用户名: 密码: 验证码:
高浓度甲醛废水深度处理技术及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用真空膜蒸馏、膜吸收法、电化学氧化—絮凝法、催化转化法和催化转化—生物降解法处理高浓度甲醛废水,并对各处理技术的效果和成本进行分析和评价。主要研究结果如下:
     1、真空膜蒸馏和膜吸收法处理高浓度甲醛废水
     真空膜蒸馏法处理高浓度甲醛废水,考察了真空度、膜蒸馏时间等因素的影响。当料液温度为60℃,料液流速为5.24×10~(-3)m·s~(-1),真空度为0.088MPa,对起始浓度约为7500mg·L~(-1)的甲醛废水,膜蒸馏8h,甲醛去除率仅为27.83%。
     以2%亚硫酸氢钠为膜吸收剂序批式处理高浓度甲醛废水,当吸收剂和甲醛废水温度和流速分别为60℃和5.24×10~(-3) m·s~(-1),膜吸收时间为2h,对起始浓度约为7500mg·L~(-1)的甲醛废水,序批式处理六次,甲醛累积去除率达到99.15%,剩余甲醛浓度小于100 mg·L~(-1)。
     2、电化学氧化—絮凝法处理高浓度甲醛废水
     在试验室自制的实验装置上,对影响甲醛电氧化去除效果的各因素进行了初步的研究。实验结果表明:电解时间是影响甲醛去除率的关键因素。当电压9.5V,电解5h,絮凝剂BMT-1用量为2.5%,甲醛浓度从7500mg·L~(-1)降低至324.75mg·L~(-1),去除率达到95.67%。
     3、催化转化法预处理高浓度甲醛废水
     选择适当的催化剂处理高浓度甲醛废水。考察了pH、温度、甲醛初始浓度和催化剂加入量等因素对甲醛去除效果的影响。实验结果表明:在温度为60℃,催化剂与甲醛摩尔比为1:5,反应41min,对初始浓度约为8000 mg·L~(-1)的甲醛废水,去除率可达99.91%,废水中甲醛残余浓度低于10mg·L~(-1)。提出了甲醛催化转化反应可能的反应历程,并进行了相关动力学研究。结果表明,甲醛催化转化反应属于化学反应控制过程。动力学方程可表示为r_A=-dC_A/dt=7.3831×10~(13)exp(-10510.6192/T)CA,反应的活化能为87.390 kJ·mol~(-1)。产物的定性试验结果证明甲醛催化转化的产物是糖类混合物,使处理后废水的可生化性增强。同时,废水处理后产生的废渣在重复使用时,仍可保持效高的催化性能。
     4、催化转化—生物降解法深度处理高浓度甲醛废水
     催化转化法预处理高浓度甲醛废水技术,尽管甲醛去除效率高,残余甲醛浓度小于10mg·L~(-1),但并不能够有效降低废水的COD,故必须要对预处理的甲醛废水进行生物降解法深度处理。
     采用厌氧—好氧组合工艺深度处理催化转化法预处理后的废水甲醛废水(COD约为8000~100000 mg·L~(-1))。当UASB反应器OLR大约在8.0~10.0kg·m-3·d -1之间,pH7.0~7.5,温度35~40℃,HRT为9~12h, COD去除率达到87%~88%;好氧反应器OLR控制在1.0~1.8kg·m-3·d -1之间,DO为4mg·L~(-1),HRT为9~12h时,COD去除率达到93%~94%(进水COD1000~1800mg·L~(-1))。废水经过生化处理后COD总的去除率可达到98.81%,处理后的出水COD<100 mg·L~(-1)。
     5、各处理技术的效果评价和成本分析
     采用真空膜蒸馏法处理甲醛废水,尽管操作简便,成本低,但无论是采用调整真空度或延长真空膜蒸馏时间的方式,均不能有效处理高浓度甲醛废水。
     以亚硫酸氢钠为膜吸收剂序批式处理高浓度甲醛废水,甲醛去除率高(99.15%),但处理过程中需要定时更换新鲜吸收剂,使处理成本增高。每处理一吨甲醛废水(甲醛浓度约7500mg·L~(-1)),其处理成本约为64.5元/吨(不计设备折旧费和人员工资)。同时反应产物的浓度亦低,回收和再利用的难度大。而伴生渗透蒸馏的存在,也会影响总处理效果。
     电化学氧化—絮凝联合处理工艺,相比于单独的使用电化学氧化技术,可以缩短电解时间,降低电解能耗,节约处理成本。初步估算,以电化学氧化—絮凝法处理高浓度甲醛废水(甲醛浓度约7500mg·L~(-1)),其处理成本约为13.5元/吨。该处理技术比膜吸收法处理高浓度甲醛废水的成本降低了近80%。
     催化转化法预处理高浓度甲醛废水,操作工艺简单,甲醛去除效率高。且甲醛催化转化的产物是糖类混合物,废水处理后的甲醛残余浓度低于10 mg·L~(-1),这将为进一步的深度处理提供了保障。另外,反应产生的废渣可以继续重复使用,处理成本进一步降低。每处理一吨高浓度甲醛废水(甲醛浓度约8000mg·L~(-1))所需药剂成本约1.6元。
     生物降解法深度处理高浓度甲醛废水,出水达到《污水综合排放标准》(GB8978—1996)一级标准,其处理成本约3.90元/吨。
     综上所述,若将催化转化—生物降解法组合,则有可能达到经济、高效处理高浓度甲醛废水的目的。
In this paper, several technologies, such as vacuum membrane distillation, membrane absorption, electrochemical oxidation– flocculation, catalytic transformation and catalytic transformation-biological degradation for the treatment of high concentration formaldehyde wastewater were developed. The efficiency and the cost of the technologies were analyzed and evaluated. The main research conclusions are as follows:
     1、Treatment of high concentration formaldehyde wastewater with vacuum membrane distillation and membrane absorption
