用户名: 密码: 验证码:
南岭地区钨锡矿指示元素及隐伏矿勘查方法试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于欧亚板块东南端的南岭成矿带(北纬24°-27°,东经110°-115°)是我国重要的钨锡矿产地,该区经历了晋宁、加里东、海西-印支、燕山-喜马拉雅四个构造发展阶段,广泛发育四堡期至燕山期构造-岩浆-成矿活动频繁,并以燕山期花岗质岩浆活动最为强烈且与钨锡矿成矿最为密切。区内寒武系、泥盆系、石炭系被探明是钨锡矿的重要赋矿层位,已探明了包括大厂、骑田岭、西华山、柿竹园、大吉山等在内的著名大型-超大型钨锡矿床,使得该区成为研究钨锡矿床成矿机理及开展钨锡矿产勘查技术建立的理想地区。近年来,随着我国国民经济发展对钨锡矿产需求的持续增长,加之南岭地区钨锡地表矿和浅部矿的长时间开采,钨锡矿储量逐年减少。因此,寻找该区可能存在的隐伏钨锡矿体,已被提升为解决当前我国矿产资源紧缺、实现资源矿产可持续发展的重要议程之一。
     尽管目前在南岭重大基础地质问题、区域成矿规律等方面取得了大量的成果,但在钨锡矿地球化学勘查方面仍然存在(1)1:20万化探数据成果有待更新,1:5万化探数据资料不足,这些数据对隐伏矿的指示效果有待明确;(2)缺少对区域化探数据处理方法较为深入的研究;(3)地球化学找矿新方法在该地区隐伏矿勘查中的应用较少等多方面的问题,这限制了我们对南岭钨锡矿分布的全面认识和深部隐伏矿体勘查的效果。鉴于此,发展有效的隐伏矿勘查方法体系显得尤为重要。本研究利用原有1:20万化探数据和新完成的1:5万化探数据共完成近百幅地球化学图或异常图的绘制。另外完成了800余件土壤剖面样品和46件岩石样品的采集及测试分析工作以及土壤剖面异常图的绘制。包括:(1)南岭地区1:20万化探数据中W和Sn相关元素的二次整理和成图及指示信息的提取,分析该组元素对钨锡矿的指示效果。(2)选取该区一个重要成矿区带铜山岭-九嶷山地区1:20万化探数据异常图不同方法的对比,包括子区中位数衬值滤波法、背景校正法和因子分析法进行1:20万化探数据处理。(3)铜山岭-九嶷山地区1:5万化探数据信息的提取。通过元素异常图选取出对隐伏矿体有指示意义的元素。(4)地球化学找矿新方法对铜山岭-祥霖铺矿区隐伏矿指示效果的试验。包括烃气测量、元素活动态测量等方法。获得了如下认识:
     (1)在整理南岭地区1:20万化探数据的基础上,通过聚类分析发现,研究区元素主要可分为四组,包括造岩矿物常见元素组、与成岩过程-岩浆分异程度有关的元素组、以W、Sn为主的成矿元素组和以铜铅锌成矿元素组。选择W、Sn成矿元素组内的十三种元素(Au、Ag、Cu、Pb、Zn、As、Sb、F、Ba、Mo、Bi、Be、B),运用小波分析滤波的方法绘制地球化学图,发现W、Sn元素的高值区域主要分布在区内与成矿有关的各侵入岩体附近,且在研究区的东南部浓集中心较多。位于研究区中心的郴州-桂阳地区是各个元素的浓集中心。为了消除大范围区域化探中各种地质因素的影响,带入更多的综合信息,首先绘制单元素的衬值异常图,然后计算各元素衬值的等权平均组合元素异常图。异常基本上分为常宁-大余和新宁-始兴两个分带,与该区内隐伏岩体的分布吻合。该方法确立的异常范围相对单元素减小,更容易确立靶区,并且带入了更多的信息。
     (2)铜山岭-九嶷山成矿带位于南岭中段,都庞岭复式花岗杂岩体和铜山岭花岗闪长岩体与九嶷山复式花岗杂岩体构成了东西向花岗杂岩带,控制了区内钨锡多金属矿的展布。区内钨锡资源丰富,已知矿点多分布于铜山岭岩体、祥霖铺斑岩群和金鸡岭岩体。本研究总结了该区内主要的矿床和矿化点。在对区内1:20万化探数据统计的基础上,用传统方法(均值±2标准差)、子区中位数衬值滤波法和结合Mapgis数字高程模型的背景校正法绘制与W和Sn相关元素的地球化学异常图。其中子区中位数衬值滤波法选用3x3单位格子作为小窗口和9×9个单位格子作为大窗口。与传统方法对比,衬值滤波法缩小了异常面积,圈出了部分低背景区域的异常。但是以衬值为基础的计算方法可能过分夸大低背景区元素含量的不明显变化,而以残差作为计算方法更能真实反映元素的矿化叠加值。通过窗口对比试验,选取7x7的窗口更具有充分发掘低缓异常突出重点高背景矿致异常的效果。通过背景校正的方法抑制了高背景区的非矿化异常,强化了弱异常,并发现了一系列新异常。因此背景校正法在该区的化探数据处理中更具有优越性。但是由于1:20万化探数据采样密度低等原因,一些出露面积较小的成矿岩体和隐伏矿容易被遗漏。另外为了寻找控制研究区矿化规律的因素,对与钨锡相关的元素进行因子分析,提取出4个公因子,分别为铜铅锌矿化因子、钨矿化因子、锡矿化因子和矿化剂因子。并且钨矿化因子集中于西南部,锡矿化因子集中于东北部,铜铅锌矿化异常面积和强度相对钨锡矿化均较小。
     (3)铜山岭-九嶷山地区1:5万化探数据分析结果表明,该组数据受区域地质等原因影响来自两个母体,因此将其分为两个群体分别计算衬值,然后绘制总体的衬值异常图。在计算过程中利用Excel中VBA编程,实现在Excel中绘制分形图和箱图,并计算元素背景值和异常下限,简化了地球化学数据的处理过程。从元素异常剖析图可以看到,W、Sn、Mo、Bi、F组合异常主要出现在祥霖铺、铜山岭、九嶷山和后江桥地区。可见该组元素对钨锡矿的指示效果较好。而Cu、Pb、Zn、Sb元素在铜山岭、九嶷山和后江桥的组合异常面积较大,也与已知铅锌矿点吻合。预测该区钨锡矿和铅锌矿成矿潜力较大。
