用户名: 密码: 验证码:
不同微结构SnO、SnO_2纳米材料的水热法制备及其气敏和光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用直接反应法、水热法制备出SnO纳米片自组装花状结构、SnO2亚微米棒自组装球形花状结构、SnO2纳米球、SnO2笔状纳米棒、Ag/SnO2复合微球。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和红外光谱(IR)对产物的形貌和结构进行了表征。研究了不同形貌SnO和SnO2的成核、生长、组装过程,提出了可能的生长机理。研究了不同形貌SnO和SnO2纳米结构的发光特性、光催化特性、气敏特性,探讨了纳米结构的形貌、尺寸与性能之间的关系。这些结果为SnO和Sn02纳米材料的制备、物理化学性能研究以及在光电子、锂离子电池、气敏传感、太阳能电池、光催化等领域的应用奠定了基础。具体研究结果如下:
     (1)通过SnCl2·2H2O和NaOH在室温下直接反应制备了SnO纳米片自组装花状结构。所制备的SnO花状结构直径为7-9μm,由厚度为200-500nm、直径3-5μm的四方相SnO纳米片自组装而成。研究了不同锡源对产物形貌的影响,提出了可能的生长机理。在室温下研究了SnO纳米片自组装花状结构的光致发光和光催化特性。所制备的SnO纳米片自组装花状结构在390nm处有一强的带边发光峰,在482nm处有一弱的来自于锡空位的发光峰。SnO纳米片自组装花状结构对光降解孔雀石绿的反应是一种有效的催化剂,其催化过程为准一级反应。
     (2)通过SnCl4·5H2O、NaOH各IPVP在200℃下水热反应24h,制备了SnO2亚微米棒自组装球形花状结构。所制备的SnO2球形花状结构直径在1.7-2.0μm,由直径为300-600nm的亚微米棒自组装而成。研究了PVP在SnO2亚微米棒自组装球形花状结构形成过程中的作用,并提出了可能的生长机理。考察了工作温度和薄膜厚度对SnO2球形花状结构传感器气敏性能的影响,同时测试了SnO2球形花状结构传感器对不同浓度的乙醇和三乙胺的气敏性能。在350℃下,SnO2球形花状结构传感器对105ppm乙醇和45ppm三乙胺的灵敏度分别为3.65和2.97,并与SnO2粉末传感器对比,发现SnO2球形花状结构传感器的灵敏度要高于SnO2粉末传感器。
     (3)通过SnCl2·2H2O、H2C2O4·2H2O和PVP在200℃下水热反应12h,制备了直径约为230nm的SnO2纳米球。考察了H2C2O4·2H2O和PVP在SnO2纳米球形成过程中的作用,提山了可能的生长机理。测试了SnO2纳米球传感器对不同浓度的甲醇、甲醛、三乙胺和丙酮的气敏性能。在350℃下,SnO2纳米球传感器对30ppm甲醇、16ppm甲醛、9ppm三乙胺和85ppm丙酮的灵敏度分别是1.49、1.47、1.62和1.5,并与Sn02球形花状结构传感器对比,发现SnO2纳米球传感器的灵敏度要高于SnO2球形花状结构传感器。研究了SnO2纳米球光催化降解有机污染物的催化性能,结果表明,SnO2纳米球是光降解孔雀石绿的有效催化剂。
     (4)通过SnCl4·5H2O、NaOH、Na3C6H5O7·2H2O和PVP在220℃下水热反应24h,制备了直径在320-550nm,长度在2.1-2.9μm的SnO2笔状纳米棒。考察了PVP和Na3C6H5O7·2H2O在SnO2笔状纳米棒形成过程中的作用,提出了可能的生长机理。测试了Sn02笔状纳米棒传感器对不同浓度的甲醇、三乙胺和乙醇的气敏性能。在350℃下,Sn02笔状纳米棒传感器对30ppm甲醇、9ppm三乙胺和21ppm乙醇的灵敏度分别是1.11、2.96和1.35,并与Sn02粉末传感器对比,发现Sn02笔状纳米棒传感器的灵敏度要高于Sn02粉末传感器。
     (5)在PVP的存在下,通过SnCl4、 NaOH和AgNO3在200℃下水热反应24h,制备了直径在550-850nm的Ag掺杂的Ag/SnO2复合微球。研究了不同AgNO3用量对Ag/SnO2复合微球形成的影响。测试了Ag/SnO2复合微球传感器对不同浓度的丙酮、甲醇、三乙胺和乙醇的气敏性能。在350℃下,Ag/SnO2复合微球传感器对17ppm丙酮、30ppm甲醇、5ppm三乙胺和21ppm乙醇的灵敏度分别是2.04、1.92、2.74和2.04,并与未掺杂Ag的Sn02微球传感器对比,发现Ag/SnO2复合微球的灵敏度要高于Sn02微球传感器。研究了Ag/SnO2复合微球光催化降解有机污染物的催化性能,结果表明,Ag/SnO2复合微球是促进孔雀石绿光降解的有效催化剂,其光催化性能优于未掺杂Ag的Sn02微球。
Flowerlike architectures constructed with SnO nanosheets, spherical flowerlike architectures assembled with SnO2submicron rods, SnO2nanospheres, SnO2pencil-like nanorods and Ag/SnO2composite microspheres were synthesized through direct reaction and hydrothermal routes. Morphologies and structures of these products were characterized by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction and IR spectrum. The processes of nucleation, growth, self-assemble of SnO and SnO2nanostructures with various geometrical morphologies were studied, and the possible growth mechanisms of SnO and SnO2nanostructures were proposed. The photoluminescence, photocatalytic behaviors, and gas-sensing properties of SnO and SnO2nanostructures with various morphologies were studied, and the relations between morphologies, size and properties were investigated. These research results would provide a base for further research on synthesises of SnO and SnO2nanostructures, the physical and chemical properties of SnO and SnO2nanostructures and their applications in photonic and electronic devices, lithium ion storage, gas sensor, solar cell and photocatalyst.
     (1) Flowerlike architectures constructed with SnO nanosheets were prepared via a direct reaction of SnO2·2H2O with NaOH at room temperature. The SnO flowerlike architectures with diameters of7to9μm are constructed from tetragonal SnO nanosheets with diameters of3to5μm and the thicknesses of200to500nm. The influence of different tin source on morphologies of the products was investigated, and a possible growth mechanism was proposed. The photoluminescence and photocatalytic activity of SnO nanosheet-based flowerlike architectures were studied at room temperature. The results indicate that the flowerlike architectures constructed with SnO nanosheets display a strong band edge emission at390nm and a very weak Sn vacancy related emission at482nm. The flowerlike architectures constructed with SnO nanosheets were effective photocatalyst for the degradation of malachite green. The photodegradation of malachite green catalyzed by the SnO nanosheet-based flowerlike architectures is a pseudo first-order reaction.
     (2) The spherical flowerlike architectures assembled with SnO2submicron rods were synthesized via a simple hydrothermal reaction of SnCl4-5H2O with NaOH and PVP at200℃for24h. The SnO2spherical flowerlike architectures with diameters of1.7to2.0μm are constructed from submicron rods with diameters of300to600nm. The role of PVP in the growth of spherical flowerlike architectures assembled with SnO2submicron rods was investigated, and a possible growth mechanism was also proposed. The influences of temperature and film thickness on the gas sensing properties of the SnO2spherical flowerlike architectures were investigated. The gas sensing properties of the SnO2spherical flowerlike architectures sensors toward ethanol and triethylamine with different concentration were tested. The sensor response of SnO2spherical flowerlike architectures toward105ppm ethanol and45ppm triethylamine at350℃is3.65and2.97, respectively. The response performance of the sensors based on the SnO2spherical flowerlike architectures toward ethanol and triethylamine is better than that of SnO2powders.
     (3) The SnO2nanospheres with the diameters of about230nm were synthesized via a simple hydrothermal reaction of SnCl2·2H2O with H2C2O4·2H2O and PVP at200℃for12h. The role of H2C2O4·2H2O and PVP in the growth of SnO2nanospheres was investigated, and a possible mechanism was also proposed. The gas sensing properties of the SnO2nanospheres sensors toward methanol, formaldehyde, triethylamine and acetone with different concentration were tested. The sensor response of SnO2nanospheres toward30ppm methanol,16ppm formaldehyde,9ppm triethylamine and85ppm acetone at350℃is1.49,1.47,1.62and1.5, respectively. The response performance of the sensors based on the SnO2nanospheres toward methanol, formaldehyde, triethylamine and acetone is better than that of SnO2spherical flowerlike architectures. The photocatalytic activity of the as-prepared SnO2nanospheres for the degradation of organic pollutants was studied, and the results indicate that the SnO2nanospheres were effective photocatalyst for the degradation of malachite green.
