sprayed HA/YSZ composite coatings.Sci.Eng.A,2000,27(1-2):160-166.
    [317]V.J.P.Lim,K.A.Khor,L.Fu,P.Cheang.Hydroxyapatite-zirconia composite coatings via the plasma spraying process.J.Mater.Process,1999,89:491-496.
    [318]Y.W.Gu,K.A.Khor,D.Pan,P.Cheang.Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid.Biomaterials,2004,25(16):3177-3185.
    [319]J.F.Kay.Calcium phosphate coatings for dental implants:Current status and future potential.Dent.Clin.North Am.,1992,36(1):1-18.
    [320]H.T.Zeng,W.F.Lacefield.XPS,EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings:the effects of various process parameters.Biomaterials,2000,21(1):23-30.
    [321]T.Casagrande,G.Lawson,H.Li,J.Wei,A.Adronov,I.Zhitomirsky.Electrodeposition of composite materials containing functionalized carbon nanotubes.Mater.Chem.Phys.,2008,111(1):42-49.
    [322]J.L.Xu,K.A.Khor,J.J.Sui,W.N.Chen.Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells.Mater.Sci.Eng.C,2009,29(1):44-49.
    [323]S.Aryal,R.B.KC,N.Dharmaj,K.W.Kim,H.K.Kim.Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix.Scr.Mater.,2006,54(2):131-135.
    [324]S.R.Bhattarai,S.Aryal,R.Bahadur K.C.,N.Bhattarai,P.H.Hwang,H.K.Yi,H.Y.Kim.Carbon nanotube-hydroxyapatite nanocomposite for DNA complexation.Mater.Sci.Eng.C.,2008,28(1):64-69.
    [325]R.Turcu,A.L.Darabont,N.Aldea,L.P.Biro,J.Optoelec.Template synthesis of a large,self-supporting graphite film in montmorillonite.Adv.Mater.,1996,8:641-644.
    [326]S.Haque,I.Rehman,J.A.Darr.Synthesis and Characterization of Grafted Nanohydroxyapatites Using Functionalized Surface Agents.Langmuir,2007,23(12):6671-6676.
    [327]L.Wang,C.Z.Li.Preparation and physicochemical properties of a novel hydroxyapatite/chitosan-silk fibroin composite.Carbohydrate Polymers,2007,68(4):740-745.
    [328]A.Sucheta,B.A.C.Ackrell,B.Cochran,F.A.Armstrong.Diode-like behavior of a mitochondrial electron-transport enzime.Nature,1992,356:361-362.
    [329]Y.Y.Wong,S.P.Ng,M.H.Ng,S.H.Si,S.Z.Yao and Y.S.Fung.Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance.Biosens.Bioelectron.,2002,17:676-684.
    [330]S.T.Pathirana,J.Barbaree,B.A.Chin,M.G Hartell,W.C.Neely and V.Vodyanoy.Rapid and sensitive bioscnsor for Salmonella.Biosens.Bioelectron.,2000,15:135-141.
    [331]J.B.Jia,B.Q.Wang,A.G Wu,G J.Cheng,Z.Li and S.J.Dong.A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor:Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network.Anal.Chem.,2002,74:2217-2223.
    [332]E.T.Thostenson,Z.F.Ren and T.W.Chou.Advances in the science and technology of carbon nanotubes and their composites:a review.Compos.Sci.Technol.,2001,61:1899-1912.
    [333]N.N.Zhu,Z.Chang,P.G.He and Y.Z.Fang.Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes.Anal.Chim.Acta,2005,545:21-26.
    [334]L.P.Lu,S.Q.Wang and X.Q.Lin.Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor.Anal.Chim.Acta,2004,519:161-166.
    [335]K.Wang,J.J.Xu and H.Y.Chen.Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO_2 nanoparticles as an eliminator of ascorbic acid interference.Sens.Actuators B,2006,114:1052-1058.
