用户名: 密码: 验证码:
传感器表面纳米敏感材料微结构的调控及其气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,人们对自身健康和周围生存环境的要求日益提高,尤其是对空气中污染气体浓度的实时检测也更为迫切。因此,能实现这一愿望的金属氧化物气敏传感器就受到了人们的强烈关注和重点研究。目前,研究者们关注较多的是气敏材料的可控合成,而对气敏材料制成传感器的过程中所遇到的科学和技术问题却研究的很少,所占比例不足5%。于是本文着重针对金属氧化物纳米结构在制备气敏传感器过程中的聚集、破坏以及活性下降等问题,发展材料-器件一体化制备的新技术,通过在传感器表面原位调控纳米敏感材料的微结构包括形态和缺陷来提高传感器的气敏性能。
     首先采用浸渍提拉法在管状传感器表面合成了直径为8nm的ZnO纳米棒,这些纳米棒平躺着,主要暴露面为{10-10}京面。接着在这些纳米棒组成的薄膜上采用溶液处理法成功得到了直径为100nm的纳米棒阵列,暴露面主要为(0001)晶面,更重要的是气敏性能获得了明显的提高:3倍的敏感度,少于10s的快速响应和低到1ppm的检测限。实验结果也揭示了暴露京面的影响要大于尺寸效应,ZnO(0001)京面的气敏性能优于{10-10}京面,同时暴露京面上的原子结构对提高ZnO纳米棒阵列传感器的吸附氧含量及其气敏性能具有重要的影响。
     上述工艺比较复杂耗时,为此采用可以大批量制备的四针状ZnO粉末作为气敏材料,通过改变热处理温度来调控四针状ZnO的形态和缺陷。随着热处理温度的增加,四针状ZnO的针逐渐变短变粗,最后演变成四面体形态,颗粒之间的接触状况也发生了变化,并建立了热处理温度与ZnO颗粒形态的对应关系,同时发现间隙锌的数量减小而氧空位增多。在烧结温度为450℃下的ZnO传感器表现出了对甲醛气体最高的响应值。这主要是因为该传感器具有最好的颗粒接触,较多的间隙锌缺陷和较大的比表面积。
     不过人工涂覆制造传感器这一工艺比较低效。为此采用丝网印刷技术在平板传感器上印刷四针状ZnO厚膜,再结合镧离子溶液滴注法和后续热处理,来调控四针状ZnO颗粒的表面缺陷。随着镧离子浓度的增加,缺陷Lazn所占比例增大,而氧空位所占比例减小,同时ZnO传感器的最佳工作温度一直降低至250℃。最佳工作温度的降低主要是由于掺杂缺陷Lazn增多的缘故。在这一工艺中,ZnO等金属氧化物的形态难以调控。于是改进工艺,将CNTs丝网印刷到平板传感器上,微滴注各金属氧化物的前驱体溶液于表面,采用热处理工艺将CNTs模板去除,就可以同时得到多种不同金属氧化物的多孔网状膜,从而在提高传感器敏感度的同时改善其选择性,并揭示了金属氧化物的微结构及组分对其气敏性能的重要作用。
With the improvement of living standard, the requirements of the health and living environment around are increasing day by day. Especially, it becomes more urgent for real-time monitoring of the air pollution gas concentration. Therefore, metal oxide based gas sensors which can realize this goal has aroused great attention and focused investigation. At present, researchers has focused on the controllable synthesis of gas-sensing materials while the study on the science and technique problems during the fabrication process of gas sensors from gas-sensing materials has been reported rarely. In this paper, it is important to solve the problems including aggregation, damage and decreased activity of metal oxide nanostructures during the fabrication process of gas sensors. For this purpose, the control of microstructures including morphology and surface defects of metal oxide nanomaterials on the sensor surface by using new material-device intergration techniques is developed to enhance the gas sensing properties.