     (4) The SnO2pencil-like nanorods were synthesized via a simple hydrothermal reaction of SnCl4·5H2O, NaOH, Na3C6H5O7·2H2O and PVP at220℃for24h. The diameters and lengths of the SnO2pencil-like nanorods are320to550nm and2.1to2.9μm, respectively. The role of PVP and Na3C6H5O7·2H2O in the growth of SnO2pencil-like nanorods was investigated, and a possible mechanism was also proposed. The gas sensing properties of the SnO2pencil-like nanorods sensors toward methanol, triethylamine and ethanol with different concentration were tested. The sensor response of SnO2pencil-like nanorods toward30ppm methanol,9ppm triethylamine and21ppm ethanol at350℃is1.11,2.96and1.35, respectively. The response performance of the sensors based on the SnO2pencil-like nanorods toward methanol, triethylamine and ethanol is better than that of SnO2powders.
     (5) The Ag doped Ag/SnO2composite microspheres with diameters of550to850nm were synthesized via a simple hydrothermal reaction of SnCl4·5H2O with NaOH and AgNO3in the presence of PVP at200℃for24h. The influence of AgNO3with different quantity on the growth of the Ag/SnO2composite microspheres was investigated. The gas sensing properties of the Ag/SnO2composite microspheres sensors toward acetone, methanol, triethylamine and ethanol with different concentration were tested. The sensor response of the Ag/SnO2composite microspheres toward17ppm acetone,30ppm methanol,5ppm triethylamine and21ppm ethanol at350℃is2.04,1.92,2.74and2.04, respectively. The response performance of the sensors based on the Ag/SnO2composite microspheres toward acetone, methanol, triethylamine and ethanol is better than that of Ag-undoped SnO2microspheres. The photocatalytic activity of the as-prepared Ag/SnO2composite microspheres for the degradation of organic pollutants was studied, and the results indicate that the Ag/SnO2composite microspheres were effective photocatalyst for the degradation of malachite green. The photocatalytic ability of the Ag/SnO2composite microspheres is stronger than that of the Ag-undoped SnO2microspheres.
引文
[1]C. M. Lieber, Z. L. Wang. Functional Nanowires [J]. MRS. Bull,2007,32,99-108.
    [2]M. Forster. Theoretical Investigation of the System SnOx/Sn for the Thermochemical Storage of Solar Energy [J]. Energy,2004,29(5-6):789-799.
    [3]L. Vayssieres, M. Graetzel. Highly Ordered SnO2 Nanorod Arrays from Controlled Aqueous Growth [J]. Angew. Chem. Int. Ed.,2004,43(28):3666-3670.
    [4]L.A. Errico. Ab Initio FP-LAPW Study of the Semiconductors SnO and SnO2 [J]. Physica B,2007,389(1):140-144.
    [5]Z.R. Dai, Z.W. Pan, Z.L. Wang. Growth and Structure Evolution of Novel Tin Oxide Diskettes [J]. J. Am. Chem. Soc.,2002,124(29):8673-8680.
    [6]Z.L. Wang, Z.W. Pan. Junctions and Networks of SnO Nanoribbons [J]. Adv. Mater., 2002,14(15):1029-1032.
    [7]M.O. Orlandi, E.R. Leite, R. Aguiar, et al. Growth of SnO Nanobelts and Dendrites by a Self-Catalytic VLS Process [J]. J. Phys. Chem. B,2006,110(13):6621-6625.
    [8]K.M. Li, Y.J. Li, M.Y. Lu, et al. Direct Conversion of Single-Layer SnO Nanoplates to Multi-Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties [J]. Adv. Funct. Mater.,2009,19(15),2453-2456.
    [9]J.H. Shin, J.Y. Song, Y.H. Kim, et al. Low Temperature and Self-catalytic Growth of Tetragonal SnO Nanobranch [J]. Mater. Lett.,2010,64(9):1120-1122.
    [10]B. Kumar, D.H. Lee, S.H. Kim, et al. General Route to Single-Crystalline SnO Nanosheets on Arbitrary Substrates [J]. J. Phys. Chem. C,2010,114(25): 11050-11055.
    [11]K.C. Kim, D.H. Lee, S. Maeng. Synthesis of Novel Pure SnO Nanostructures by Thermal Evaporation [J]. Mater. Lett.,2012,86(1):119-121.
    [12]Z.J. Jia, L.P. Zhu, G.H. Liao, et al. Preparation and Characterization of SnO Nanowhiskers [J]. Solid State Commun.,2004,132(2):79-82.
    [13]S. Wang, S.H. Xie, H.X. Li, et al. Solution Route to Single Crystalline SnO Platelets with Tunable Shapes [J]. Chem. Commun.,2005, (4):507-509.
    [14]Y. Pei, S. Wang, Q. Zhou, et al. Single Crystalline SnO Nanosheets as Anode Material for Lithium Secondary Battery [J]. Chin. J. Chem.,2007,25(9): 1385-1388.
    [15]H. Uchiyama, H. Ohgi, H. Imai. Selective Preparation of SnO2 and SnO Crystals with Controlled Morphologies in an Aqueous Solution System [J]. Cryst. Growth Des.,2006,6(9):2186-2190.
    [16]H. Uchiyama, H. Imai. Tin Oxide Meshes Consisting of Nanoribbons Prepared Through an Intermediate Phase in an Aqueous Solution [J]. Cryst. Growth Des., 2007,7(5):841-843.
    [17]H. Uchiyama, H. Imai. Matrix-Mediated Formation of Hierarchically Structured SnO Crystals as Intermediates between Single Crystals and Polycrystalline Aggregates [J]. Langmuir,2008,24(16):9038-9042.
    [18]H. Uchiyama, E. Hosono, I. Honma, et al. A Nanoscale Meshed Electrode of Single-Crystalline SnO for Lithium-Ion Rechargeable Batteries [J]. Electrochem. Commun.,2008,10(1):52-55.
    [19]J.J. Ning, Q.Q. Dai, T. Jiang, et al. Facile Synthesis of Tin Oxide Nanoflowers:a Potential High-Capacity Lithium-Ion-Storage Material [J]. Langmuir,2009,25(3): 1818-1821.
    [20]J.J. Ning, T. Jiang, K.K. Men, et al. Syntheses, Characterizations, and Applications in Lithium Ion Batteries of Hierarchical SnO Nanocrystals [J]. J. Phys. Chem. C, 2009,113(32):14140-14144.
    [21]K.K. Men, J.J. Ning, Q.Q. Dai, et al. Synthesis of SnO Nanocrystals with Shape Control via Ligands Interaction and Limited Ligand Protection [J]. Colloids Surf., A, 2010,363(1-3):30-34.
    [22]X.B. Xu, M.Y. Ge, K. Stahl, et al. Growth Mechanism of Cross-Like SnO Structure Synthesized by Thermal Decomposition [J]. Chem. Phys. Lett.,2009, 482(4-6):287-290.
    [23]M.Z. Iqbal, F.P. Wang, H.L. Zhao, et al. Structural and Electrochemical Properties of SnO Nanoflowers as an Anode Material for Lithium Ion Batteries [J]. Scripta Mater.,2012,67(7-8):665-668.
    [24]M.Z. Iqbal, F.P. Wang, T. Feng, et al. Facile Synthesis of Self-Assembled SnO Nano-Square Sheets and Hydrogen Absorption Characteristics [J]. Mater. Res. Bull., 2012,47(11):3902-3907.
    [25]M.Z. Iqbal, F.P. Wang, R. Din, et al. Synthesis of Novel Clinopinacoid Structure of Stannous Oxide and Hydrogen Absorption Characteristics [J]. Mater. Lett.,2012, 78(30th Anniversary Special Issue):50-53.