    [336]V.Carralero,M.L.Mena,and J.M.Pingarr(?)n.Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles.Biosens.Bioelectron.,2006,22:730-736.
    [337]H.Zhang,R.Wang,H.Tan,L.Nie and S.Yao.Bovine serum albumin as a means to immobilize DNA on a silver-plated bulk acoustic wave DNA biosensor.Talanta,1998,46:171-178.
    [338]K.Chen,D.Liu,L.Nie and S.Yao.Determination of urea in urine using a conductivity cell with surface acoustic wave resonator-based measurement circuit.Talanta,1994,41:2195-2200.
    [339]Q.Xie,C.Xiang,Y.Yuan,Y.Zhang,L.Nie and S.Yao.A novel dual-impedance-analysis EQCM system-investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces.J.Colloid Interface Sci.,2003,262:107-115.
    [340]J.D.Andrade,“Surface and Interfacial Aspects of Biomedical Polymers”,1986,Vols.1-2,Plenum,New York.
    [341]Q.Xie,C.Xiang,Y Zhang,Y Yuan,M.Liu,L.Nie and S.Yao.In situ monitoring of gold-surface adsorption and acidic denaturation of human serum albumin by an isolation-capacitance-adopted electrochemical quartz crystal impedance system.Anal.Chim.Acta,2002,464:65-77.
    [342]L.Tan,Q.Xie and S.Yao.Electrochemical piezoelectric quartz crystal impedance study on the interaction between concanavalin A and glycogen at Au electrodes. Bioelectrochemistry,2007,70:348-355.
    [343]Y.Liu,Y.Li,S.Liu,J.Li and S.Yao.Monitoring the self-assembly of chitosan/glutaraldehyde steamine/Au-colloid and the binding of human serum albumin with hesperidin.Biomaterials,2004,25:5725-5733.
    [344]D.Tang,Da.Zhang,D.Tang and H.Ai.Amplification of the antigen-antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface.J.Immunol.Meth.,2006,316:144-152.
    [345]K.C.Grabar,R.G.Freeman,M.B.Hommer and M.J.Natan.Preparation and Characterization of Au Colloid Monolayers.Anal.Chem.,1995,67:735-743.
    [346]A.Doron,E.Katz and I.Willner.Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces:Application of the Metal Colloid Films as Base Interfaces to Construct Redox-Active Monolayers.Langmuir,1995,11:1313-1317
    [347]A.Zhou,Q.Xie,Y.Yuan,Y.Zhang and S.Yao.Evaluation of electromechanical coupling factor for a piezoelectric quartz crystal in liquid phase.Anal.Chim.Acta,2000,419:251-254.
    [348]D.A.Buttry,“Electroanalytical Chemistry”,ed.A.J.Bard,1991,Vol.17,Marcel Dekker,New York.
    [349]P.Bernabeu,L.Tamisier and A.D.Cesare.Study of the adsorption of albumin on a platinum rotating disk electrode using impedance measurements.Electrochim.Acta,1988,33:1129-1136.
    [350]J.C.Hoogvliet,M.Dijksma,B.Karnp and W.P.van Bennekom.Electrochemical Pretreatment of Polycrystalline Gold Electrodes To Produce a Reproducible Surface Roughness for Self-Assembly:A Study in Phosphate Buffer pH 7.4.Anal.Chem.,2000,72:2016-2021.
    [351]A.G.Amit,R.A.Mariuzza,S.E.Phillips and R.J.Poljak,Science,1986,233:747.
    [352]T.B.Dubrovsky,M.V.Demcheva,P.Savitsky,E.Y.Mantrova,V.V.Savransky and L.V.Belovolova.Fluorescent and phosphorescent study of Langrnuir-Blodgett antibody films for application to immunosensors.Biosens.Bioelectron.,1993,8:377-385.
    [353]M.Z.Atassi,C.J.Van Oss and D.R.Absolom,Translated by C.Zheng,A.Wu,“Molecular Immunology”,1988,Science Press,Beijing.