     At first, thin film made from8-nm-diameter and exposed-{10-10}-facet ZnO nanorods which were self-aligning in a straight line on the surface of Al2O3tube-like sensor was prepared by a simple dip-coating method. On this surface, we successfully synthesized a ZnO nanorods array with exposed (0001) plane and100nm in diameter in situ by a facile solution-processing technique. More importantly, the gas-sensing properties showed an obvious improvement:a high sensitivity (3-fold prefactor Ag), fast response (less than10s) and low detection limit (1ppm) to benzene and ethanol. On basis of these results, the effect of exposed facet is dominant rather than the size effect, and the order of gas-sensing properties of ZnO crystal face is (0001)>{10-10}. Moreover, it was found that the surface structure at atomic level was a key factor in improving the oxygen adsorption and, consequently, the gas-sensing performance of a ZnO nanorods array based gas sensor.
     The above method is very complicated and time-consuming. To solve this problem, ZnO nanotetrapods (T-ZnO) which can be prepared on a large scale were used as gas-sensing materials. To control the morphology and surface defects of T-ZnO, the sintering temperature was varied. With an increase in the sintering temperature from350to750℃, the feet and cross of T-ZnO became gradually shorter and bigger, respectively, and subsequently tetrahedron-shaped ZnO nanoparticles were produced instead of T-ZnO at850℃. The morphological evolution was explained by a new physical model based on Thomson effect, leading to a decrease in the surface area and an obvious variation in the grain contact. Meanwhile, the surface defects were also changed:the amount of zinc interstitial (Zni) was decreased while oxygen vacancy (Vo) showed an inverse trend. Moreover, the best gas-sensing performance towards formaldehyde and methanol was obtained after sintering at450℃. This was mainly attributed to the synergetic effect between the best grain contact (meaning that more nanoparticles can make contributions to the sensor response) and more zinc interstitial as well as larger surface area (supplying more chemisorbed oxygen).
     However, the above coating method is usually inefficient. To fabricate gas sensor on a large scale, T-ZnO were made into thick sensing film by a facile screen-printing technique. On the surface of flat-type gas sensor, the surface defects of T-ZnO thick film including intrinsic defects and extrinsic defects can be controlled by injecting several microlitres of La ions solution and post treatment to improve gas-sensing properties. With increasing the concentration of La ions, the ratio of Lazn was increased while the relative ratio of oxygen vacancy showed an inverse trend, leading to a decrease in the optimal working temperature of ZnO sensor. The lowest optimal working temperature was250℃when the concentration of La ions was0.05mol/L. These results indicated that the increased ratio of Lazn played a dominant role in decreasing the optimal working temperature. In such fabrication of gas sensors, the morphology of metal oxide was difficult to control because metal oxide were very fragile. To solve the problem, CNTs were at first made into thick film on the coplanar gas sensors by a screen printing technique and used as a template. Then, several different metal oxide precursor solutions could be injected into the thick film. After sintering process, CNTs were removed and these metal oxide net-like films with porous structures were obtained, leading to an increased sensitivity as well as better selectivity, indicating that metal oxide microstructures and composition played an important role in the gas sensing properties.
引文
[1]张晓勇,黄卫,司蔚等.室内空气污染现状及控制研究.环境科学与管理,2006,31(6):44-46
    [2]张覃轶.电子鼻:传感器阵列,系统及应用研究[博士学位论文].华中科技大学图书馆,2005.