    [26]W.Z. Wang, C.K. Xu, X.S. Wang, et al. Preparation of SnO2 Nanorods by Annealing SnO2 Powder in NaCl Flux [J]. J. Mater. Chem.,2002,12(6):1922-1925.
    [27]W.Z. Wang, C.K. Xu, G.H. Wang, et al. Synthesis and Raman Scattering Study of Rutile SnO2 Nanowires [J]. J. Appl. Phys.,2002,92(5):2740-2742.
    [28]W.Z. Wang, J.Z. Niu, L. Ao. Large-Scale Synthesis of Single-Crystal Rutile SnO2 Nanowires by Oxidizing SnO Nanoparticles in Flux [J]. J. Cryst. Growth,2008, 310(2):351-355.
    [29]J.S. Wang, J.Q. Sun, G.S. Zhang, et al. Preparation of SnO2 Nanorods via Oriented Aggregation of Nanoparticles [J]. Vacuum,2008,82 (1):5-8.
    [30]D. Wang, X.F. Chu, M.L. Gong. Gas-Sensing Properties of Sensors Based on Single-Crystalline SnO2 Nanorods Prepared by a Simple Molten-Salt Method [J]. Sens. Actuators, B,2006,117(1):183-187.
    [31]H.Y. Zhao, Y.H. Li, L.F. Yang, et al. Synthesis, Characterization and Gas-Sensing Property for C2H5OH of SnO2 Nanorods [J]. Mater. Chem. Phys.,2008,112(1): 244-248.
    [32]Y. Wang, J.Y. Lee, T.C. Deivaraj. Controlled Synthesis of V-Shaped SnO2 Nanorods [J]. J. Phys. Chem. B,2004,108(36):13589-13593.
    [33]Y. Wang, J.Y. Lee. Molten Salt Synthesis of Tin Oxide Nanorods:Morphological and Electrochemical Features [J]. J. Phys. Chem. B,2004,108(46):17832-17837.
    [34]A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi. Effects of Flower-Like, Sheet-Like and Granular SnO2 Nanostructures Prepared by Solid-State Reactions on CO Sensing [J]. Mater. Chem. Phys.,2009,115(1-2):196-199.
    [35]J.Q. Sun, J.S. Wang, X.C. Wu, et al. Novel Method for High-Yield Synthesis of Rutile SnO2 Nanorods by Oriented Aggregation [J]. Cryst. Growth Des.,2006,6(7): 1584-1587.
    [36]J.S. Lee, S.K. Sim, B.D. Min, et al. Structural and Optoelectronic Properties of SnO2 Nanowires Synthesized from Ball-Milled SnO2 Powders [J]. J. Cryst. Growth, 2004,267(1-2):145-149.
    [37]Z.W. Pan, Z.R. Dai, Z.L. Wang. Nanobelts of Semiconducting Oxides [J]. Science, 2001,291(9):1947-1949.
    [38]Z.R. Dai, Z.W. Pan, Z.L. Wang. Ultra-Long Single Crystalline Nanoribbons of Tin Oxide [J]. Solid State Commun.,2001,118(7):351-354.
    [39]Y.Q. Chen, X.F. Cui, K. Zhang, et al. Bulk-Quantity Synthesis and Self-Catalytic VLS Growth of SnO2 Nanowires by Lower-Temperature Evaporation [J]. Chem. Phys. Lett.,2003,369(1-2):16-20.
    [40]J.Y. Park, S.W. Choi, S.S. Kim. Junction-Tuned SnO2 Nanowires and Their Sensing Properties [J]. J. Phys. Chem. C,2011,115(26):12774-12781.
    [41]S. Gubbal, V. Chakrapani, V. Kumar, et al. Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires [J]. Adv. Funct. Mater.,2008,18(16):2411-2418.
    [42]R. Rakesh Kumar, K. Narasimha Rao, A.R. Phani. Self Catalytic Growth of SnO2 Branched Nanowires by Thermal Evaporation [J]. Mater. Lett.,2013,92:243-246.
    [43]J.J. Jian, X.L. Chen, T. Xu, et al. Synthesis, Morphologies and Raman-Scattering Spectra of Crystalline Stannic Oxide Nanowires [J]. Appl. Phys. A,2002,75(6): 695-697.
    [44]S.H. Sun, G.W. Meng, Y.W. Wang, et al. Large-Scale Synthesis of SnO2 Nanobelts [J]. Appl. Phys. A,2003,76(2):287-289.
    [45]S.H. Sun, G.W. Meng, G.X. Zhang, et al. Raman Scattering Study of Rutile SnO2 Nanobelts Synthesized by Thermal Evaporation of Sn Powders [J]. Chem. Phys. Lett.,2003,376(1-2):103-107.
    [46]Y. Li, Y.H. Zhao, Z.H. Zhang, et al. SnO2 Nanobelts and Nanocrystals:Synthesis, Characterization and Optical Properties [J]. J. Cryst. Growth,2008,310(18): 4226-4232.
    [47]Z.Y. Huang, C.F. Chai. Water-Assisted Growth and Characterization of SnO2 Nanobelts [J]. Mater. Lett.,2007,61(29):5113-5116.
    [48]J.Q. Hu, X.L. Ma, N.G. Shang, et al. Large-Scale Rapid Oxidation Synthesis of SnO2 Nanoribbons [J]. J. Phys. Chem. B,2002,106(15):3823-3826.
    [49]X.L. Ma, Y. Li, Y.L. Zhu. Growth Mode of the SnO2 Nanobelts Synthesized by Rapid Oxidation [J]. Chem. Phys. Lett.,2003,376(5-6):794-798.
    [50]X.T. Zhou, F. Heigl, M.W. Murphy, et al. Time-Resolved X-Ray Excited Optical Luminescence from SnO2 Nanoribbons:Direct Evidence for the Origin of the Blue Luminescence and the Role of Surface States [J]. Appl. Phys. Lett.,2006,89(21): 213109.
    [51]W.C. Zhou, R.B. Liu, Q. Wan, et al. Bound Exciton and Optical Properties of SnO2 One-Dimensional Nanostructures [J]. J. Phys. Chem. C,2009,113(5):1719-1726.
    [52]X.S. Peng, L.D. Zhang, G.W. Meng, et al. Micro-Raman and Infrared Properties of SnO2 Nanobelts Synthesized from Sn and SiO2 Powders [J]. J. Appl. Phys.,2003, 93(3):1760-1763.
    [53]J.Q. Hu,Y. Bando, D. Golberg. Self-Catalyst Growth and Optical Properties of Novel SnO2 Fishbone-Like Nanoribbons [J]. Chem. Phys. Lett.,2003,372(5-6): 758-762.
    [54]J.H. Duan, S.G. Yang, H.W. Liu, et al. Single Crystal SnO2 Zigzag Nanobelts [J]. J. Am. Chem. Soc.,2005,127(17):6180-6181.
    [55]L.A. Ma, T.L. Guo. Synthesis and Field Emission Properties of Needle-Shaped SnO2 Nanostructures with Rectangular Cross-Section [J]. Mater. Lett.,2009,63(2): 295-297.
    [56]Z. Ying, Q. Wan, Z.T. Song, et al. SnO2 Nanowhiskers and Their Ethanol Sensing Characteristics [J]. Nanotechnology,2004,15(11):1682-1684.
    [57]Y.X. Chen, L.J. Campbell, W.L. Zhou. Self-Catalytic Branch Growth of SnO2 Nanowire Junctions [J]. J. Cryst. Growth,2004,270 (3-4):505-510.
    [58]S. Shukla, V. Venkatachalapathy, S. Seal. Thermal Evaporation Processing of Nano and Submicron Tin Oxide Rods [J]. J. Phys. Chem. B,2006,110(23):11210-11216.
    [59]S.H. Sun, G.W. Meng, G.X. Zhang, et al. Controlled Growth of SnO2 Hierarchical Nanostructures by a Multistep Thermal Vapor Deposition Pocess [J]. Chem. Eur. J., 2007,13(32):9087-9092.
    [60]X.Wu, J.H. Sui, W. Cai, et al. Growth of Dendritic SnO2 Nanoarchitectures [J]. Mater. Chem. Phys.,2008,112(2):325-328.
    [61]J.J. Jian, X.L. Chen, W.J. Wang, et al. Growth and Morphologies of Large-Scale SnO2 Nanowires, Nanobelts and Nanodendrites [J]. Appl. Phys. A,2003,76(2): 291-294.