     (4)祥霖铺-铜山岭成矿区主要受样霖铺斑岩群和铜山岭岩体的控制,其中魏家钨矿产出于祥霖铺斑岩群,为隐伏矽卡岩型矿床,常规指示元素找矿效果不明显;而铜山岭岩体周围的江永铅锌矿和铜山岭有色金属矿开采多年,也面临着在矿山外围和深部寻找隐伏矿的问题。本研究通过在两个矿区的烃气测量、汞气测量和金属元素活动态测量,选取有效的隐伏矿勘查手段。通过对南岭魏家隐伏矽卡岩型钨矿见矿钻孔ZK801岩心酸解烃和铜山岭-祥霖铺矿体上方土壤热释烃的研究,发现在岩心围岩、蚀变围岩、矿体和斑岩体中烃类组分有规律的变化,并且低异常值比较准确地指示了矿体的位置;烃类组分在不同成矿层位配分曲线特征不同,从而指示了成矿物质来源;利用碳同位素示踪土壤中热释烃来源对与地球化学勘查工作具有重要的意义,对蚀变围岩和矽卡岩矿体和花岗斑岩岩心样品的甲烷碳同位素的初步测试也为该项工作提供了一定参考,但是由于岩心中重烃和土壤中烃气含量较低碳同位素未能检测出;土壤热释烃在深部隐伏矿体上方呈双峰分布,低值区域对应了矿体的位置,而常规指示元素只在浅部钨矿体上方有明显的异常,两者相比烃类组分对深部隐伏矿有更好的预测效果;对于铜山岭有色矿区,土壤热释烃也在矿区两侧出现峰值,尤其是丁烷的效果最为明显。对于魏家钨矿元素活动态对钨矿体的指示效果实验研究表明,所测几种元素As、Sb、Cu、Pb、Zn除Pb元素外绝大部分以残渣态存在,单纯元素活动态含量对浅部的矿体有较好的指示意义,但是对于深部隐伏矿体则效果不明显。统计活动态元素所占总量的百分比之后,发现在隐伏矿体上方大部分元素活动态比率呈现比较明显的上升趋势。此项指标可以作为今后元素活动态对隐伏钨矿指示研究的一个方向。
     通过以上研究,本文从大的南岭钨锡成矿带到典型矿床,由面及点,较为系统的研究了南岭钨锡矿的指示元素及地球化学找矿新方法的应用效果。选取的钨锡元素组衬值异常图可以有效的指示矿点,并且在铜山岭-九嶷山地区有较为明显的效果。而通过在铜山岭-九嶷山地区不同数据处理方法的对比,认为背景校正法在区域化探数据处理中具有优越性,并通过元素异常图确定了都庞岭、铜山岭和九嶷山地区的成矿潜力。最后在典型矿区祥霖铺-铜山岭针对隐伏矿试验的地球化学找矿新方法也取得了较好的效果,可以进一步应用到实际工作中。本论文研究对南岭地区钨锡矿进一步的勘查工作具有一定的参考意义。但是由于时间有限,本研究还存在一些不足。今后应在以下几方面开展深入的的研究工作:南岭地区钨锡矿指示元素针对隐伏矿进一步的总结应用;对铜山岭-九嶷山表现出的不同异常范围和强度可以从岩体性质和隐伏岩体等方面做进一步的解释:对于碳同位素的示踪应开展进一步的研究:在元素活动态方面应尝试更多元素相态的测试,尤其是钨锡活动态的测试工作;最后针对隐伏钨锡矿应进一步开展多种隐伏矿勘查方法的试验工作。希望通过这些问题的解决、方法的试验等,可以推动南岭地区钨锡矿勘查的研究工作。
Nan-ling metallogenic province is located in the southeast of Eurasian plate.It has experienced four stages including Jin-ning period, Caledonian period, Hercynian-Indosinian period and Yanshan-Himalaya period. Cambrian, Devonion and Carboniferous are the important tungsten-tin ore bearing stratums in this area. Tectonic, magmatic and metallogenic activities occurred frequently and intensively in this region during Sibao to Yanshan periods, and the most intensive of them is the Yanshanian granitic magmatism, which is closely related to the metallogenesis of tungsten and tin deposits.
     This area is an important tungsten-tin orefiled of China where many large and super-large ore deposits such as Da-chang, Qi-tianling, Xi-huashan, Shi-zhuyuan and Da-jishan tungsten-tin deposits have been targeted. Basing on the previous detailed geological, geophysical and geochemical study, Nan-ling is an ideal area for geochemincal exploration study.