     The effect of some important parameters,such as vacuum and time, on the treatment of high concentration formaldehyde wastewater with vacuum membrane distillation were studied. When the feed temperature was 60℃, liquid flow rate of feed was 5.24×10~(-3)m·s~(-1), the vacuum was 0.088MPa, the initial concentration of formaldehyde was about 7500mg·L~(-1) and the operation time was 8h, the removal efficiency of formaldehyde was only reached 27.83%.
     The membrane absorption can effectively deal with high concentrations of formaldehyde wastewater by sequencing batch with 2% NaHSO3 as absorbent. When the temperature was 60℃, the flow rate of absorbent was 5.24×10~(-3)m·s~(-1), membrane absorption time was 2h and the initial concentration of formaldehyde was about 7500mg·L~(-1), the removal efficiency of formaldehyde was reached 99.15% and the concentration of residual formaldehyde was less than 100 mg·L~(-1) after 6 times sequencing batch treatment.
     2、Treatment of high concentration formaldehyde wastewater with electrochemical oxidation–flocculation
     The experiment was carried out in the lab self-constructed equipment. Experimental results revealed that electrolysis time was the key factor on the removal efficiency of formaldehyde. When the voltage was 9.5V, electrolytic time was 5h, the dosages of flocculant, BMT-1, was 2.5%, the concentrations of formaldehyde decreased from 7500mg·L~(-1) to 324.75mg·L~(-1) and the removal efficiency of formaldehyde was reached 95.67%.
     3、Treatment of high concentration formaldehyde wastewater with catalytic transformation
     A proper catalyst was adopted to treat the high concentration formaldehyde wastewater. The influence of some important parameters,such as pH, temperature, the initial concentration of formaldehyde and the catalyst dosages, etc, on the removal efficiency of formaldehyde were thoroughly studied. The experimental results indicated that the removal efficiency of formaldehyde reaches 99.91% after 41 minutes at 60℃when the initial concentration of formaldehyde was 8000 mg·L~(-1) and the molar ratio of HCHO and catalyst was 5:1.The concentration of formaldehyde in the outlet water could be less than 10mg·L~(-1). The possible mechanism of the reaction was suggested and the kinetics analysis was carried out. It showed that the reaction was a chemical reaction controlled process.The kinetic equation of the reaction could expressed as r_A =-dC_A/dt=7.3831×10~(13)exp(-10510.6192 /T) CA,the activation energy of the reaction was 87.390kJ·mol~(-1).The reaction products were mainly the combination of sugars by qualitative analysis, thus the biodegradability of the treated wastewater was increased. Moreover, the catalyst could still maintain high catalytic efficiency when it reused.