    [3]Rock F.; Barsan N.; Weimar U. Electronic Nose:Current status and future trends. Chem. Rev.,2008,108(2):705-725
    [4]Korotcenkov G. Metal oxides for solid-state gas sensors:What determines our choice? Mater. Sci. Eng. B,2007,139:1-23
    [5]Seiyama, T.; Kato, A.; Fulishi, K. et al. A new detector for gaseous components using semiconductive thin films. Anal. Chem.,1962,34,1502-1503
    [6]Wang, C. X.; Yin, L. W.; Zhang, L. Y. et al. Metal oxide gas sensors:sensitivity and influencing factors. Sensors,2010,10,2088-2106
    [7]Comini, E. Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta,2006,568: 28-40
    [8]Comini, E.; Baratto, C.; Faglia, G. et al. Quasi-one dimensional metal oxide semiconductors:Preparation, characterization and application as chemical Sensors. Prog. Mater. Sci.,2009,54:1-67
    [9]Choi, K. J.; Jang, H, W. One-dimensional oxide nanostructures as gas-sensing materials:review and issues. Sensors,2010,10:4083-4099
    [10]Gurlo, A.; Riedel, R. In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angew. Chem. Int. Ed.,2007,46:3826-3848
    [11]Heiland, G. Homogeneous semiconducting gas sensors. Sens. Actuators B,1982,2: 343-361
    [12]Gurlo, A. Interplay between O2 and SnO2:oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem,2006,7(10):2041-2052
    [13]Schierbaum, K. D.; Weimar, U.; Gopel, W. et al. Conductance, work function and catalytic activity of SnO2-based gas sensors. Sens. Actuators B,1991,3:205-214
    [14]Franke, M. E.; Koplin, T. J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors:does the nanoscale matter? Small 2006,2(1):36-50
    [15]Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors, J. Electroceram.,2001,7:143-167
    [16]Zemel, J. N. Theoretical description of gas-film interaction on SnOx. Thin Solid Films,1988,163:189-202
    [17]Kohl, D. Surface processes in the detection of reducing gases with SnO2-based devices, Sens. Actuators,1989,18(1),71-113
    [18]Kamp, B.; Merkle, R.; Lauck, R. et al. Chemical diffusion of oxygen in tin dioxide: effects of dopants and oxygen partial pressure. J. Solid State Chem.,2005,178(10): 3027-3039
    [19]Kamp, B.; Merkle, R.; Maier, J. Chemical diffusion of oxygen in tin dioxide. Sens. Actuators B,2001,77(1-2):534-542
    [20]Rothschilda, A.; Komem, Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys.,2004,95(11):6374-6380
    [21]Xu, C.; Tamaki, J.; Miura, N. et al. Grain size effects on gas sensitivity of porous SnO2 based elements. Sens. Actuators B,1991,3(2):147-155
    [22]Yamazoe, N. New approaches for improving semiconductor gas sensors, Sens. Actuators B,1991,5(1-4):7-19
    [23]Bruno, L.; Pijolat, C.; Lalauze, R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition:influence of grain size and thickness on the electrical properties. Sens. Actuators B,1994,18(1-3):195-199
    [24]Ansari, S. G.; Boroojerdian, P.; Sainkar, S. R. et al. Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films,1997, 295(1-2):271-276
    [25]Lu, F.; Li, Y.; Dong, M. et al. Nanosized tin oxide as the novel material with simultaneous dectection towards CO, H2 and CH4. Sens. Actuators B,2000,66(1-3): 225-227
    [26]Tamaki, J.; Zhang, Z.; Fujimori, K. et al. Grain-size effects in Tungsten oxide-based sensor for nitrogen oxides, J. Electrochem. Soc.,1994,141(8):2207-2210
    [27]Tiemann, M. Porous metal oxides as gas sensors. Chem. Eur. J.,2007,13(30): 8376-8388
    [28]Pinna, N.; Neri, G.; Antonietti, M. et al. Nonaqueous systhesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew. Chem. Int. Ed.,2004,43(33): 4345.4349
    [29]Gurlo, A.; Lvanovskaya, M.; Barsan, N. et al. Grain size control in nanocrystalline In2O3 semiconductor gas sensors. Sens. Actuators B,1997,44(1-3):327-333
    [30]Xu, J. Q.; Pan, Q. Y.; Shun, Y. A. et al. Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B,2000,66(1-3):277-279
    [31]Trinh, T. T.; Tu, N. H.; Le, H. H. et al. Improving the ethanol sensing of ZnO nano-particle thin films-the correlation between the grain size and the sensing mechanism. Sens. Actuators B,2011,152(1):73-81