     With the development of national economy, the demand of tungsten-tin mineral resources is growing continuously. But the reserves of surface mine and shallow mine are decreasing for long term mining activities. To solve the resource prolems, the exploring work of buried deposit is an useful method. Though there are many achievements about the basic geology and metallogenic regularity in this area, the geochemincal exploration of tungsten-tin deposits needs further study:(1) the geochemincal exploration data at1:200,000scale needs to be updated and the geochemincal exploration data at1:50,000scale is lacking. Can the geochemincal exploration data indicate the concealed mine is not clarity.(2) the data processing method of the regional geochemincal data need to be developed.(3) the application of new geochemincal exploration methods have been rarely used in the area. These issues limit our understanding of the distribution of tungsten-tin deposits and how to prospect the consealed mine.
     Aming at the above problems, the thesis establishes a series of exploration methods. First, in the Nan-ling area, a group of elements related to W and Sn element are selected through cluster analysis. The geochemical maps of these elements and geochemical anomaly maps of contrast values were generated to help us understading the elements distributon and indicating effect tungsten-tin deposit. Second, Tong shanling-Jiu yishan metallogenic belt in Nan-ling area is selected. Subinterval area median contrast filtering method, background correction method and factor analysis were carried out to generate the geochemical anomaly maps at1.200,000scale. And then the geochemical anomaly maps of single and integrated elements at1:50,000scale were generated to find the useful indicator elements for tungsten-tin deposits. At last the new exploration methods like hydrocarbons and mobile forms of metals methods were used in Tong Shanling-Xiang Linpu mining area. In this work,about a hundred geochemincal anomaly maps of elements were generated at1:200,000scale and at1:50,000scale. Additionally, about800soil samples and46core samples were collected and analysed. The detaile work and results are stated in the following:
     (1)Through processing the exploration data of nanling at1:200,000scale by cluster analysis, it's found that the elements in the research area can be divided into four groups:the common element-group for Rock-forming mineral, the element-group related to diagenetic process and magma splitting degree, the tungsten-tin ore-formation element-group, the copper-lead-zinc ore-formation element-group mainly. Using the cotent values of thirteen elements (Au, Ag, Cu, Pb, Zn, As, Sb, F, Ba, Mo, Bi, Be, B) in the tungsten-tin ore-formation element-group and copper-lead-zinc ore-formation element-group, geochemical maps are generated based on wavelet analysis-filtering. It's found that the high value area is mainly distributed around the rock mass, and the high values in the study area appear more in the south-eastern. Most of the high values of every element are mostly located in Chenzhou-Guiyang area, which is in center of the study area. To avoid the influence of different geologic factors in large-area regional geochemical exploration and take in more comprehensive information, anomaly maps for contrast values of single element are generated firstly. Then the anomaly maps of equal weighting contrast values of every element were generated. The anomalies can be divided into two zones:Changning-Dayu zone and Xinning-Shixing zone, and their distribution agree well with the location of the concealed intrusive bodies. By this method, the anomaly extension determined is smaller than anomaly maps of single element contrast value, and it's easier to identify the targeted area. Additionally it brings in more comprehensive information.
     (2) Tong Shanling-Jiu Yishan metallogenic belt is located in the center of Nanling. The EW granite complex belt, which controlling the distribution of W-Sn polymetallic deposits in the area, is consist of Du Pangling composite granite rock, Tongshanling granite diorite rock and Jiu Yishan composite granite rock. W-Sn resources are rich in this area and most of the known mines locate in Tong Shanling magmaticbody, Xiang Lingpu porphyry group and Jin Jiling magmaticbody. This study summarized the major point of ore deposits and mineralization in the district. Basing on the1:200,000scale geochemical exploration data, the geochemical anomaly maps of W, Sn and the other elements related to W-Sn are generated using the traditional method (mean±2standard deviations), subinterval area median contrast filtering method (SAMCF) and background correction with digital elevation model in Mapgis software.3×3grid for small window and9×9grid for large window are used in subinterval area median contrast filtering method. Compared with the traditional method, the size of anomaly areas are reduced and some anomalies in low background are delineated by SAMCF. But this contrast calculation method may exaggerate the unobvious change of element content. And the residual will be better to show the elements of the superposition of mineralization. Through the contrast test of window, the window with7×7is better in disinterring the weak anomalies and highlighting the mineralization anomalies in high background. By using the background correction, some nonmineralized anomalies in high background are restrained and some weak anomalies are strengthened, as well as a series of new anomalies are found. Therefore, the background correction has more superiority in processing this geochemical exploration data. Because of the low sampling density of1:200,000scale geochemical exploration data, some metallogenic rock body with less outcropped and conceal deposits are easily missing. In search of the control factors of mineralization regularity in this study area, four factors, which include Cu-Pb-Zn mineralization factor, W mineralization factor, Sn mineralization factor and mineralizer factor, are extracted by factor analysis. W mineralization factor concentrates in southwest and Sn mineralization factor concentrates in northeast. The size and intensity of anomalies of Cu-Pb-Zn mineralization are lesser than W-Sn mineralization.
     (3) The results of geochemical data analysis at1:50,000scale in Tong Shanling-Jiu Yishan area show that this group of data is influenced by the regional geology and comes from two different geochemical matrixs. So it should be divided into two groups and calculate the contrast value respectively. Then draw the anomaly map of contrast value of every element in the whole area. With writing VBA programs in Excel, drawing the fractal figure and box plots in Excel were realized. And the background values and anomaly threshold of elements were calculated in Excel, too making the processing of geochemical data simply. From element anomaly maps it can be seen that W, Sn, Mo, Bi and F composite anomalies mainly appear in the Xiang Linpu, Tong Shanling, Jiu Yishan and Hou Jiangqiao area. The elements group indicates tungsten-tin deposit obviously. The area Cu, Pb, Zn and Sb element composite anomaly is larger in the Xiang Linpu, Tong Shanling, Jiu Yishan and Hou Jiangqiao area. It is also in accordance with the known lead-zinc mine. There is potential for the prospecting of tungsten-tin deposit and lead-zinc deposit in this area.