    [354]H.Ebato,C.A.Gentry,J.N.Herron,W.Mueller,Y.Okahata,H.Ringsdorf and P.A.Suci.Investigation of Specific Binding of Antifluorescyl Antibody and Fab to Fluorescein Lipids in Langmuir-Blodgett Deposited Films Using Quartz Crystal Microbalance Methodology.Anal.Chem.,1994,66,1683-1689.
    [355]X.Chu,Z.Lin,G Shen and R.Yu.Kinetic studies of immunoglobulin M immunoreaction using quartz crystal microbalance methodology.Kinetic studies of immunoglobulin M immunoreaction using quartz crystal microbalance methodology.Chem.J.Chin.Univ.,1996,17,1025-1029.
    [356]I.Kumagai and K.Tsumoto.“Antigen-Antibody Binding.Encyclopedia of life sciences”,2001,Nature Publishing Group.
    [357]J.H.Lin,H.X.Ju,Electrochemical and chemiluminescent immunosensors for tumor markers.Biosens.Bioelectron.,2005,20:1461-1470.
    [358]G.D.Liu,Z.Y Wu,S.P.Wang,Renewable amperometric immunosensor for schistosoma japoniurn antibody assay.Anal.Chem.,2001,73:3219-3226.
    [359]E.Crowley,C.O'Sullivan,G G Guilbault,Amperometric immunosensor for granulocyte-cacrophage colony-stimulating factor using screen-printed electrodes.Anal.Chim.Acta,1999,389:171-178.
    [360]B.A.Kuznetsov,G P.Shumakovich,O.V.Koroleva,et al.On applicability of laccase as label in the mediated and mediatorless electroimmunoassay:effect of distance on the direct electron transfer between laccase and electrode.Biosens.Bioelectron.,2001,16:73-84.
    [361]L.Campanella,R.Attioli,C.Colapicchioni,et al.New amperometric and potentiometric immunosensors for anti-human immunoglobulin G determinations.Sens.Actuators B:Chem.,1999,55:23-32.
    [362]C.Milligan & A.Ghindilis.Laccase based sandwich scheme immunosensor employing mediatorless electrocatalysis.Electroanalysis,2002,14:415-419.
    [363]S.Q.Hu,Z.Y.Wu,Y.M.Zhou,et al.Capacitive immunosensor for transferring based on an σ-aminobenzenthiol oligomer layer.Aanl.Chim.Acta,2002,458:297-304.
    [364]T.Hianik,M.Snejdarkova,L.Sokolikova,et al.Immunosensors based on supported lipid membranes,protein films,and liposomes modified by antibodies.Sens.Actuators B:Chem.,1999,57:201-212.
    [365]J.Ma,Y.M.Chu,J.Di,et al.An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody.Electrochem.Commun.,1999,1:425-428.
    [366]A.L.Ghindilis,P.Atanasov,M.Wilkins,et al.Immunosensors:electroeheMical sensing and other engineering approaches.Biosens.Bioeleetron.,1998,13(1):113-131.
    [367]W.J.Parak,T.Pellegrino,C.M.Mieheel,et al.Conformation of oligonuCleotides attached to gold nanocrystals probed by gel electrophoresis.Nano Lett.,2003,3:33-36.
    [368]A.Gole,C.Dash,C.Soman,et al.On the preparation,characterization,and enzymatic activity of fungal protease-gold colloid bioeonjugates.Bioeonjugate Chem.,2001,12:684-690.
    [369]N.T.K.Thanh & Z.Rosenzweig.Development of an aggregation-based immunoassay for anti-protein A using gold nanopartieles.Anal.Chem.,2002,74:1624-1628.
    [370]B.H.Schneider,E.L.Dickinson,M.D.Vach,et al.Highly sensitive optical chip immunoassays in human serum.Biosens.Bioeleetron.,2000,15:13-22.