    [62]L.A. Ma, T.L. Guo. Stable Field Emission from Cone-Shaped SnO2 Nanorod Arrays [J]. Physica B,2008,403 (19-20):3410-3413.
    [63]H.X. Li, H.Q. Ma, Y.P. Zeng, et al. Hierarchical SnO2 Nanostructures:Linear Assembly of Nanorods on the Nanowire Backbones [J]. J. Phys. Chem. C,2010, 114(4):1844-1848.
    [64]D. Cai, Y. Su, Y.Q. Chen, et al. Synthesis and Photoluminescence Properties of Novel SnO2 Asterisk-Like Nanostructures [J]. Mater. Lett.,2005,59(16): 1984-1988.
    [65]R.S. Yang, Z.L. Wang. Springs, Rings, and Spirals of Rutile-Structured Tin Oxide Nanobelts [J]. J. Am. Chem. Soc.,2006,128(5):1466-1467.
    [66]L. Mazeina, Yoosuf N. Picard, J. D, et al. Growth and Photoluminescence Properties of Vertically Aligned SnO2 Nanowires [J]. J. Cryst. Growth,2009, 311(11):3158-3162.
    [67]P.G. Li, M. Lei, X. Wang, et al. Large-Scale SnO2 Nanowires Synthesized by Direct Sublimation Method and Their Enhanced Dielectric Responses [J]. Mater. Lett.,2009,63(3-4):357-359.
    [68]P.G. Li, M. Lei, X. Wang, et al. Facile Route to Straight SnO2 Nanowires and Their Optical Pproperties [J]. J. Alloys Compd.,2009,477(1-2):515-518.
    [69]A.C. Chen, X.S. Peng, K. Koczkur, et al. Super-Hydrophobic Tin Oxide Nanoflowers [J]. Chem. Commun.,2004, (17):1964-1965.
    [70]J.R. Huang, K. Yu, C.P. Gu, et al. Preparation of Porous Flower-Shaped SnO2 Nanostructures and Their Gas-Sensing Property [J]. Sens. Actuators, B,2010, 147(2):467-474.
    [71]Y. Liu, J. Dong, M. Liu. Well-Aligned "Nano-Box-Beams" of SnO2 [J]. Adv. Mater.,2004,16(4):353-356.
    [72]Y. Liu, M. Liu. Growth of Aligned Square-Shaped SnO2 Tube Arrays [J]. Adv. Funct. Mater.,2005,15(1):57-62.
    [73]J.H. He, T.H. Wu, C.L. Hsin, et al. Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties [J]. small,2006,2(1):116-120.
    [74]M.C. Johnson, S. Aloni, D.E. McCready, et al. Controlled Vapor-Liquid-Solid Growth of Indium, Gallium, and Tin Oxide Nanowires via Chemical Vapor Transport [J]. Cryst. Growth Des.,2006,6(8):1936-1941.
    [75]W.Y. Yin, B.Q. Wei, C.W. Hu, et al. In Situ Growth of SnO2 Nanowires on the Surface of Au-Coated Sn Grains Using Water-Assisted Chemical Vapor Deposition [J]. Chem. Phys. Lett.,2009,471(1-3):11-16.
    [76]D.M. Qu, P.X. Yan, J.B. Chang, et al. Nanowires and Nanowire-Nanosheet Junctions of SnO2 Nanostructures [J]. Mater. Lett.,2007,61(11-12):2255-2258.
    [77]J. Pan, R. Ganesan, H. Shen, et al. Plasma-Modified SnO2 Nanowires for Enhanced Gas Sensing [J]. J. Phys. Chem. C,2010,114(18):8245-8250.
    [78]D. Calestani, M. Zha, A. Zappettin, et al. Structural and Optical Study of SnO2 Nanobelts and Nanowires [J]. Mater. Sci. Eng., C,2005,25(5-8):625-630.
    [79]D. Qin, P. Yan, G.Z. Li, et al. Self-Construction of SnO2 Cubes Based on Aggration of Nanorods [J]. Mater. Lett.,2008,62(16):2411-2414.
    [80]M.S. Park, G.X. Wang, Y.M. Kang, et al. Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries [J]. Angew. Chem. Int. Ed.,2007,46(5):750-753.
    [81]J.P. Ge, J. Wang, H.X. Zhang, et al. High Ethanol Sensitive SnO2 Microspheres [J]. Sens. Actuators, B,2006,113(2):937-943.
    [82]Q. Kuang, C.S. Lao, Z.L. Wang, et al. High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire [J]. J. Am. Chem. Soc.,2007,129(19):6070-6071.
    [83]Y.J. Ma, F. Zhou, L. Lu, et al. Low-Temperature Transport Properties of Individual SnO2 Nanowires [J]. Solid State Commun,2004,130(5):313-316.
    [84]M.R. Yang, S.Y. Chu, R.C. Chang. Synthesis and Study of the SnO2 Nanowires Growth [J]. Sens. Actuators, B,2007,122(1):269-273.
    [85]J.M. Wu, C.H. Kuo. Ultraviolet Photodetectors Made from SnO2 Nanowires [J]. Thin Solid Films,2009,517(14):3870-3873.
    [86]H. Huang, Y.C. Lee, C.L. Chow, et al. Plasma Treatment of SnO2 Nanocolumn Arrays Deposited by Liquid Injection Plasma-Enhanced Chemical Vapor Deposition for Gas Sensors [J]. Sens. Actuators, B,2009,138(1):201-206.
    [87]Z. Liu, D. Zhang, S. Han, et al. Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires [J]. Adv. Mater.,2003,15(20):1754-1757.
    [88]J.Q. Hu, Y. Bando, Q.L. Liu, et al. Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons [J]. Adv. Funct. Mater.,2003,13(6): 493-496.
    [89]W.J. Tseng, P.Y. Shen, S.Y. Chen. Fabrication and Transformation of Dense SnO2 via Laser Ablation Condensation [J]. J. Phys. Chem. Solids,2009,70(2):334-339.
    [90]Z.W. Chen, Z. Jiao, M.H. Wu, et al. Bulk-Quantity Synthesis and Electrical Properties of SnO2 Nanowires Prepared by Pulsed Delivery [J]. Mater. Chem. Phys., 2009,115(2-3):660-663.
    [91]J.A. Park, J. Moon, S.J. Lee, et al. A Novel Templating Process for Fabricating SnO2 Hollow Hemispherical Arrays by Pulsed Laser Deposition [J]. Mater. Lett., 2009,63(1):157-159.
    [92]S. Thanasanvorakun, P. Mangkorntong, S. Choopun, et al. Characterization of SnO2 Nanowires Synthesized from SnO by Carbothermal Reduction Process [J]. Ceram. Int.,2008,34(4):1127-1130.
    [93]P.G. Li, X. Guo, X.F. Wang, et al. Synthesis, Photoluminescence and Dielectric Properties of O-Deficient SnO2 Nanowires [J]. J. Alloys Compd.,2009,479(1-2): 74-77.
    [94]Y.S. Zhang, K. Yu, G.D. Li, et al. Field Emission from Patterned SnO2 Nanostructures [J]. Appl. Surf. Sci.,2006,253(2):792-796.
    [95]Y.S. Zhang, K. Yu, G.D. Li, et al. Synthesis and Field Emission of Patterned SnO2 Nanoflowers [J]. Mater. Lett.,2006,60(25-26):3109-3112.
    [96]J.X. Wang, D.F. Liu, X.Q. Yan, et al. Growth of SnO2 Nanowires with Uniform Branched Structures [J]. Solid State Commun.,2004,130(1-2):89-94.
    [97]Z.J. Li, H.Y. Wang, P. Liu, et al. Synthesis and Field-Emission of Aligned SnO2 Nanotubes Arrays [J]. Appl. Surf. Sci.,2009,255 (8):4470-4473.
    [98]Q.Y. Wang, K. Yu, F. Xu. Synthesis and Field Emission of Two Kinds of Hierarchical SnO2 Nanostructures [J]. Solid State Commun.,2007,143(4-5): 260-263.
    [99]Z.J. Li, H.Y. Wang, Z. Qin. A Rapid and Efficient Method to Prepare Aligned SnO2 Nanorod Arrays for Field-Emission Application [J]. Vacuum,2009,83(11): 1340-1343.