     (4) Weijia tungsten ore is located at Xiang LinPu Town, Hunan Province. It is in the Xiang Linpu porphyry groups near the Tong Shanling porphyry. The large skam type deposit was detected using comprehensive exploration method during the recent exploration activities in China. Being buried deeply in500m and covered by limestone and thick soil in the surface, it is hard to be detected by traditional indicator elements. Jiang Yong lead-zinc deposit and Tong Shanling nonferrous metals deposit have been exploiting for many years. It is necessary to explore buried mines around or in the deep of the old mine. It is proved that hydrocarbons promoted the transport and enrichment of elements in the ore forming, so Weijia tungsten ore and Tong Shanling diggings are taken as a case to study the effect of hydrocarbons to the concealed deposits in coverage area. Acidolysis hydrocarbon of46rock samples in ZK801and heat release hydrocarbon of soil profiles were analyzed. The results show that the contents of hydrocarbons decrease from porphyry, ore body to wall rock, and the rates of methane, olefins and heavy alkane are different in porphyry, ore body and wall rock. The standard curves shapes of ore are similar to those of the porphyry and wall rock. The soil heat release hydrocarbons show bimodal distribution and low value above the ore body. This study proves that the hydrocarbons are more useful to indicate the concealed mine than the traditional indicator elements. For the mobile forms metal method, the contents of every element species in the soil can indicate the shallow ore body but not for the deep one. But the percentage of element species increase above the deep ore body obviously. So this discover may be a useful method for deep mine detecting in the future.
     Through the above research, this paper did a systematic research on the indicator elements and new geochemical prospecting method application for tungsten-tin deposit in Nanling area. However, there are still some deficiencies in this study. Further research should be carried out in the following aspects:The indicator elements should be further studied and be applicated for concealed deposits in Nanling area; To explain the reason why Tong Shanling area and Jiu Yishan area show different anomaly range and intensity, more work should be done in the rock properties and concealed rock mass; Further research should be carried out in the carbon isotope to tracing the source of hydrocarbon; About the mobile forms of metals in soil, we should try with more elements, especially in the analysis of speciations of tungsten and tin element; Finally more experiments about various concealed deposit prospecting methods should be carried out.
引文
[1]唐金荣,崔熙琳,施俊法.非传统化探方法研究的新进展[J].地质通报.2009,28(2):232-244.
    [2]李惠,禹斌,李德亮,等.化探深部预测新方法综述[J].矿产勘查.2010,1(2):156-160.
    [3]孙剑,陈岳龙,李大鹏.隐伏矿床勘查地球化学新进展[J].地球科学进展.2011,26(8):822-836.
    [4]王登红,陈毓川,陈郑辉,等.南岭地区矿产资源形势分析和找矿方向研究[J].地质学报.2007,81(7):882-890.
    [5]裴荣富,王永磊,李莉,等.华南大花岗岩省及其与钨锡多金属区域成矿系列[J].中国钨业.2008,23(1):10-13.
    [6]金俊杰,陈建国.地球化学异常提取的自适应衬值滤波法[J].物探与化探.2011,35(4):526-531.
    [7]朱炳玉,顾雪祥,马华东,等.活动态金属离子测量(MMI)在金山金矿及外围勘查中的应用[J].新疆地质.2012,30(2):228-233.
    [8]陈远荣,戴塔根,庄晓蕊,等.烃、汞等气体组分垂向运移的主要控制因素[J].中国地质.2001,28(8):28-32.
    [9]安国英.危机矿山找矿的地球化学方法技术研究[D].北京:中国地质大学(北京),2006.
    [10]邵跃.热液矿床岩石测量(原生晕法)找矿[M].北京:地质出版社,1997
    [11]武宗华,金仰芬,古平.汞的勘查地球化学[M].北京:地质出版社,1994
    [12]伍宗华,金仰芬,古平.地气测量的原理及其在地质勘查中的应用[J].物探与化探.1996,20(4):259-264.
    [13]李生郁,郑康乐,徐丰孚.微量轻烃气体快速分析方法及其在金属矿化探中的应用[J].物探与化探.1990,4:303-311.
    [14]单纯菡,李巨初.地壳内上升气流对物质的迁移及地气测量原理[J].矿物岩石.1997,17(3):83-88.
    [15]周奇明.电法地球化学方法快速寻找隐伏矿的效果[J].矿产与地质.2001,15(4):275-278.
    [16]罗先熔.地电化学成晕机制、方法技术及找矿研究[D].合肥:合肥工业大学,2005.
    [17]杨少平.关于水地球化学测量的回顾和思考[J].物探与化探.2008,32(1):13-18.
    [18]陈希泉,陈颉,罗先熔,等.地气(氡气)测量方法寻找隐伏含矿断裂试验[J].物探与化探.2011,35(6):817-820.
    [19]刘崇民.危机矿山找矿的地球化学方法技术研究[J].地质与勘探.2002,38(增刊):227-230.
    [20]谢学锦.勘查地球化学的现状与未来展望[J].地质论评.1996,42(4):346-355.
    [21]王学求.深穿透勘查地球化学[J].物探与化探.1998,22(3):166-169.
    [22]周晓东,朱欲生.地球化学块体理论在三江地区银矿预测中的应用[J].2003,32(4):424-428.
    [23]王学求,申伍军,张必敏,等.地球化学块体与大型矿集区的关系--以东天山为例[J].地学前缘.2008(5):116-123.