    [32]Matsunaga, N.; Sakai, G.; Shimanoe, K. et al. Diffusion equation-based study of thin film semiconductor gas sensor-response transient. Sens. Actuators B,2002,83(1-3): 216-221
    [33]Sakai, G.; Matsunaga, N.; Shimanoe, K. et al. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B,2001,80(2): 125-131
    [34]Shimizu, Y.; Maekawa, T.; Nakamura, Y. et al. Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2-based sensors. Sens. Actuators B, 1998,46(3):163-168
    [35]Korotcenkov, G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R,2008,61: 1-39
    [36]Lee, J. H. Gas sensors using hierarchical and hollow oxide nanostructures:Overview, Sens. Actuators B,2009,140(1):319-336
    [37]Spencer, M. J. S. Gas sensing applications of 1D-nanostructured zinc oxide:insights from density functional theory calculations. Prog. Mater. Sci.2012,57(3):437-486
    [38]Han, X. G.; Jin, M. S.; Xie, S. F. et al. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy{221} facets and enhanced gas-sensing Properties. Angew. Chem.,2009,121(48),9344-9347
    [39]Slater, B.; Catlow, C. R. A.; Gay, D. H. et al. Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. J. Phys. Chem. B, 1999,103(48),10644-10650
    [40]Gurlo, A. Nanosensors:does crystal shape matter? Small,2010,6(19):2077-2079
    [41]Kolmakov, A.; Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res.,2004,34:151-180,
    [42]Lu, J. G.; Chang, P. C.; Fan, Z. Y. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications. Mater. Sci. Eng. R,2006,52(1-3):49-91
    [43]Huang, J.; Wan, Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors,2009,9(12):9903-9924
    [44]Kuang, Q.; Lao, C. S.; Wang, Z. L. et al. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc.,2007,129(19):6070-6071
    [45]Wan, Q.; Li, Q. H.; Chen, Y. J. et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett.,2004,84(18):3654-3656
    [46]Kim, J.; Yong, K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. J. Phys. Chem. C,2011,115(15):7218-7224
    [47]Wang, J. X.; Sun, X. W.; Yang, Y et al. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology,2006,17(19):4995-4998
    [48]Oh, E.; Choi, H. Y.; Jung, S. H. et al, High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sens. Actuators B,2009,141(1): 239-243
    [49]Han, X. G.; He, H. Z.; Kuang, Q. et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C,2009, 113(2):584-589
    [50]Wang, H. H.; Xie, C. S.; Zeng, D. W. Controlled growth of ZnO by adding H2O, J. Cryst. Growth,2005,277(1-4):372-377
    [51]Ye, C. H.; Fang, X. S.; Hao, Y. F. et al. Zinc oxide nanostructures:morphology derivation and evolution. J. Phys. Chem. B,2005,109(42):19758-19765
    [52]Tian, Z. R.; Volgt, J. A.; Liu, J. et al. Complex and oriented ZnO nanostructures. Nat. Mater.,2003,2:821-826
    [53]Liu, J.; Chen, X. L.; Wang, W. J. et al. Self-assembly of [10-10] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity. CrystEngComm,2011,13:3425-3431
    [54]Gurlo, A. Nanosensors:towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale,2011,3:154-165
    [55]Jing, Z. H; Zhan, J. H. Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater.,2008,20(23),4547-4551
    [56]Kim, H. R.; Choi, K. I.; Lee, J. H. et al. Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres, Sens. Actuators B,2009, 136(1):138-143
    [57]Song, F.; Su, H. L.; Chen, J. J. et al.3D hierarchical porous SnO2 derived from self-assembled biological systems for superior gas sensing application. J. Mater. Chem.,2012,22,1121-1126
    [58]Hu, P.; Han, N.; Zhang, X. et al. Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor. J. Mater. Chem.,2011,21: 14277-14284
    [59]Wang, L. L.; Deng, J. A.; Fei, T. et al. Template-free synthesized hollow NiO- SnO2 nanospheres with high gas-sensing Performance. Sens. Actuators B,2012,164(1): 90-95
    [60]Song, F.; Su, H. L.; Han, Jie et al. Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J. Phys. Chem. C,2012,116:10274-10281