    [100]Q.R. Zhao, Z.G. Zhang, T. Dong, et al. Facile Synthesis and Catalytic Property of Porous Tin Dioxide Nanostructures [J]. J. Phys. Chem. B,2006,110(31): 15152-15156.
    [101]C.K. Xu, G.D. Xu, Y.K. Liu, et al. Preparation and Characterization of SnO2 Nanorods by Thermal Decomposition of SnC2O4 Precursor [J]. Scripta Mater.,2002, 46(11):789-794.
    [102]C.K. Xu, X.L. Zhao, S. Liu, et al. Large-Scale Synthesis of Rutile SnO2 Nanorods [J]. Solid State Commun.,2003,125(6):301-304.
    [103]D. Chen, J. Xu, Z. Xie, et al. Nanowires Assembled SnO2 Nanopolyhedrons with Enhanced Gas Sensing Properties [J]. ACS Appl. Mater. Interfaces,2011,3(6): 2112-2117.
    [104]R. Yang, Y.G. Gu, Y.Q. Li, et al. Self-Assembled 3-D Flower-Shaped SnO2 Nanostructures with Improved Electrochemical Performance for Lithium Storage [J]. Acta Mater.,2010,58(3):866-874.
    [105]Q. Wang, L.S. Zhang, J.F. Wu, et al. A Parallel Solid-State NMR and Sensor Property Study on Flower-Like Nanostructured SnO2 [J]. J. Phys. Chem. C,2010, 114(51):22671-22676.
    [106]S.D. Dai, Z.L. Yao. Synthesis of Flower-Like SnO2 Single Crystals and Its Enhanced Photocatalytic Activity [J]. Appl. Surf. Sci.,2012,258(15):5703-5706.
    [107]W.W. Yan, M. Fang, X.L. Tan, et al. Template-Free Fabrication of SnO2 Hollow Spheres with Photoluminescence from Sni [J]. Mater. Lett.,2010,6(19):2033-2035.
    [108]X.W. Lou, Y. Wang, C.L. Yuan, et al. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater.,2006,18(17): 2325-2329.
    [109]Y.C. Her, J.Y. Wu. Low-Temperature Growth and Blue Luminescence of SnO2 Nanoblades [J]. Appl. Phys. Lett.,2006,89(4):043115.
    [110]Z.J. Miao, Y.Y. Wu, X.R. Zhang, et al. Large-Scale Production of Self-Assembled SnO2 Nanospheres and Their Application in High-Performance Chemiluminescence Sensors for Hydrogen Sulfide Gas [J]. J. Mater. Chem.,2007, 17(18):1791-1796.
    [111]M. Fang, X.L. Tan, B.C. Cheng, et al. SnO2 Hierarchical Nanostructure and Its Strong Narrow-Band Photoluminescence [J]. J. Mater. Chem.,2009,19(9): 1320-1324.
    [112]M. Fang, L.D. Zhang, X.L. Tan, et al. Fabrication and Photoluminescence Property of SnO2 Microtowers with Interstitial Tin Ions [J]. J. Phys. Chem. C,2009, 113(22):9676-9680.
    [113]J.P. Liu, Y.Y. Li, X.T. Huang, et al. Direct Growth of SnO2 Nanorod Array Electrodes for Lithium-Ion Batteries [J]. J. Mater. Chem.,2009,19(13):1859-1864.
    [114]Y.T. Han, X. Wu, G.Z. Shen, et al. Solution Growth and Cathodoluminescence of Novel SnO2 Core-Shell Homogeneous Microspheres [J]. J. Phys. Chem. C,2010, 114(18):8235-8240.
    [115]X.M. Zhou, W.Y. Fu, H.B. Yang, et al. Synthesis and Ethanol-Sensing Properties of Flowerlike SnO2 Nanorods Bundles by Poly(ethylene glycol)-Assisted Hydrothermal Process [J]. Mater. Chem. Phys.,2010,124(1):614-618.
    [116]X.H. Yang, L.L. Wang. Synthesis of Novel Hexagon SnO2 Nanosheets in Ethanol/Water Solution by Hydrothermal Process [J]. Mater. Lett.,2007,61(17): 3705-3707.
    [117]G.E. Cheng, J.M. Wang, X.W. Liu, et al. Self-Assembly Synthesis of Single-Crystalline Tin Oxide Nanostructures by a Poly(acrylicacid)-Assisted Solvothermal Process [J]. J. Phys. Chem. B,2006,110(33):16208-16211.
    [118]H.X. Yang, J.F. Qian, Z.X. Chen, et al. Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment [J]. J. Phys. Chem. C,2007,111(38):14067-14071.
    [119]X.M. Yin, C.C. Li, M. Zhang, et al. One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries [J]. J. Phys. Chem. C,2010,114(17):8084-8088.
    [120]H.B. Wu, J.S. Chen, X.W. Lou, et al. Synthesis of SnO2 Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties [J]. J. Phys. Chem. C,2011,115(50):24605-24610.
    [121]Q.R. Zhao, Z.Q. Li, C.Z. Wu, et al. Facile Synthesis and Optical Property of SnO2 Flower-Like Architectures [J]. J. Nanopart. Res.,2006,8(6):1065-1069.
    [122]X.P. Peng, G.S. Wu, P. Holt-Hindle, et al. Growth and Characterization of Free-Standing Single Crystalline Tin and Tin Oxide Nanobelts [J]. Mater. Lett., 2008,62(12-13):1969-1972.
    [123]H.Z. Wang, J.B. Liang, H. Fan, et al. Synthesis and Gas Sensitivities of SnO2 Nanorods and Hollow Microspheres [J]. J. Solid State Chem.,2008,181(1): 122-129.
    [124]Z.T. Deng, B. Peng, D. Chen, et al. A New Route to Self-Assembled Tin Dioxide Nanospheres:Fabrication and Characterization [J]. Langmuir,2008,24(19): 11089-11095.
    [125]L. Shi, H.L. Lin. Facile Fabrication and Optical Property of Hollow SnO2 Spheres and Their Application in Water Treatment [J]. Langmuir,2010,26(24): 18718-18722.
    [126]L. Shi, H.L. Lin. Preparation of Band Gap Tunable SnO2 Nanotubes and Their Ethanol Sensing Properties [J]. Langmuir,2011,27(7):3977-3981.
    [127]S.Q. Liu, M.J. Xie, Y.X. Li, et al. Synthesis and Selective Gas-Sensing Properties of Hierarchically Porous Intestine-Like SnO2 Hollow Nanostructures [J]. Mater. Chem. Phys.,2010,123(1):109-113.
    [128]Y. Li, Y.Q. Guo, R.Q. Tan, et al. Synthesis of SnO2 Nano-Sheets by a Template-Free Hydrothermal Method [J]. Mater. Lett.,2009,63(24-25):2085-2088.
    [129]C.L. Zheng, X.Z. Zheng, Z.S. Hong, et al. Template-Free Synthesis of SnO2 Nanostructural Hollow Spheres Covered by Nanorods [J]. Mater. Lett.,2011,65(11): 1645-1647.
    [130]O. Lupan, L. Chow, G. Chai, et al. A Rapid Hydrothermal Synthesis of Rutile SnO2 Nanowires [J]. Mater. Sci. Eng., B,2009,157(1-3):101-104.
    [131]O. Lupan, L. Chow, G. Chai, et al. Synthesis of One-Dimensional SnO2 Nanorods via a Hydrothermal Technique [J]. Physica E,2009,41(4):533-536.
    [132]Y.Q. Guo, Y. Li, R.Q. Tan, et al. Synthesis of SnO2 Hollow Microspheres with Core-Shell Structures through a Facile Template-Free Hydrothermal Method [J]. Mater. Sci. Eng., B,2010,171(1-3):20-24.
    [133]D.D. Vuong, V.X. Hien, K.Q. Trung, et al. Synthesis of SnO2 Micro-Spheres, Nano-Rods and Nano-Flowers via Simple Hydrothermal Route [J]. Physica E,2011, 44(2):345-349.
    [134]Y.L. Wang, M. Guo, M. Zhang, et al. Hydrothermal Synthesis of SnO2 Nanoflower Arrays and Their Optical Properties [J]. Scripta Mater.,2009,61(3): 234-236.