    [24]谢学锦,向运川.地球化学块体--概念和方法学的发展[J].中国地质.2002,29(3):225-233.
    [25]孙剑,陈岳龙,李大鹏.隐伏矿床勘查地球化学新进展[J].地球科学进展.20I1,26(8):822-836.
    [26]陈希泉,罗先熔,王信虎,等.寒冷森林覆盖区深穿透地球化学勘查试验及其应用[J].桂林工学院学报.2007,27(4):480-483.
    [27]程志中,王学求.冲积物覆盖区活动态金属在土壤中的分配规律[J].地质地球化学.2002,30(2):46-48.
    [28]黄学强,罗先熔,李彦伟,等.高原寒冷区地电化学方法寻找隐伏铜多金属矿研究--以青海尕大阪矿区为例[J].地质与勘探.2012,48(2):344-351.
    [29]王学求.矿产勘查地球化学:过去的成就与未来的挑战[J].地学前缘.2003,10(1):239-248.
    [30]孙豁然,毛凤海,柳小波,等.矿产资源地下采选一体化系统研究[J].金属矿山.2010(4):15-19.
    [31]张德会,周圣华,万天丰,等.矿床形成深度与深部成矿预测[J].地质通报.2007,26(12):1509-1518.
    [32]施俊法,唐金荣,周平,等.隐伏矿勘查经验与启示--从《信息找矿战略与勘查百例》谈起[J].地质通报.2008,27(4):433-450.
    [33]Averill S A. The application of heavy indicator mineralogy in mineral exploration with emphasis on base metal indicators in glaciated metamorphic and plutonic terrains[J]. Geological Society, London, Special Publications.2001,185(1):69-81.
    [34]Cameron E M, Hamilton S M, Leybourne M I, et al. Finding deeply buried deposits using geochemistry [J]. Geochemistry:Exploration, Environment, Analysis.2004,4(1):7-32.
    [35]Mcclenaghan M B. Indicator mineral methods in mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis.2005,5(3):233-245.
    [36]刘雪敏,陈岳龙,王学求.深穿透地球化学异常源同位素识别研究--以新疆金窝子金矿床、内蒙古拜仁达坝一维拉斯托多金属矿床为例[J].现代地质.2012,26(5):1104-1116.
    [37]梁莉莉,王中良,宋柳霆,等.铜、锌同位素的化学前处理方法[J].矿物岩石地球化学通报.2006,25(S1):239-240.
    [38]Fernandez A, Borrok D M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology.2009,264(1-4):1-12.
    [39]温汉捷,胡瑞忠,樊海峰,等.硒同位素测试技术进展及其地质应用[J].岩石矿物学杂志.2008,27(4):346-352.
    [40]朱建明,朱祥坤,黄方.钼的稳定同位素体系及其地质应用[J].岩石矿物学杂志.2008, 27(4):353-360.
    [41]Morgan J L L, Wasylenki L E, Nuester J, et al. Fe Isotope Fractionation during Equilibration of Fe-Organic Complexes[J]. Environmental Science & Technology.2010,44(16): 6095-6101.
    [42]Nebel O, Vroon P Z, de Vries D F W, et al. Tungsten isotopes as tracers of core-mantle interactions:The influence of subducted sediments[J]. Geochimica et Cosmochimica Acta. 2010,74(2):751-762.
    [43]Pekala M, Asael D, Butler I B, et al. Experimental study of Cu isotope fractionation during the reaction of aqueous Cu(II) with Fe(II) sulphides at temperatures between 40 and 200 degrees C[J]. Chemical Geology.2011,289(1-2):31-38.
    [44]Wang Y, Zhu X, Mao J, et al. Iron isotope fractionation during skarn-type metallogeny:A case study of Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze valley[J]. Ore Geology Reviews.2011,43(1):194-202.
    [45]Zhang H, Feng X, Larssen T, et al. Fractionation, distribution and transport of mercury in rivers and tributaries around Wanshan Hg mining district, Guizhou Province, Southwestern China:Part 2-Methylmercury[J]. Applied Geochemistry.2010,25(5):642-649.
    [46]Zhang H, Feng X, Larssen T, et al. Fractionation, distribution and transport of mercury in rivers and tributaries around Wanshan Hg mining district, Guizhou province, southwestern China:Part 1-Total mercury [J]. Applied Geochemistry.2010,25(5):633-641.
    [47]葛军,陈衍景,邵宏翔.铜同位素地球化学研究及其在矿床学应用的评述和讨论[J].地质与勘探.2004,40(3):5-10.
    [48]梁莉莉,刘丛强,王中良,等.铜锌同位素方法在环境地球化学研究中的应用[J].地球与环境.2006,34(1):81-89.
    [49]何德锋,钟宏,朱维光.铜同位素的分馏机制及其在矿床学研究中的应用[J].岩石矿物学杂志.2007,26(4):345-350.
    [50]蒋少涌.过渡族金属元素同位素分析方法及其地质应用[J].地学前缘.2003,10(2):269-278.
    [51]柯珊,刘盛遨,李王晔,等.镁同位素地球化学研究新进展及其应用[J].岩石学报.2011,27(2):383-397.
    [52]李津,Xiang-KunZhu,唐索寒.低温环境下铜同位素分馏的若干重要过程[J].岩石矿物学杂志.2008,27(4):298-304.
    [53]李津,朱祥坤,唐索寒.铝同位素的MC-ICP-MS测定方法研究[J].地球学报.2010,31(2):251-257.
    [54]王跃,朱祥坤.铜同位素在矿床学中的应用:认识与进展[J].吉林大学学报(地球科学版).2010,40(4):739-751.