    [371]B.H.Schneider,E.L.Dickinson,M.D.Vaeh,et al.Optical chip immunoassay for hGG in human whole blood.Biosens.Bioeleetron.,2000,15:497-504.
    [372]L.R.Hirseh,J.B.Jackson,A.Lee,et al.A whole blood immunoassay using gold nanoshells.Anal.Chem.,2003,75:2377-2381.
    [373]C.Zhang,Z.Zhang,B.Yu,et al.Application of the biological conjugate between antibody and colloid Au nanopartieles as analyte to inductively coupled plasma mass spectrometry.Aanl.Chem.,2002,74:96-99.
    [374]D.S.Grubisha,R.J.Lipert,H.Y.Park,et al.Femtomolar detection of prostate-specific antigen:an immunoassay based on surface-enhanced raman scattering and immunogold labels.Anal.Chem.,2003,75:5936-5943.
    [375]K.B.Lee,E.Y Kim,C.A.Mirkin,et al.The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency Virus Type 1 in plasma.Nano Lett.,2004,4(10):1869-1872.
    [376]A.E.Radi,J.L.A.Sa'nchez,E.Baldrich,C.K.O'Sullivan.Reusable impedimetric aptasensor.Anal.Chem.,2005,77(19):6320-6323.
    [377]M.C.Rodriguez,A.N.Kawde,J.Wang.Aptamer biosensor for label-free impedancespectroscopy detection of proteins based on recognition-induced switching of the surface charge.Chem.Commun.,2005,4267-4269.
    [378]A.J.Bard,L.R.Faulkner.Electrochemical methods:fundamentals and applications.2nd edition.New York:John Wiley & Sons,2001,376-386.
    [379]C.Z.Li,Y.L.Liu,J.H.T.Luong.Impedance Sensing of DNA Binding Drugs Using Gold Substrates Modified with Gold Nanoparticles.Anal.Chem.,2005,77(2):478-485.
    [380]F.Yan,A.O.Sadik.Enzyme modulated cleavage of dsDNA for studying interfacial biomolecular interactions.J.Am.Chem.Soc,2001,123:11335-11340.
    [381]H.O.Finklea,S.Avery,M.Lynch,T.Furtsch.Bloching oriented monolayers of alkylmercap-tans on gold electrodes.Langmuir,1987,3:409-413.
    [382]J.K.Adam,B.Odhav,K.D.Bhoola.Immune responses in cancer.Pharmacol.Therapeut,2003,99(1):113-132.
    [383]S.Hammarstr(o|¨)m.The carcinoembryonic antigen CEA family:structures,suggested functions and expression in normal and malignant tissues.Semin.Cancer Biol.,1999,9(2):67-81.
    [384]D.Du,F.Yan,S.L.Liu,H.X.Ju.Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol-gel matrix.J.Immunol.Meth.,2003,283(1-2):67-75.
    [385]M.J.Verhaar,C.A.Damen,B.A.Zonnenberg,G.H.Blijham.In vitro upregulation of carcinoembryonic antigen expression by combinations of cytokines.Cancer Lett.,1999,139(1):67-73.
    [386]R.Perez-Olmos,J.C.Soto,N.Zarate,A.N.Araujo,M.C.B.S.M.Montenegro.Sequential injection analysis using electrochemical detection:A review.Anal.Chim.Acta,2005,554(1-2):1-16.
    [387]X.Yu,B.Munge,V.Patel,G.Jensen,A.Bhirde,J.D.Gong,S.N.Kim,J.Gillespie,J.S.Gutkind,F.Papadimitrakopoulos,et al.Carbon Nanotube Amplification Strategies for Highly Sensitive Immunodetection of Cancer Biomarkers.J.Am.Chem.Soc.,2006,128(34):11199-111205.