    [135]Y.L. Wang, M. Guo, M. Zhang, et al. Facile Synthesis of SnO2 Nanograss Array Films by Hydrothermal Method [J]. Thin Solid Films,2010,518(18):5098-5103.
    [136]H.R. Kim, K. Choi, J.H. Lee, et al. Highly Sensitive and Ultra-Fast Responding Gas Sensors Using Self-Assembled Hierarchical SnO2 Spheres [J]. Sens. Actuators, B,2009,136(1):138-143.
    [137]S.Q. Liu, M.J. Xie, Y.X. Li, et al. Novel Sea Urchin-Like Hollow Core-Shell SnO2 Superstructures:Facile Synthesis and Excellent Ethanol Sensing Performance [J]. Sens. Actuators, B,2009,2010,151(1):229-235.
    [138]H.G. Yang, H.C. Zeng. Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J]. Angew. Chem. Int. Ed.,2004, 43(44):5930-5933.
    [139]B. Cheng, J.M. Russell, W.S. Shi, et al. Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2 Nanorods [J]. J. Am. Chem. Soc.,2004,126(19): 5972-5973.
    [140]Y.J. Chen, X.Y. Xue, Y.G. Wang, et al. Synthesis and Ethanol Sensing Characteristics of Single Crystalline SnO2 Nanorods [J]. Appl. Phys. Lett.,2005, 87(23):233503.
    [141]A. Kar, S. Kundu, A. Patra. Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles [J]. J. Phys. Chem. C,2011,115(1):118-124.
    [142]D.L. Chen, L. Gao. Facile Synthesis of Single-Crystal Tin Oxide Nanorods with Tunable Dimensions via Hydrothermal Process [J]. Chem. Phys. Lett.,2004, 398(1-3):201-206.
    [143]C.X. Guo, M.H. Cao, C.W. Hu. A Novel and Low-Temperature Hydrothermal Synthesis of SnO2 Nanorods [J]. Inorg. Chem. Commun.,2004,7(7):929-931.
    [144]C.H. Fang, S.Z. Wang, Q. Wang, et al. Coralloid SnO2 with Hierarchical Structure and Their Aapplication as Recoverable Gas Sensors for the Detection of Benzaldehyde/Acetone [J]. Mater. Chem. Phys.,2010,122(1):30-34.
    [145]L.P. Qin, J.Q. Xu, X.W. Dong, et al. The Template-Free Synthesis of Square-Shaped SnO2 Nanowires:the Temperature Effect and Acetone Gas Sensors [J]. Nanotechnology,2008,19(18):185705.
    [146]H. Wang, Q.Q. Liang, W.J. Wang, et al. Preparation of Flower-like SnO2 Nanostructures and Their Applications in Gas-Sensing and Lithium Storage [J]. Cryst. Growth Des.,2011,11(7):2942-2947.
    [147]C. Wang, Y. Zhou, M.Y. Ge, et al. Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity [J]. J. Am. Chem. Soc.,2010,132(1):46-47.
    [148]S. Das, S. Chaudhuri, S. Maji. Ethanol-Water Mediated Solvothermal Synthesis of Cube and Pyramid Shaped Nanostructured Tin Oxide [J]. J. Phys. Chem. C,2008, 112(16):6213-6219.
    [149]L.Y. Jiang, X.L. Wu, Y.G. Guo, et al. SnO2-Based Hierarchical Nanomicrostructures:Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries [J]. J. Phys. Chem. C,2009,113(32):14213-14219.
    [150]H. Sun, S.Z. Kang, J. Mu. Synthesis of Flowerlike SnO2 Quasi-Square Submicrotubes from Tin(II) Oxalate Precursor [J]. Mater. Lett.,2007,61(19-20): 4121-4123.
    [151]C. Wang, G.H. Du, K. Stahl, et al. Ultrathin SnO2 Nanosheets:Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances [J]. J. Phys. Chem. C,2012,116(6):4000-4011.
    [152]D. Deng, J.Y. Lee. Hollow Core-Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage [J]. Chem. Mater.,2008, 20(5):1841-1846.
    [153]J.Q. Xu, D. Wang, L.P. Qin, et al. SnO2 Nanorods and Hollow Spheres: Controlled Synthesis and Gas sensing Properties [J]. Sens. Actuators, B,2009, 137(2):490-495.
    [154]F. Gyger, M. Hubner, C. Feldmann, et al. Nanoscale SnO2 Hollow Spheres and Their Application as a Gas-Sensing Material [J]. Chem. Mater.,2010,22(16): 4821-4827.
    [155]H. Shiomi, C. Tanaka. Preparation of Spherical SnO2 Particles by W/O Type Emulsion Method [J]. J. Mater. Sci.,2002,37(21):4683-4689.
    [156]D.F. Zhang, L.D. Sun, J.L. Yin, et al. Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods [J]. Adv. Mater.,2003,15(12):1022-1025.
    [157]Y.K. Liu, C.L. Zheng, W.Z. Wang, et al. Synthesis and Characterization of Rutile SnO2 Nanorods [J]. Adv. Mater.,2001,13(24):1883-1887.
    [158]H.Q. Cao, X.Q. Qiu, Y. Liang, et al. Sol-Gel Template Synthesis and Photoluminescence of n- and p-Type Semiconductor Oxide Nanowires [J]. ChemPhysChem,2006,7(2):497-501.
    [159]Q. Dong, H.L. Su, D. Zhang, et al. Fabrication and Gas Sensitivity of SnO2 Hierarchical Films with Interwoven Tubular Conformation by a Biotemplate-Directed Sol-Gel Technique [J]. Nanotechnology,2006,17(15): 3968-3972.
    [160]Q. Dong, H.L. Su, D. Zhang, et al. Biogenic Synthesis of Tubular SnO2 with Hierarchical Intertextures by an Aqueous Technique Involving Glycoprotein [J]. Langmuir,2007,23(15):8108-8113.
    [161]F. Song, H.L. Su, J. Han, et al. Controllable Synthesis and Gas Response of Biomorphic SnO2 with Architecture Hierarchy of Butterfly Wings [J]. Sens. Actuators, B,2010,145(1):39-45.
    [162]G.X. Wang, J.S. Park, M.S. Park, et al. Synthesis and High Gas Sensitivity of Tin Oxide Nanotubes [J]. Sens. Actuators, B,2008,131(1):313-317.
    [163]M.S. Park, Y.M. Kang, G.X. Wang, et al. The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials [J]. Adv. Funct. Mater.,2008,18(3):455-461.
    [164]J. Huang, N. Matsunaga, K. Shimanoe, et al. Nanotubular SnO2 Templated by Cellulose Fibers:Synthesis and Gas Sensing [J]. Chem. Mater.,2005,17(13): 3513-3518.
    [165]S. Han, B. Jang, T. Kim, et al. Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes [J]. Adv. Funct. Mater.,2005, 15(11):1845-1850.
    [166]L.L. Zhao, M. Yosef, M. Steinhart, et al. Porous Silicon and Alumina as Chemically Reactive Templates for the Synthesis of Tubes and Wires of SnSe, Sn, and SnO2 [J]. Angew. Chem. Int. Ed.,2006,45(2):311-315.
    [167]W. Zhu, W.Z. Wang, H.L. Xu, et al. Fabrication of Ordered SnO2 Nanotube Arrays via a Template Route [J]. Mater. Chem. Phys.,2006,99(1):127-130.
    [168]Y.E. Chang, D.Y. Youn, G. Ankonin, et al. Fabrication and Gas Sensing Properties of Hollow SnO2 Hemispheres [J]. Chem. Commun.,2009, (27): 4019-4021.
    [169]D.C. Rezan, Y.S. Hu, M. Antonietti, et al. Facile One-Pot Synthesis of Mesoporous SnO2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties [J]. Chem. Mater.,2008,20(4):1227-1229.
    [170]X.M. Sun, J.F. Liu, Y.D. Li. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres [J]. Chem. Eur. J.,2006, 12(7):2039-2047.
    [171]C.H. Wang, X.F. Chu, M.M. Wu. Highly Sensitive Gas Sensors Based on Hollow SnO2 Spheres Prepared by Carbon Sphere Template Method [J]. Sens. Actuators, B, 2007,120(2):508-513.