    [55]宋世明,胡凯,温汉捷,等.Mo同位素对中低温热液成矿作用的指示:以粤西大降坪黄铁矿矿床为例[J].科学通报.2011,56(17):1378-1385.
    [56]Leybourne M I, Cameron E M. Groundwater in geochemical exploration [J]. Geochemistry: Exploration, Environment, Analysis.2010,10(2):99-118.
    [57]谢学锦,王学求.深穿透地球化学新进展[J].地学前缘.2003,10(1):225-238.
    [58]蒋永建,魏俊浩,周京仁,等.勘查地球化学新方法在矿产勘查中的应用及其地质效果[J].物探与化探.2010,34(2):134-138.
    [59]胡国成.深部及隐伏矿床的地球化学寻找方法综述[J].中山大学研究生学刊:自然科学与医学版.2011,32(1):40-49.
    [60]杨少平,弓秋丽,文志刚,等.地球化学勘查新技术应用研究[J].地质学报.2012,85(11):1844-1877.
    [61]刘昶,曹建劲,熊志华,等.地气测量原理及应用[J].矿物学报.2009,(s1):436.
    [62]Ferguson J. A possible role for light-hydrocarbons in Pb/Zn mineral exploration[J]. Mineralogical Magazine.1987,51(362):527-533.
    [63]陈远荣,戴塔根,贾国相,等.金属矿床有机烃气常见异常模式和成因机理研究[J].中国地质.2001,28(4):32-37.
    [64]陈远荣,贾国相,戴塔根.论有机质与金属成矿和勘查[J].中国地质.2002,29(3):257-262.
    [65]徐庆鸿,陈远荣,贾国相,等.烃类组分在金属矿床的成矿理论和矿产勘查研究中的应用[J].岩石学报.2007,23(10):2623-2638.
    [66]张苗苗,陈远荣,张志伟,等.气态烃在铧厂沟金矿找矿中的应用[J].中国地质.2008,35(4):738-745.
    [67]王永华,龚敏,龚鹏,等.江西九江城门山铜多金属矿床土壤轻烃找矿试验[J].地质通报.2010,29(7):1056-1061.
    [68]张爽,李方林,龚晶晶,等.烃气测量在南岭魏家隐伏钨矿区找矿预测中的应用.地球科学(中国地质大学学报).2012,37(6):1149-1159.
    [69]Hall G E. Analytical perspective on trace element species of interest in exploration[J]. Journal of Geochemical Exploration.1998,61(1):1-19.
    [70]Hall G.E.M,& Bonham Carter, G.F. Selective extractions[J]. Journal of Geochemical Exploration.1998(61):1.
    [71]Cohen D R, Kelley D L, Anand R, et al. Major advances in exploration geochemistry, 1998-2007[J]. Geochemistry-Exploration Environment Analysis.2010,10(1):3-16.
    [72]叶荣,张必敏,姚文生,等.隐伏矿床上方纳米铜颗粒存在形式与成因[J].地学前缘.2012,19(3):120-129.
    [73]王学求,张必敏,迟清华.穿透性地球化学迁移模型的实验证据[J].矿物学报.2009,(增刊):485-486.
    [74]Hamilton S M. Electrochemical mass-transport in overburden:a new model to account for the formation of selective leach geochemical anomalies in glacial terrain [J]. Journal of Geochemical Exploration.1998,63(3):155-172.
    [75]Hamilton S M. Spontaneous potentials and electrochemical cells[J]. Handbook of exploration geochemistry.2000,7:81-119.
    [76]Hamilton S M, Cameron E M, Mcclenaghan M B, et al. Redox, pH and SP variation over mineralization in thick glacial overburden. Part Ⅱ:field investigation at Cross Lake VMS property II[J]. Geochemistry:Exploration, Environment, Analysis.2004,4(1):45-58.
    [77]Hamilton S M, Cameron E M, Mcclenaghan M B, et al. Redox, pH and SP variation over mineralization in thick glacial overburden. Part I:methodologies and field investigation atthe Marsh Zone gold property I[J]. Geochemistry:Exploration, Environment, Analysis.2004, 4(1):33-44.
    [78]Mann A W, Birrell R D, Fedikow M, et al. Vertical ionic migration:mechanisms, soil anomalies, and sampling depth for mineral exploration[J]. Geochemistry:Exploration, Environment, Analysis.2005,5(3):201-210.
    [79]Cameron E M, Leybourne M I, Kelley D L. Exploring for deeply covered mineral deposits: Formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters[J]. Geology.2002,30(11):1007-1010.
    [80]Cameron E M, Leybourne M I, Palacios C. Atacamite in the oxide zone of copper deposits in northern Chile:involvement of deep formation waters[J] Mineralium Deposita.2007,42(3): 205-218.
    [81]Cameron E M, Leybourne M I. Relationship between groundwater chemistry and soil geochemical anomalies at the Spence copper porphyry deposit, Chile[J]. Geochemistry: Exploration, Environment, Analysis.2005,5(2):135-145.
    [82]Cameron E M, Hamilton S M, Leybourne M I, et al. Finding deeply buried deposits using geochemistry[J]. Geochemistry:Exploration, Environment, Analysis.2004,4(1):7-32.
    [83]岑况,叶荣,沈铺立,等.北山戈壁荒漠地区1:5万植物地球化学测量效果[J].地质与勘探.2003,39(6):86-89.
    [84]Goodhue L D, Hamilton S, Southam G. The geomicrobiology of surficial geochemical anomalies[J]. Report of the Canadian Mining Industry Research Organization.2004.