    [61]Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films:state of the art and approaches. Sens. Actuators B,2005,107(1): 209-232
    [62]Zhang, S. B.; Wei, S. H.; Zunger, A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B,2001,63(7):075205
    [63]Ahn, M. W.; Park, K. S.; Heo, J. H. et al. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett.,2008,93(25):263103
    [64]Epifani, M.; Prades, J. D.; Comini, E. et al. The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J. Phys. Chem. C,2008,112: 19540-19546
    [65]Chen, M.; Wang, Z. H.; Han, D. M. et al. Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C,2011,115:12763-12773
    [66]Paraguay D., F.; Miki-Yoshida, M.; Morales, J. et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films,2000,373(1-2):137-140
    [67]Chang, J. F.; Kuo, H. H.; Leu, I. C. et al. The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor. Sens. Actuators B,2002,84(2-3): 258-264
    [68]Li, L. M.; Du, Z. F.; Wang, T. H. Enhanced sensing properties of defect- controlled ZnO nanotetrapods arising from aluminum doping, Sens. Actuators B,2010,147(1): 165-169
    [69]Han, N.; Tian, Y. J.; Wu, X. F. et al. Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B,2009, 138(1):228-235
    [70]Niu, X. S.; Du, W. P.; Du, W. M. Preparation and gas sensing properties of ZnM2O4 (M=Fe, Co, Cr). Sens. Actuators B,2004,99(2-3):405-409
    [71]Schweizer-Berberich, M.; Zheng, J. G.; Weimar, U. et al. The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sens. Actuators B,1996,31(1-2):71-75
    [72]Lee, D. D.; Chung, W. Y. Gas-sensing characteristics of SnO2-x thin film with added Pt fabricated by the dipping method. Sens. Actuators B,1989,20(3):301-305
    [73]Saito, S.; Miyayama, M.; Koumoto, K. et al. Gas sensing characteristics of porous ZnO and Pt/ZnO cemimics. J. Am. Ceram. Soc.,1985,68(1):40-43
    [74]Chang, S. J.; Hsueh, T. J.; Chen, I. C. et al. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology,2008,19(17): 175502.
    [75]Yu, Y. T.; Dutta, P. Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sens. Actuators B,2011,157(2):444-449
    [76]Yamazoe, N.; Kurokawa, Y.; Seiyama, T. Effects of additives on semiconductor gas sensor. Sens. Actuators B,1983,4:283-289
    [77]Kolmakov, A.; Klenov, D. O.; Lilach, Y. et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett., 2005,5:667-673
    [78]Hieu, N. V.; Kim, H. R.; Ju, B. K. et al. Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens. Actuators B,2008,133(1): 228-234
    [79]Waitz, T.; Wagner, T.; Sauenwald, T. et al. Ordered mesoporous In2O3:synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater., 2009,19(4):653-661
    [80]Carotta, M. C.; Cervi, A.; di Natale, V. et al. ZnO gas sensors:A comparison between nanoparticles and nanotetrapods-based thick films. Sens. Actuators B,2009,137(1): 164-169
    [81]Bie, L. J.; Yan, X. N.; Yin, J. et al. Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens. Actuators B,2007,126(2):604-608
    [82]Lupan, O.; Chow, L.; Shishiyanu, S. et al. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications. Mater. Res. Bull.,2009,44(1):63-69
    [83]D'Arienzo, M.; Armelao, Lidia; Mari, C. M. et al. Macroporous WO3 thin films active in NH3 sensing:role of the hosted Cr isolated centers and Pt nanoclusters. J. Am. Chem. Soc.,2011,133:5296-5304
    [84]Liao, L.; Lu, H. B.; Li, J. C. et al. Size Dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C,2007,111:1900-1903
    [85]Hsueh, T. J.; Hsu, C. L.; Chang, S. J. et al. Laterally grown ZnO nanowire ethanol gas sensors. Sens. Actuators B,2007,126(2):473-477
    [86]Ahn, M. W.; Park, K. S.; Heo, J. H. et al. On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B,2009,138(1):168-173
    [87]Choi, Y. J.; Hwang, I. S.; Park, J. G. et al. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology,2008,19(9):095508
    [88]Thong, L. V.; Hoa, N. D.; Le, D. T. T. et al. On-chip fabrication of SnO2- nanowire gas sensor:the effect of growth time on sensor performance. Sens. Actuators B,2010, 146(1):361-367