    [172]J. Zhang, S.R. Wang, Y.M. Wang, et al. NO2 Sensing Performance of SnO2 Hollow-Sphere Sensor [J]. Sens. Actuators, B,2009,135(2):610-617.
    [173]Y. Tan, C.C. Li, Y. Wang, et al. Fast-Response and High Sensitivity Gas Sensors Based on SnO2 Hollow Spheres [J]. Thin Solid Films,2008,516(21):7840-7843.
    [174]N.H. Zhao, G.J. Wang, Y. Huang, et al. Preparation of Nanowire Arrays of Amorphous Carbon Nanotube-Coated Single Crystal SnO2 [J]. Chem. Mater.,2008, 20(8):2612-2614.
    [175]S.J. Ding, J.S. Chen, G.G. Qi, et al. Formation of SnO2 Hollow Nanospheres Inside Mesoporous Silica Nanoreactors [J]. J. Am. Chem. Soc.,2011,133(1):21-23.
    [176]J.F. Ye, H.J. Zhang, R. Yang, et al. Morphology-Controlled Synthesis of SnO2 Nanotubes by Using 1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-Ion Batteries [J]. Small,2010,6(2):296-306.
    [177]Z.Y. Wang, D.Y. Luan, F.Y.C. Boey, et al. Fast Formation of SnO2 Nanoboxes with Enhanced Lithium Storage Capability [J]. J. Am. Chem. Soc.,2011,133(13): 4738-4741.
    [178]H. Kim, J. Cho. Hard Templating Synthesis of Mesoporous and Nanowire SnO2 Lithium Battery Anode Materials [J]. J. Mater. Chem.,2008,18(7):771-775.
    [179]Q.R. Zhao, Y. Gao, X. Bai, et al. Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts [J]. Eur. J. Inorg. Chem.,2006, 2006(8):1643-1648.
    [180]Q.R. Zhao, Y. Xie, T. Dong, et al. Oxidation-Crystallization Process of Colloids: an Effective Approach for the Morphology Controllable Synthesis of SnO2 Hollow Spheres and Rod Bundles [J]. J. Phys. Chem. C.,2007,111(31):11598-11603.
    [181]J.Z. Wang, N. Du, H. Zhang, et al. Large-scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-ion Batteries [J]. J. Phys. Chem. C,2011,115(22):11302-11305.
    [182]Y.L. Wang, X.C. Jiang, Y.N. Xia. A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions [J]. J. Am. Chem. Soc.,2003,125(52):16176-16177.
    [183]M.H. Xu, F.S. Cai, J. Yin, et al. Facile Synthesis of Highly Ethanol-Sensitive SnO2 Nanosheets Using Homogeneous Precipitation Method [J]. Sens. Actuators, B, 2010,145(2):875-878.
    [184]W.S. Dong, M.Y. Li, C.L. Liu, et al. Novel Ionic Liquid Assisted Synthesis of SnO2 Microspheres [J]. J. Colloid Interface Sci.,2008,319(1):115-122.
    [185]D. Aurbach, A. Nimberger, B. Markovsky, et al. Nanoparticles of SnO Produced by Sonochemistry as Anode Materials for Rechargeable Lithium Batteries [J]. Chem. Mater.,2002,14(10):4155-4163.
    [186]T. Krishnakumar, R. Jayaprakash, M. Parthibavarman. Microwave-assisted Synthesis and Investigation of SnO2 Nanoparticles [J]. Mater. Lett.,2009,63(11): 896-898.
    [187]S. Das, S. Kar, S. Chaudhuric. Optical Properties of SnO2 Nanoparticles and Nanorods Synthesized by Solvothermal Process [J]. J. Appl. Phys.,2006,99(11): 114303.
    [188]S. Park, C. Hong, J. Kang, et al. Growth of SnO2 Nanowires by Thermal Evaporation on Au-Coated Si Substrates [J]. Current Applied Physics,2009,9(3): S230-S233.
    [189]C.W. Cheng, G.Y. Xu, H.Q. Zhang, et al. A Simple Route to Synthesize Multiform Structures of Tin Oxide Nanobelts and Optical Properties Investigation [J]. Mater. Sci. Eng., B,2008,147(1):79-83.
    [190]A. Umar. Synthesis of Donut-Like SnO2 Structures Composed of Small Nanocrystals on Silicon Substrate:Growth Mechanism, Structural and Optical Properties [J]. J. Alloys Compd.,2009,485(1-2):759-763.
    [191]V. Baranauskas, M. Fontana, Z.J. Guo, et al. Field-Emission Properties of Nanocrystalline Tin Oxide Films [J]. Sens. Actuators, B,2005,107(1):474-478.
    [192]B. Wang, Y.H. Yang, C.X. Wang, et al. Field Emission and Photoluminescence of SnO2 Nanograss [J]. J. Appl. Phys.,2005,98(12):124303.
    [193]J.J. Li, M.M. Chen, S.B. Tian, et al. Single-Crystal SnO2 Nanoshuttles:Shape-Controlled Synthesis, Perfect Flexibility and High-Performance Field Emission [J]. Nanotechnology,2011,22(50):505601.
    [194]L.J. Li, F.J. Zong, X.D. Cui, et al. Structure and Field Emission Properties of SnO2 Nanowires [J]. Mater. Lett.,2007,61(19-20):4152-4155.
    [195]Y.J. Chen, Q.H. Li, Y.X. Liang, et al. Field-Emission from Long SnO2 Nanobelt Arrays [J]. Appl. Phys. Lett.,2004,85(23):5682-5684.
    [196]X. Wang, W. Liu, H. Yang, et al. Low-Temperature Vapor-Solid Growth and Excellent Field Emission Performance of Highly Oriented SnO2 Nanorod Arrays [J]. Acta Mater.,2011.59(3):1291-1299.
    [197]Frederick C.K. Au, K.W. Wong, Y.H. Tang, et al. Electron Field Emission from Silicon Nanowires [J]. Appl. Phys. Lett.,1999,75(12):1700-1702.
    [198]Q. Wan, K. Yu, T.H. Wang, et al. Low-Field Electron Eemission from Tetrapod-Like ZnO Nanostructures Synthesized by Rapid Evaporation [J]. Appl. Phys. Lett.,2003,83(11):2253-2255.
    [199]Y.W. Zhu, H.Z. Zhang, X.C. Sun, et al. Efficient Field Emission from ZnO Nanoneedle Arrays [J]. Appl. Phys. Lett,2003,83(1):144-146.
    [200]J.M. Bonard, K.A. Dean, B.F. Coil, et al. Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope [J]. Phys. Rev. Lett.,2002,89(19): 197602
    [201]M. Law, H. Kind, B. Messer, et al. Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature [J]. Angew. Chem. Int. Ed.,2002, 41(13):2405-2409.
    [202]H.C. Chiu, C.S. Yeh. Hydrothermal Synthesis of SnO2 Nanoparticles and Their Gas-Sensing of Alcohol [J]. J. Phys. Chem. C,2007,111(20):7256-7259.
    [203]B. Wang, L.F. Zhu, Y.H. Yang, et al. Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen [J]. J. Phys. Chem. C,2008,112(17): 6643-6647.
    [204]L.L. Fields, J.P. Zheng, Y. Cheng, et al. Room-Temperature Low-Power Hydrogen Sensor Based on a Single Tin Dioxide Nanobelt [J]. Appl. Phys. Lett., 2006,88(26):263102.
    [205]Q. Qi, T. Zhang, L. Liu, et al. Synthesis and Toluene Sensing Properties of SnO2 Nanofibers [J]. Sens. Actuators, B,2009,137(2):471-475.
    [206]X.G. Han, M.S. Jin, S.F. Xie, et al. Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy{221} Facets and Enhanced Gas-Sensing Properties [J]. Angew. Chem.,2009,121(48):9344-9347.
    [207]Y. Idota, T. Kubota, A. Matsufuji, et al. Tin-Based Amorphous Oxide:a High-Capacity Lithium-Ion-Storage Material [J]. Science,1997,276(5317): 1395-1397.
    [208]Y. Wang, J.Y. Lee. Microwave-Assisted Synthesis of SnO2-Graphite Nanocomposites for Li-Ion Battery Applications [J]. J. Power Sources,2005,144(1): 220-225.