    [85]Dunn C E. Biogeochemistry in mineral exploration[J]. Handbook of Exploration and Environmental Geochemistry.2007,9:460.
    [86]Loilar B S, Westgate T D, Ward J A, et al. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs[J]. Nature.2002,416:522-524.
    [87]Coker W B. Future research directions in exploration geochemistry [J]. Geochemistry: Exploration, Environment, Analysis.2010,10(1):75-80.
    [88]谢学锦.战术性与战略性的深穿透地球化学方法[J].地学前缘.1998,5(2):171-183.
    [89]刘大文.地球化学块体理论与方法技术应用于矿产资源评价的探究--以中国锡地球化学块体为例[D].北京:中国地质科学院,2002.
    [90]刘大文,谢学锦.基于地球化学块体概念的中国锡资源潜力评价[J].中国地质.2005,32(1):25-32.
    [91]王宝金,迟效国,刘忠,等.新疆东昆仑白干湖钨地球化学块体的确立及意义[J].地质与勘探.2007,43(5):82-87.
    [92]王希今,胡忠贤,李永胜,等.黑龙江省滨东地区Cu-Pb-Zn-W-As-Sb-Bi-Au-Ag地球化学块体矿产资源潜力预测[J].地质与资源.2007,16(2):91-94.
    [93]王学求,张必敏,姚文生,等.覆盖区勘查地球化学理论研究进展与案例[J].地球科学 (中国地质大学学报).2012,37(6):1127-1132.
    [94]Anand R R, Robertson I D. The role of mineralogy and geochemistry in forming anomalies on interfaces and in areas of deep basin cover:implications for exploration[J]. Geochemistry: Exploration, Environment, Analysis.2012,12(1):45-66.
    [95]康明,岑况,吴悦斌,等.北山戈壁荒漠景观1:5万地球化学测量方法研究[J].地质与勘探.2004,40(3):64-68.
    [96]Reimann C, Garrett R G. Geochemical background-concept and reality[J]. Science of the total environment.2005,350(1):12-27.
    [97]Kelley D L, Hall G E, Closs L G, et al. The use of partial extraction geochemistry for copper exploration in northern Chile[J]. Geochemistry:Exploration, Environment, Analysis.2003, 3(1):85-104.
    [98]谢淑云,鲍征宇.多重分形方法在金属成矿潜力评价中的应用[J].成都理工大学学报:自然科学版.2004,31(1):28-33.
    [99]Grunsky E C. The interpretation of geochemical survey data[J]. Geochemistry:Exploration, Environment, Analysis.2010,10(1):27-74.
    [100]Grunsky E C, Smee B W. The differentiation of soil types and mineralization from multi-element geochemistry using multivariate methods and digital topography[J]. Journal of Geochemical Exploration.1999,67(1):287-299.
    [101]Smyth D, Johnson C. New Multi-element Regional Geochemistry Surveys of Northern Ireland[C]. Proceedings of the 23rd IGES,2007.
    [102]雷天赐,崔放,余凤鸣.基于遥感的多源信息融合在湖南永州南部地区找矿预测中的应用[J].中国地质.2012,39(4):1069-1080.
    [103]雷天赐,崔放,余凤鸣,等.基于遥感技术的断裂构造分形特征及其地质意义研究--以湘南九嶷山地区为例[J].地质论评.2012,58(3):594-599.
    [104]於崇文.南岭地区区域地球化学[M].北京:地质出版社,1987
    [105]於崇文,岑况,龚庆杰,等.湖南郴州柿竹园超大型钨一多金属矿床的成矿复杂性研究[J].地学前缘.2003,10(3):15-39.
    [106]於崇文.南岭地区区域成矿分带性:复杂成矿系统中的时-空同步化[M].北京:地质出版社,2009
    [107]魏道芳,鲍征宇,付建明.南岭地区锡矿成矿规律浅析[J].矿床地质.2006,25(增刊):379-382.
    [108]付建明.南岭锡矿[M].武汉:中国地质大学出版社,2011
    [109]魏道芳,潘仲芳,金光富.南岭锡矿调查评价主要进展及找矿前景分析[J].华南地质与矿产.2005,10(2):2-11.
    [110]魏道芳,潘仲芳,金光富.南岭锡矿调查评价主要进展及找矿前景分析[J].华南地质与矿产.2005(2):2-11.
    [111]毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报.2007,23(10):2329-2338.
    [112]毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境 [J].高校地质学报.2008(0):510-526.
    [113]王登红,许建祥,张家菁,等.华南深部找矿有关问题探讨[J].地质学报.2008(07):865-872.
    [114]华仁民,李光来,张文兰,等.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质.2010,29(1):9-23.
    [115]吴轩,龚庆杰,向运川.南岭地区区域化探数据中钨矿信息提取的方法探讨[J].物探化探计算技术.2006,28(2):182-186.
    [116]杨帅.南岭地区钨锡矿床分布规律及成矿预测[D].北京:中国地质大学(北京),2006.
    [117]许云,张宁,王雨.基于证据权重法的南岭钨锡矿床远景预测[J].河北工程大学学报(自然科学版).2011,28(4):60-64.
    [118]於崇文.南岭地区区域地球化学[M].北京:地质出版社,1987
    [119]迟清华,王学求,徐善法,等.华南陆块钨和锡的地球化学时空分布[J].地学前缘.2012,19(3):70-83.
    [120]张旗,金惟俊,李承东,等.“上山”找金铜,“下山”找钨锡及其理由[J].地球科学(中国地质大学学报).2009,34(4):547-568.