    [89]Xie, C. S.; Xiao, L. Q.; Hu, M. L. et al. Fabrication and formaldehyde gas- sensing property of ZnO-MnO2 coplanar gas sensor arrays. Sens. Actuators B,2010,145(1): 457-463
    [90]Bai, Z. K.; Xie, C. S.; Zhang, S. P. et al. Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method. Sens. Actuators B,2010,151(1): 107-113
    [91]Li, C.; Zhang, S. P.; Hu, M. L. et al. Nanostructural ZnO based coplanar gas sensor arrays from the injection of metal chloride solutions:Device processing, gas-sensing properties and selectivity in liquors applications. Sens. Actuators B,2011,153(2): 415-420
    [92]D'Amico, A.; Natale, C. D. A contribution on some basic definitions of sensors properties. IEEE Sens. J.,2001,1:183-186
    [93]Chaudry, A. N.; Hawkins, T. M.; Travers, P. J. A method for selecting an optimum sensor array. Sens. Actuators B,2000,69(3):236-240
    [94]闫爱华.水热法制备维纳结构W03及其气敏与光电性能的研究[博士学位论文].华中科技大学图书馆,2011.
    [95]Huang, M.; Mao, S.; Feick, H. et al. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292(5523):1897-1899
    [96]Wang, H. T.; Kang, B. S.; Ren, F. et al. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett.,2005,86(24):243503
    [97]Zhu, B. L.; Xie, C. S.; Wang, A. H. et al. The gas-sensing properties of thick film based on tetrapod-shaped ZnO nanopowders. Mater. Lett.,2005,59(8-9):1004-1007.
    [98]Shimoda, T.; Matsuki, Y.; Furusawa, M. et al. Solution-processed silicon films and transistors. Nature,2006,440:783-786
    [99]Lee, J. Y.; Connor, S. T.; Cui, Y et al. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett.,2008,8:689-692
    [100]Jin, Y. Z.; Wang, J. P.; Sun, B. Q. et al. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett.,2008,8:1649-1653
    [101]Konstantatos, G.; Howard, I.; Fischer, A. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature,2006,442:180-183
    [102]Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater.,2005,17(20):2411-2425
    [103]Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science,2002,295(5564):2425-2427
    [104]Friend, R. H.; Gymer, R. W; Holmes, A. B. et al. Electroluminescence in conjugated polymers. Nature,1999,397:121-128
    [105]Cuong, T. V.; Pham, V. H.; Chung, J. S. et al. Solution-processed ZnO- chemically converted graphene gas sensor. Mater. Lett.,2010,64(22):2479-2482
    [106]Sun, B. Q.; Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett.,2005,5(12):2408-2413
    [107]L. Vayssieres. Growth of arrayed nanorods and nano wires of ZnO from aqueous solution. Adv. Mater.2003,15(5):464-466
    [108]Spanhel, L.; Anderson, M. A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc.,1991,113:2826-2833
    [109]Scott, R. W. J.; Yang, S. M.; Chabanis, G. et al. Tin dioxide opals and inverted opals: near ideal microstructures for gas sensors. Adv. Mater.2001,13(19):1468-1472
    [110]Zampolli, S.; Elmi, I.; Sturmann, J. et al. Selectivity enhancement of metal oxide gas sensor using a micromachined gas chromatographic column. Sens. Actuators. B, 2005,105(2):400-406
    [111]Mclaren, A.; Valdes-Solis, T.; Li, G. Q. et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc.2009,131:12540-12541
    [112]Li, G R.; Hu, T.; Pan, G. L. et al. Morphology-function relationship of ZnO:polar planes, oxygen vacancies, and activity. J. Phys. Chem. C,2008,112:11859-11864
    [113]Woll, C. The chemistry and physics of zinc oxide surface. Prog. Surf. Sci.,2007, 82(2-3):55-120
    [114]Jang, E. S.; Won, J. H.; Hwang, S. J. et al. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater.,2006,18(24), 3309-3312
    [115]Li, W. J.; Shi, E. W.; Zhong, W. Z. Growth mechanism and growth habit of oxide crystal. J. Cryst. Growth,1999,203(1-2):186-196
    [116]Lin, L. Y.; Kim, D. E. Effect of annealing temperature on the tribological behavior of ZnO films prepared by sol-gel method. Thin Solid Films,2009,517(5): 1690-1700
    [117]Bouderbala, M.; Hamzaoui, S.; Adnane, M. et al. Annealing effect on properties of transparent and conducting ZnO thin films. Thin Solid Films,2009,517(5): 1572-1576.