    [209]L.M. Li, X.M. Yin, S. Liu, et al. Electrospun Porous SnO2 Nanotubes as High Capacity Anode Materials for Lithium Ion Batteries [J]. Electrochem. Commun., 2010,12(10):1383-1386.
    [210]Y. Wang, J.Y. Lee, H.C. Zeng. Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application [J]. Chem. Mater.,2005,17(15):3899-3903.
    [211]G.L. Shang, J.H. Wu, S. Tang, et al. Preparation of Hierarchical Tin Oxide Microspheres and Their Application in Dye-Sensitized Solar Cells [J]. J. Mater. Chem.,2012,22(48):25335-25339.
    [212]T. Krishnamoorthy, M.Z. Tang, A. Verma, et al. A Facile Route to Vertically Aligned Electrospun SnO2 Nanowires on a Transparent Conducting Oxide Substrate for Dye-Sensitized Solar Cells [J]. J. Mater. Chem.,2012,22(5):2166-2172.
    [213]C.T. Gao, X.D. Li, B.A. Lu, et al. A Facile Method to Prepare SnO2 Nanotubes for Use in Efficient SnO2-TiO2 Core-Shell Dye-Sensitized Solar Cells [J]. Nanoscale,2012,4(11):3475-3481.
    [214]J. Xing, W.Q. Fang, Z. Li, et al. TiO2-Coated Ultrathin SnO2 Nanosheets Used as Photoanodes for Dye-Sensitized Solar Cells with High Efficiency [J]. Ind. Eng. Chem. Res.,2012,51(11):4247-4253.
    [215]Y.F. Wang, J.W. Li, Y.F. Hou, et al. Hierarchical Tin Oxide Octahedra for Highly Efficient Dye-Sensitized Solar Cells [J]. Chem. Eur. J.,2010,16(29):8620-8625.
    [216]J.F. Qian, P. Liu, Y. Xiao, et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells [J]. Adv. Mater.,2009,21(36): 3663-3667.
    [217]J.Y. Liu, T. Luo, S.M. T, et al. A Novel Coral-Like Porous SnO2 Hollow Architecture:Biomimetic Swallowing Growth Mechanism and Enhanced Photovoltaic Property for Dye-Sensitized Solar Cell Application [J]. Chem. Commun.,2010,46(3):472-474.
    [218]X.C. Dou, D. Sabba, N. Mathews, et al. Hydrothermal Synthesis of High Electron Mobility Zn-Doped SnO2 Nanoflowers as Photoanode Material for Efficient Dye-Sensitized Solar Cells [J]. Chem. Mater.,2011,23(17):3938-3945.
    [219]Henry J. Snaith, C. Ducati. SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency [J]. Nano Lett.,2010,10(4):1259-1265.
    [220]N. Daneshvar, D. Salari, A.R. Khataee. Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2 [J]. J. Photochem. Photobiol., A,2004,162(2-3):317-322.
    [221]K. Melghita, A.K. Mohammeda, I. Al-Amrib. Chimie Douce Preparation, Characterization and Photocatalytic Activity of Nanocrystalline SnO2 [J]. Mater. Sci. Eng., B,2005,117(3):302-306.
    [222]E.M. Seftel, E. Popovici, M. Mertens, et al. SnⅣ-Containing Layered Double Hydroxides as Precursors for Nano-Sized ZnO/SnO2 Photocatalysts [J]. Appl. Catal., B,2008,84(3-4):699-705.
    [223]Z.Y. Liu, D.D. Sun, P. Guo, et al. An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method [J]. Nano Lett.,2007,7(4):1081-1085.
    [224]G.E. Cheng, J.Y. Chen, H.Z. Ke, et al. Synthesis, Characterization and Photocatalysis of SnO2 Nanorods with Large Aspect Ratios [J]. Mater. Lett.,2011, 65(21-22):3327-3329.
    [225]S.S. Wu, H.Q. Cao, S.F. Yin, et al. Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals [J]. J. Phys. Chem. C,2009,113(41): 17893-17898.
    [226]R. Sivaramasubramaniam, M.R. Muhamad, S. Radhakrishna. Optical Properties of Annealed Tin(II) Oxide in Different Ambients [J]. Phys. Status Solidi A,1993, 136(1):215-222.
    [227]H. Li, X.J. Huang, L.Q. Chen. Electrochemical Impedance Spectroscopy Study of SnO and Nano-SnO Anodes in Lithium Rechargeable Batteries [J]. J. Power Sources,1999,81-82:340-345.
    [228]Z.J. Wang, S.C. Qu, X.B. Zeng, et al. Organic/inorganic Hybrid Solar Cells Based on SnS/SnO Nanocrystals and MDMO-PPV [J]. Acta Mater.,2010,58(15): 4950-4955.
    [229]P. Sinha, S. Roy. Barbier Reaction in the Regime of Metal Oxide:Carbony Allylation Over (3-SnO/Cu2O and Surface Diagnostics [J]. Organometallics,2004, 23(1):67-71.
    [230]W. Guo, L. Fu, Y. Zhang, et al. Microstructure, Optical, and Electrical Properties of p-type SnO Thin Films [J]. Appl. Phys. Lett.,2010,96(4):042113.
    [231]A. Togo, F. Oba, I. Tanaka. First-Principles Calculations of Native Defects in Tin Monoxide [J]. Phys Rev B,2006,74(19):195128.
    [232]S.P. Yawale, S.S. Yawale, G.T. Lamdhade. Tin Oxide and Zinc Oxide Based Doped Humidity Sensors [J]. Sens. Actuators, A,2007,135(2):388-393.
    [233]B. Wang, L.F. Zhu, Y.H. Yang, et al. Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen [J]. J. Phys. Chem. C,2008,112(17): 6643-6647.
    [234]L.M. Yu, X.H. Fan, L.J. Qi, et al. Dependence of Morphologies for SnO2 Nanostructures on Their Sensing Property [J]. Appl. Surf. Sci.,2011,257(7): 3140-3144.
    [235]Z.T. Zhang, B. Zhao, L.M. Hu. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes [J]. J. Solid State Chem., 1996,121(1):105-110.
    [236]C. Pacholski, A. Kornowski, H. Weller. Self-Assembly of ZnO:From Nanodots to Nanorods [J]. Angew. Chem. Int. Ed.,2002,41(7):1188-1191.
    [237]J. Oviedo, M.J. Gillan. Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First-Principles Calculations [J]. Surf. Sci.,2000,463(2):93-101.
    [238]E. Li, Z.X. Cheng, J.Q. Xu, et al. Indium Oxide with Novel Morphology: Synthesis and Application in C2H5OH Gas Sensing [J]. Cryst. Growth Des.,2009, 9(5):2146-2151.
    [239]T. Hyodo, N. Nishida, Y. Shimizu, et al. Preparation and Gas-Sensing Properties of Thermally Stable Mesoporous SnO2 [J]. Sens. Actuators, B,2002,83(1-3): 209-215.
    [240]E.T.H. Tan, G.W. Ho, A.S.W. Wong, et al. Gas Sensing Properties of Tin Oxide Nanostructures Synthesized via a Solid-State Reaction Method [J]. Nanotechnology, 2008,19(25):255706.
    [241]Y.C. Lee, H. Huang, O.K. Tan, et al. Semiconductor Gas Sensor Based on Pd-Doped SnO2 Nanorod Thin Films [J]. Sens. Actuators, B,2008,132(1):239-242.
    [242]Y.G. Zheng, J. Wang, P.J. Yao. Formaldehyde Sensing Properties of Electrospun NiO-Doped SnO2 Nanofibers [J]. Sens. Actuators, B,2011,156(2):723-730.
    [243]T.K. Jia, W.M. Wang, F. Long, et al. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2 Hierarchical Architectures Assembled by Nanocones [J]. J. Phys. Chem. C,2009,113(21):9071-9077.
    [244]Y. Wang, Y.M. Wang, J.L. Cao, et al. Low-Temperature H2S Sensors Based on Ag-Doped a-Fe2O3 Nanoparticles [J]. Sens. Actuators, B,2008,131(1):183-189.
    [245]X. Wang, H.Q. Fan, P.R. Ren. Self-Assemble Flower-Like SnO2/Ag Heterostructures:Correlation Among Composition, Structure and Photocatalytic Activity [J]. Colloids Surf., A,2013,419:140-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700