    [121]张旗.再论花岗岩的分类及其与金铜钨锡成矿的关系--答华仁民先生和王登红博士对“张旗等(2010)花岗岩与金铜及钨锡成矿的关系”一文的质疑[J].矿床地质.2011,30(3):557-570.
    [122]张旗,金惟俊,王焰,等.花岗岩与金铜及钨锡成矿的关系[J].矿床地质.2010,29(5):729-759.
    [123]纪宏金,林瑞庆,周永昶.关于若干化探数据处理方法的讨论[J].地质与勘探.2001,37(4):56-59.
    [124]李宾,李随民,梁玉明,等.分形方法圈定河北省龙关地区化探元素异常[J].地质调查与研究.2011,35(2):154-161.
    [125]李宝强,孙泽坤.区域地球化学异常信息提取方法研讨[J].西北地质.2004,37(1):102-108.
    [126]廖敏,李佑国,费光春,等.衬值滤波法在化探数据处理及找矿中的应用--以乡城-稻城-得荣地区斑岩型铜矿为例[J].地质找矿论丛.2007,22(1):76-80.
    [127]史长义,张金华,黄笑梅.子区中位数衬值滤波法及弱小异常识别[J].物探与化探.1999,23(4):250-257.
    [128]李随民,姚书振,韩玉丑Surfer软件中利用趋势面方法圈定化探异常[J].地质与勘探.2007,43(2):72-75.
    [129]李宾,李随民,韩腾飞,等.趋势面方法圈定龙关地区化探异常及应用效果评价[J].物探与化探.2012,36(2):202-207.
    [130]陈希清,程顺波,付建明,等.南岭地区锡多金属矿床空间数据库建设[J].华南地质与矿产.2011,27(2):174-178.
    [131]裴荣富,王永磊,王浩琳.南岭钨锡多金属矿床成矿系列与构造岩浆侵位接触构造动力成矿专属[J].中国地质.2009,36(3):483-489.
    [132]王登红,陈郑辉,黄国成,等.华南“南钨北扩”,“东钨西扩”及其找矿方向探讨[J].大 地构造与成矿学.2012,36(3):322-329.
    [133]王登红,陈毓川,陈郑辉,等.南岭地区矿产资源形势分析和找矿方向研究[J].地质学报.2007,(7):882-890.
    [134]毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].2011,85(5):636-658.
    [135]李方林,鲍征宇,裴韬,等.地球化学空间数据处理原理及软件系统[J].地球科学-中国地质大学学报.1999,24(3):316-319.
    [136]裴韬,周成虎,汪闽,等.用二进小波分析方法对华北地区强震活动期的研究[J].地震研究.2004,27(1):37-42.
    [137]高歆.基于小波变换的二维地球化学景观多重分形建模[D].北京:中国地质大学(北京),2010.
    [138]鲍征宇,李方林,贾先巧.地球化学场时-空结构分析的方法体系[J].地球科学.1999,24(3):67-71.
    [139]鲍征宇,李金跃,苏江玉,等.地球化学场分析方法与油气化探[J].石油勘探与开发.1997,24(6):39-41.
    [140]苑凤华,潘建,陈馥,等.利用子区中位数衬值滤波法识别弱小异常--以内蒙古绰源地区1/5万水系沉积物测量为例[J].吉林地质.2011,30(1):96-99.
    [141]李福顺,康如华,胡绪云,等.南岭魏家钨矿床地质特征及找矿前景分析[J].中国地质.2012,39(2):445-457.
    [142]张爽,李方林,鲍征宇. Excel下地质数据三层套合方差分析的实现[J].物探与化探.2010,34(3):403-406.
    [143]谢淑云,鲍征宇.地球化学场的连续多重分形模式[J].地球化学.2002,31(2):191-200.
    [144]胡青华,肖晓林,曹圣华,等.地球化学异常下限的含量-面积分形计算方法-以江西永平地区为例[J].东华理工大学学报(自然科学版).2011,34(2):108-110.
    [145]李福顺,康如华,胡绪云,等.南岭魏家钨矿床地质特征及找矿前景分析[J].中国地质.2012,39(2):445-457.
    [146]魏道芳,鲍征宇,付建明.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年[J].大地构造与成矿学.2007,31(4):482-489.
    [147]吴志华.南岭地区铜山岭区域构造组合分析及其与矿产关系[J].中国矿业.2010,19(5):107-110.
    [148]杨冲,申志军,匡文龙,等.湘西南铜山岭地区钨多金属矿床地质特征及成矿机制探讨--以祥霖铺矿床为例[J].地质找矿论丛.2012,27(2):156-161.
    [149]杨振鸿,鲍征宇,李方林.若尔盖地区酸解烃与热释烃影响因素研究[J].物探化探计算技术.2007,29(1):48-53.
    [150]黎绍杰.油气化探中甲烷碳同位素应用,存在问题与对策研究[J].矿产与地质.2003,17(94):54-58.
    [151]卢双舫,李吉君,薛海涛,等.油成甲烷碳同位素分馏的化学动力学及其初步应用[J].吉林大学学报(地球科学版).2006,36(5):825-829.
    [152]张晓宝,刘文汇.有机物质单体烃同位素国内外研究现状[J].天然气地球科学.1996, 7(4):29-33.
    [153]李素梅,郭栋.东营凹陷原油单体烃碳同位素特征及其在油源识别中的应用[J].现代地质.2010,24(2):252-258.
    [154]文雪琴.荒漠戈壁区深穿透地球化学的理论方法及应用研究[D].西安:长安大学,2008.
    [155]赵波,龚敏,熊燃,等.湿润中低山景观条件下土壤金属活动态找矿试验[J].物探与化探.2012,36(6):902-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700