    [118]Roy, T. K.; Bhowmick, D.; Sanyal, D. et al. Sintering studies of nano- crystalline zinc oxide. Ceram. Int.,2008,34(1):81-87
    [119]Mazaheri, M.; Zahedi, A. M.; Sadrnezhaad, S. K. Two-step sintering of nanocrystalline ZnO compacts:effect of temperature on densification and grain growth. J. Am. Ceram. Soc.,2008,91(1):56-63
    [120]Han, J.; Mantas, P. Q.; Senos, A. M. R. Grain growth in Mn-doped ZnO. J. Eur. Ceram. Soc.,2000,20(16):2753-2758
    [121]Noack, V.; Eychmuller, A. Annealing of nanometer-sized zinc oxide particles. Chem. Mater.,2002,14:1411-1417
    [122]Hynes, A. P.; Doremus, R. H.; Siegel, R. W. Sintering and characterization of nanophase zinc oxide. J. Am. Ceram. Soc.,2002,85(8):1979-1987
    [123]Qin, X. J.; Shao, G. J.; Liu, R. P. et al. Sintering characteristics of nanocrystalline ZnO. J. Mater. Sci.,2005,40(18):4943-4946
    [124]Kim, I. W.; Doh, S. J.; Kim, C. C. et al. Effect of evaporation on surface morphology of epitaxial ZnO films during postdeposition annealing. Appl. Surf. Sci.,2005,241(1-2):179-182
    [125]Li, Q.; Chen, Y. Q.; Zhang, X. H. et al. Annealing effect on the morphologies and photoluminescence properties of ZnO nanocombs. J. Phys. Chem. Sol.,2009, 70(12):1482-1486
    [126]Qiu, Y. F.; Yang, S. H. ZnO nanotetrapods:controlled vapor-phase synthesis and application for humidity sensing. Adv. Funct. Mater.,2007,17(8):1345-1352
    [127]Chu, X. F.; Jiang, D. L.; Aleksandra, B. D. et al. Gas-sensing properties of thick film based on ZnO nano-tetrapods. Chem. Phys. Lett.,2005,401(4-6):426-429
    [128]Zhu, B. L.; Xie, C. S.; Zeng, D. W. et al. Investigation of gas sensitivity of Sb-doped ZnO nanoparticles. Mater. Chem. Phys.,2005,89(1):148-153
    [129]Zeng, D. W.; Xie, C. S.; Zhu, B. L. et al. Controlled growth of ZnO nanomaterials via doping Sb. J Cryst. Growth,2004,266(4):511-518
    [130]Kaftelen, H.; Ocakoglu, K.; Thomann, R. et al. EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B, 2012,86(1):014113
    [131]Anthrop, D. F.; Searcy, A. W. Sublimation and thermodynamic properties of zinc oxide. J. Phys. Chem.,1964,66:2335-2342
    [132]Moore, W. J.; Williams, E. L. Decomposition of zinc oxide by zinc vapor. J. Phys. Chem.,1969,63:1516-1517
    [133]Tena-Zaera, R.; Mart nez-Tomas, M. C.; Hassani, S. et al. Study of the ZnO crystal growth by vapour transport methods. J. Cryst. Growth,2004,270(3-4):711-721
    [134]Secco, E. A. Decomposition of zinc oxide. Can. J. Chem.,1960,38():596-601
    [135]Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Melting in semiconductor nanocrystals. Science,1992,256(5062):1425-1427
    [136]Guisbiers, G.; Pereira, S. Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures. Nanotechnology,2007,180:435710.