     4、Treatment of high concentration formaldehyde wastewater with catalytic transformation–biodegradation
     Although the treatment of high concentration of formaldehyde wastewater with the catalyst could reached high removal efficiency of formaldehyde and the concentration of formaldehyde in the outlet water could be less than 10 mg·L~(-1). The COD value of the wastewater did not decreased Therefore, the wastewater must be depth treated with biodegradation.
     A anerobic-aerobic technics was chose to treat the wastewater which the COD was about 8000~100000mg·L~(-1). Under the proper operation conditions of the anerobic reactor(UASB), the OLR 8.0~10.0 kg·m-3·d-1, pH 7.0~7.5, the temperature 35~40℃, HRT 9~12 h, the removal efficiency of COD could reached 87%~88%. the proper operation conditions of the aerobic reactor, the OLR 1.0~2.0kg·m-3·d-1,DO 4mg·L~(-1),HRT 9~12h, the removal efficiency of COD could reached 93%~94% for the inlet COD 1000~1800mg·L~(-1). The overall COD removal efficiency of the biodegradation could be reached as high as 98.81%, and the value of COD of the outlet water could be less than 100 mg·L~(-1).
     5、Evaluation of the effect and the cost of the technics
     Although vacuum membrane distillation has several advantages, such as simple operation and low cost, it do not effectively deal with the high concentrations of formaldehyde wastewater whether it adjusted the vacuum or extended the time of vacuum membrane distillation.
     The membrane absorption with 2% NaHSO3 as absorbent can effectively deal with the high concentrations of formaldehyde wastewater by sequencing batch. However, the cost of the technics will be increased for the requirement of continuous replacing fresh absorbent. The cost of the technology is about 64.5 Yuan / ton (excluding equipment depreciation and staff salaries).At the same time the concentration of the reaction product is so dilute that it is difficult to recycling and reuse. The present of coupled osmotic distillation can also influence the overall treatment effect.
     Compared with electrochemical oxidation, the technics of the combining of the flocculation with the electrochemical oxidation can cut the electrolysis time, reduce electrolysis energy and cost. Preliminary estimation the cost of the technics is about 13.5 Yuan / ton. It can reduce the cost about 80% when it compared with the membrane absorption method.
     The technics of catalytic transformation had several advantages, such as simple operation and high removal efficiency of formaldehyde. In addition, the reaction products were mainly the combination of sugars and the residual concentration of formaldehyde was lower than 10mg·L~(-1), which provided the foundation for further depth treatment with biodegradation. Moreover, the catalyst can be reused which can be reduced the cost . The cost of the technics is about 1.6Yuan / ton
     The outlet water with the biodegradation of the formaldehyde wastewater after the catalytic transformation can achieved the standard "Integrated Wastewater Discharge Standard" (GB8978-1996). The cost of the technics is about 3.9Yuan / ton
     Based on the experimental results and the evaluation of the technics, it can be found that the combining technics of the catalytic transformation-biological degradation can achieve the purposes of economical and efficient for the treatment of high concentrations of formaldehyde wastewater.