    [388]Y.T.Shi,R.Yuan,Y.Q.Chai,M.Y.Tang,X.L.He,Amplification of antigen-antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles films on Titania nanoparticles/gold nanoparticles-coated Au electrode.J.Electroanal.Chem.,2007,604(1):9-16.
    [389]Y.Zhuo,R.Yuan,Y.Q.Chai,A.L.Sun,Y.Zhang,J.Z.Yang.A tirs(2,2'-bipyridyl)cobalt(Ⅲ)-bovine serum albumin composite membrane for biosensors.Biomaterials,2006,27:5420-5429.
    [390]T.Kitade,K.Kitamura,T.Konishi,S.Takegami,T.Okuno,M.Ishikawa,M.Wakabayashi,K.Nishikawa,Y.Muramatsu.Potentiometric Immunosensor Using Artificial Antibody Based on Molecularly Imprinted Polymers.Anal.Chem.,2004,76(22):6802-6807.
    [391]H.C.W.Hays,P.A.Millner,M.I.Prodromidis.Development of capacitance based immunosensors on mixed self-assembled monolayers.Sens.Actuators B.,2006,114(2):1064-1070.
    [392]J.S.Li,Z.S.Wu,H.Wang,G.L.Shen,R.Q.Yu.A reusable capacitive immunosensor with a novel immobilization procedure based on 1,6-hexanedithiol and nano-Au self-assembled layers.Sens.Actuators B.2005,110(2):327-334.
    [393]Z.P.Chen,J.H.Jiang,G.L.Shen,R.Q.Yu.Impendance immunosensor based on receptor protein adsorbed directly on porous gold film.Anal.Chim.Acta,2005,553(1-2):190-195.
    [394]O.Ouerghi,A.Senillou,N.Jaffrezic-Renault,C.Martelet,H.Ben Ouada,S.Cosnier.Gold electrode functionalized by electropolymerization of a cyano N-substituted pyrrole:application to an immpedimetric immunosensor.J.Electroanal.Chem.,2001,501(1-2):62-69.
    [395]R.E.Ionescu,C.Gondran,L.A.Gheber,S.Cosnier,R.S.Marks.Construction of Amperometric Immunosensors based on the Electrogeneration of a Permeable Biotinylated Polypyrrole Film.Anal.Chem.,2004,76(22):6808-6813.
    [396]J.M.Perez,F.J.Simeone,A.Tsourkas,L.Josephson,R.Weissleder.Peroxidase Substrate Nanosensors for MR Imaging.Nano Lett.,2004,4(1):119-122.
    [397]L.Zhang,X.Jiang,E.K.Wang,S.J.Dong.Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemisity and electrocatalytic behavior of hemoglobin.Biosens.Bioelectron.,2005,21(2):337-345.
    [398]X.J.Huang,C.C.Li,B.Gu,J.Kim,S.O.Cho,Y.K.Choi.Controlled Molecularly Mediated Assembly of Gold Nanooctahedra for a Glucose Biosensor.J.Phys.Chem.C,2008,112(10):3605-3611.
    [399]R.Yuan,L.Y.Zhang,Q.F.Li,Y.Q.Chai,S.R.Cao.A label-free amperometric immunosensor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine.Anal.Chim.Acta,2005,531(1):l-5.
    [400]M.S.El-Deab,T.Ohsaka.Hydrodynamic voltammertic studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electodes.Electrochim.Acta,2002,47(26):4255-4261.
    [401]X.L.Luo,J.J.Xu,W.Zhao,H.Y.Chen.Glucose biosensor based on ENFET doped with SiO_2 naoparticles.Sens.Actuators B,2004,97(2-3):249-255.
    [402]T.Zhang,B.Z.Tian,J.L.Kong,P.Y.Yang,B.H.Liu.A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix.Anal.Chim.Acta,2003,489(2):199-206.
    [403]H.Yao,N.Li,S.Xu,J.Z.Xu,J.J.Zhu,H.Y.Chen.Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide.Biosens.Bioelectron.,2005,21(2):372-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700