    [137]McLean, J. G.; Krishnamachari, B.; Peale, D. R. Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation. Phys. Rev. B,1997,55(3):1811-1823
    [138]Kingery, W. D.; Berg, M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion. J. Appl. Phys.,1955,26(10): 1205-1212
    [139]Pearton, S. J.; Norton, D. P.; Ip, K. et al. Recent progress in processing and properties of ZnO. Prog. Mater. Sci.,2005,50(3):293-340
    [140]Bhooloka Rao, B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour. Mater. Chem. Phys.2000,64(1):62-65
    [141]Ge, C. Q.; Xie, C. S.; Hu, M. L. et al. Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles. Mater. Sci.Eng. B,2007, 141(1-2):43-48
    [142]Cao, Y. L; Pan, W. Y.; Zong, Y. et al. Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction. Sens. Actuators B,2009,138(2):480-484
    [143]Zhang, X. H.; Chen, J.; Wu, Y. P. et al. A simple route to fabricate high sensibility gas sensors based on erbium doped ZnO nanocrystals. Colloid Surf. A-Physicochem. Eng. Asp.,2011,384(1-3):580-584
    [144]Chen, S. J.; Liu, Y. C.; Shao, C. L. et al. Structural and optical properties of uniform ZnO nanosheets. Adv.Mater.,2005,17(5):586-590
    [145]Cheng, B. C.; Xiao, Y. H; Wu, G. S. et al. The vibrational properties of one-dimensional ZnO:Ce nanostructures. Appl. Phys. Lett.,2004,84(3):416-418
    [146]Sun, L. W.; Shi, H. Q.; Li, W. N. et al. Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield. J. Mater. Chem.,2012,22:8221-8227
    [147]Djurisic, A. B.; Choy, W. C. H.; Roy, V. A. L. et al. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater., 2004,14(9):856-864
    [148]Vanheusden, K.; Warren, W. L.; Seager, C. H. et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys.,1996,79(10): 7983-7990
    [149]Chen, J. T.; Wang, J.; Zhang, F. et al. The effect of La doping concentration on the properties of zinc oxide films prepared by the sol-gel method. J. Cryst. Growth, 2008,310(10):2627-2632
    [150]Rao, C. N. R.; Satishkumar, B. C.; Govindaraj, A. Zirconia nanotubes. Chem. Commun.,1997,16:1581-1582
    [151]Satishkumar, B. C.; Govindaraj, A.; Vogl, E. M. et al. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res.,1997,12(3):604-606
    [152]Satishkumar, B. C.; Govindaraj, A.; Nath, M. et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J. Mater. Chem.,2000,10: 2115-2119
    [153]Sun, Z. Y.; Yuan, H. Q.; Liu, Z. M. et al. A highly efficient chemical sensor material for H2S:Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater., 2005,17(24):2993-2997
    [154]Du, N.; Zhang, H.; Chen, B. D. et al. Porous indium oxide nanotubes:layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater.,2007,19(12):1641-1645
    [155]Jia, Y.; He, L. F.; Guo, Z. et al. Preparation of porous tin oxide nanotubes using carbon nanotubes as templates and their gas-sensing properties. J. Phys. Chem. C, 2009,113(22):9581-9587
    [156]Aminzadeh, A. Excitation frequency dependence and fluorescence in the Raman spectra of Al2O3. Appl. Spectrosc.,1997,51(6):817-819
    [157]Shek, C. H.; Lin, G. M.; Lai, J. K. L. Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO2. Nanostructured Mater.,1999, 11(7):831-835
    [158]Chen, Y. J.; Nie, L.; Xue, X. Y. et al. Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl, Phys. Lett.,2006,88(8):083105
    [159]Kim, H. S.; Na, H. G.; Yang, J. C. et al. Synthesis, structure, photoluminescence, and Raman spectrum of indium oxide nanowires. Acta Phys. Pol. A,2011,119(2): 143-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700