引文
1.王文超.改性活性碳吸附甲醛的研究[D]:[硕士学位论文].山东:山东科技大学,2006
    2.贾钧琳.纳米金催化剂低温催化甲醛氧化的研究[D]:[硕士学位论文].北京:北京化工大学,2008
    3.吴慧英,周万龙等.高浓度含酚含醛废水预处理工艺研究[J].给水排水,2005,31(12): 56-58
    4.张蕾,郭生友,原芝泉.高浓度甲醛制药废水处理工程设计探讨[J].工业水处理, 2005,25(1):56-68
    5.申柠.含甲醛制革废水的处理方法研究[D]:[硕士学位论文].成都:西南交通大学,2007
    6. Campos J L,Sanchez M, Mosquera–Corral A,et al. Coupled BAS and anoxic USB system to remove urea and formaldehyde from wastewater[J].Water Research,2003,37:3445–3451
    7. Garrido J M,Mendez R,Lema J M.Treatment of wastewaters from a formaldehyde–urea adhesives[J].Water Science and Technology ,2000,42(5–6):293–300
    8.王维新主编.甲醛释放与检测[M].北京:化学工业出版社,2003,16
    9. Rong H Q,Ryu Z Y,Zheng J T,et al.Effect of air oxidation of Rayon-Based activated carbon fibers on the adsorption behavior for formaldehyde[J].Carbon ,2002,40:2291-2300
    10. Rong H Q,Ryu Z Y,Zheng J T,et al.Influence of heat treatment of Rayon-Based activated carbon fibers on the adsorption of formaldehyde[J].Journal of Colloid and Interface Science, 2003, 261:207-212
    11. Boonamnuayvitaya V,Sae-ung S,Tanthapanichakoon W.Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J].Separation and Purification Technology,2005,42:159-168
    12. Tanada S, Kawasaki N, Nakamura T, et al. Removal of formaldehyde by activated carbons containing amino groups[J].Journal of Colloid and Interface Science,1999,214(1): 106-108
    13.赵瑞华,商平,季民.膨润土处理低浓度甲醛废水的实验研究[J].天津化工,2008,22(1): 55-57
    14. Chuang C L,Chiang P C, Chang E E.Modeling VOCs adsorption onto activated carbon[J]. Chemosphere, 2003,53:17-27
    15.曹秋.甲醛工业废水的处理方法及研究进展[J].污染防治技术,2009,22(4):55-58
    16.刘征宇,原克波等.高浓度甲醛制药废水处理设计探讨[J].医药工程设计杂志,2004,25(4):44-46
    17.闰百兴,何岩.燃烧法处理酚醛废水的实验[J].环境污染与防治,1998,20(1):2l-22
    18. Petrier C,Francony A.Ultrasonic waste-water treatment:incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J].Ultrasonics Sonochemistry,1997,4:295-300
    19.魏思宇.甲醛废水前处理方法的选择[D]:[硕士学位论文].上海:同济大学,2007
    20.闫冰.超声波/H2O2联合工艺处理有机废水[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学, 2004
    21. Chamarro E, Marco A, Esplugas S. Use of Fenton reagent to improve organic chemical biodegradability [J]. Water Research, 2001,35(4):1047-1051
    22.祝万鹏,杨志华,王利等.亚铁-过氧化氢法处理DSD酸生产氧化母液的研究[J].环境科学,1995,16(1):19-23.
    23.简磊,汪晓军,麦均生等.Fenton试剂处理含甲醛有机废水的研究[J].化工科技, 2007,15(3):26-28
    24.黄力群,张杰,田宁宁等.用H2O2/Fe3+处理高浓度含甲醛废水的研究[J].环境工程学报,2009,3(7):1274-1278
    25. Guivarch E,Oturan N,Oturan M A.Removal of organophosphorus pesticides from water by electrogenerated Fenton’s reagent[J].Environmental Chemistry Letters, 2003,1(3):165-168
    26. Ruppert G,Bauer R,Heisler G..The photo-Fenton reaction-an effective photochemical wastewater treatment process[J].Journal of Photochemistry and Photobiology A:Chemistry, 1993, 73(1):75-78
    27. Bossmann S H,Oliveros E,Gob S et al.New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions[J].The Journal of Physical Chemistry A, 1998,102(28):5542-5550.
    28.马雷,周荣丰.甲醛废水的处理方法[J].环境,2006,S1:173-175
    29.胡成生,王刚等.含甲醛毒性废水电-Fenton试剂氧化技术研究[J].环境科学,2003,24(6):106-111
    30. Kajitvichyanukul P,Lu M C,Jamroensan A.Formaldehyde degradation in the presence of methanol by photo-Fenton process[J].Journal of Environmental Management, 2008, 86 (3):545-553
    31.韩笑.光催化氧化法处理含高浓度苯酚、甲醛废水的研究[D]:[硕士学位论文].成都:四川大学, 2004.
    32. Mishra V S,Mahajani V V,Joshi J B.Wet Air Oxidation[J].Industrial & EngineeringChemistry Research,1995,34(1):2-48
    33.杨波,胡成生,韦朝海.含甲醛废水的过氧化氢湿式氧化及其反应动力学[J].高校化学工程学报,2003,17(6):667-672
    34. Silva A M T,Quinta-Ferreira R M,Levec J.Catalytic and noncatalytic wet oxidation of formaldehyde.A Novel Kinetic Model[J].Industrial & Engineering Chemistry Research,2003,42(21):5099-5108
    35. Linsebigler A L, Lu G Q,Yates J T. Photocatalysis on TiO2 surfaces:Principles, Mechanisms, and Selected Results[J].Chemical Reviews,1995,95:735-758
    36. Christoskova S T,Stoyanova M.Catalytic degradation of HCHO and C6H5CH2OH in wastewaters[J].Water Research,2002,36(9):2297-2303
    37. Arana J,Martinez Nieto J L,Herrera Melian J A.Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories[J].Chemosphere,2004,55:893-904
    38. Liu H M,Lian Z W ,Ye X J, Shangguan W F.Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide[J].Chemosphere,2005,60:630-635
    39. Liu H M,Ye X J,Lian Z W,Wen Y G,Shangguan W F.Experimental study of photocatalytic oxidation of formaldehyde and its by-products[J].Research On Chemical Intermediates, 2006,32(1),9-16
    40.简放陵,凯那.合成酚醛树脂废水前处理初探[J].仲恺农业技术学院学报,2000,13(1):40-44
    41. Mingbo Q, Sanjoy K, Bhattacharya.Toxicity and biodegradation of formaldehyde in anaerobic methanogenic culture[J].Biotechnology and Bioengineering,1997,55(5):727-736.
    42. Omil F, Méndez D,Vidal G, et al.Biodegradation of formaldehyde under anaerobic conditions [ J]. Enzyme and Microbial Technology,1999, 24(5-6):255-262
    43. Hidalgo A, Lopategi M A, Prieto J, et al.Formaldehyde removal in synthetic and industrial wastewater by rhodococcus erythropolis UPV-1[J].Applied Microbiology Biotechnology, 2002,58(2):260-263.
    44. Oliveira S V W B,Moraes E M,Adorno M A T, et al.Formaldehyde degradation in an anaerobic packed-bed bioreactor[J].Water Research,2004,38(7):1685–1694
    45.陈思莉,汪晓军,顾晓扬.Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水[J].化工环保, 2007, 27(2):121-124
    46. Lu Z J,Hegemann W. Anaerobic toxicity and biodegradation of formaldehyde in batch cultures[J]. Water Research,1998,32(1):209-215
    47. Eiroa M, Kennes C, Veiga M C.Simultaneous nitrification and formaldehyde biodegradation in an activated sludge unit[J].Bioresource Technology, 2005, 96 (17):1914-1918.
    48. Eiroa M, Kennes C, Veiga M C.Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor[J].Water Research, 2004, 38(16):3495-3502.
    49. Eiroa M, Vilar A, Amor C, et al.Biodegradation and effect of formaldehyde and phenol on the denitrification process[J].Water Research, 2005, 39(2-3):449-455.
    50.徐仲均,程足芬,林爱军等.活性污泥对甲醛废水的净化性能[J].环境工程学报,2008, 2(9):1174-1176.
    51. Gabelman A,Hwang S T.Hollow fiber membrane contactors[J].Journal of Membrane Science,1999,159:61-106
    52.时钧,袁权,高从锴主编.膜技术手册.北京:化学工业出版社,2001
    53.刘茉娥.膜分离技术应用手册.北京:化学工业出版社,2001
    54.朱振中.膜吸收法与膜生物反应器组合系统处理高浓度氨氮废水的研究[D]:[博士学位论文].无锡:江南大学,2005
    55. Keller A A,Bierwagen B G..Hydrophobic hollow fiber membranes for treating MTBE-contaminated water[J].Environmental Science & Technology,2001,35(9):1875-1879
    56. Zhu Z Z, Hao Z L,Shen Z S,et al. Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors[J]. Journal of Membrane Science,2005,250(1-2):269-276
    57. Kenfleld C F,Qin R,Semmens M J,et al.Cyanide recovery across hollow fiber gas membranes[J]. Environmental Science & Technology,1988,22(10):1151-1155
    58. Semmens M J,Foster D M,Cussler E L.Ammonia removal from water using microporous hollow fibers[J].Journal of Membrane Science,1990,51(1-2):127-140
    59. Qi Z,Cussler E L.Hollow fiber gas membranes[J].AlChE Journal,1985,31(9):1548-1553
    60. Li Y J, Tian K P.Application of vacuum membrane distillation in water treatment[J].Journal of Sustainable Development,2009,2(3):183-186
    61.赫卓莉.膜吸收法处理高浓度氨氮废水的研究.江南大学硕士学位论文.无锡:江南大学,2004
    62. Yan S P, Fang M X, Zhang WF, etal. Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting[J]. Fuel Processing Technology, 2007,88:501-511
    63.王积涛,张宝申,王永梅等.有机化学(第二版)[M].天津:南开大学出版社,2002
    64. Kim Y S, Yang S M. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents[J].Separation and Purification Technology, 2000,21:101-109
    65. Wang D L , Tco W K , Li K. Removal of H2S to ultra -low concentrations using an asymmetric hollow fiber membrane module[J]. Separation and Purification Technology, 2002, 27:33-40
    66. Mavroudi M, Kaldis S P, Sakellaropoulos G P. Reduction of CO2 emissions by a membrane contacting process[J].Fuel, 2003,82:2153-2159
    67. Rajeshwar K,Ibanez J G,Swain G M.Electrochemistry and the Environment[J].Journal of Applied Electrochemistry,1994,24(11):1077-1091
    68. Pletcther D,Weinberg N L.The green potential of electrochemistry,Part1:The fundamentals[J].Chemical Engineering,1992,99(8):98-103
    69. Carlos A,Martinez H,Sergio F. Electrochemical oxidation of organic pollutants for the wastewater reatment:direct and indirect processes[J].Chemical Society Reviews,2006, 35:1324-1340
    70.陆兆锷主编.电极过程原理和应用[M].北京:高等教育出版社,1992,139-141
    71.贾青竹,李超,王青臣.聚硅铝铁絮凝剂在造纸中段废水处理中的应用[J].中国造纸,2006,25(7):71-72
    72.丛峰松.生物科学实验系列教材[M].上海:上海交通大学出版社,2005
    73.王琳,宋国新,张峰等.大气颗粒物对CS2催化氧化反应动力学研究[J].高等学校化学学报,2002,23(9):1738-1742
    74.张珍,李华.异丙硫醇合成反应动力学的研究[J].化学试剂,2009,31(4):292-294
    75.胡玉洁.黄姜生产皂素废水处理技术研究[D]:[硕士学位论文].无锡:江南大学,2004
    76.国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    77.林长松,袁旭峰,王小芬.HRT对固定床厌氧反应器运行效果的影响[J].环境工程学报,2010,4(3):497-502
    78. Leitao R C. Robustness of UASB reactors treating sewage under tropical conditions[D]. Wageningen:Wageningen University,2004
    79. Ramakrishna C, Desai J D. High rate anaerobic digestion of a petrochemical wastewater using biomass support particles.World Journal of Microbiology and Biotechnology, 1997,13:329-334
    80.白玉华,张代钧,祖波等.低COD浓度废水启动EGSB反应器[J].环境工程学报,2007,1(4):29-33
    81. Cohen A,Breure A M,van Andel J G,et al. Influence of phase separation on the anaerobic digestion of glucose—II:Stability, and kinetic responses to shock loadings [J]. Water Research,1982,16:449–455
    82. van Lier J B,Rintala J,Sanz Martin J L,et al.Effect of short–term temperature increase on the performance of a mesophilic UASB reactor[J].Water Science & Technology,1990,22 (9):183–190
    83.黄志金,黄光团,史春琼等.溶解氧对膜生物反应器处理高氨氮废水的影响[J].环境科学与技术,2010, 33(10):138-141
    84.王永广,朱永恒.水解酸化/好氧生化/Fenton氧化工艺处理制药废水的研究[J].环境工程学报, 2007,1(11):83-87
    85.卢江涛,周笑绿.厌氧水解—好氧—吸附工艺处理印染废水[J].工业水处理,2009,29(11):25-27
    86.国家技术监督局.中华人民共和国国家标准污水综合排放标准(GB8978-1996).1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700