用户名: 密码: 验证码:
高速电机磁轴承控制与监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁轴承的控制系统具有模拟控制和数字控制两种方式,模拟控制控制器一般由运算放大器构成,其运行速度快,成本低,但是控制器一旦选定,参数不容易更改,并且不能实现复杂的控制算法。在磁轴承的实际应用中,主要用于转速不是特别高的轴承。数字控制器相对与模拟控制器而言更加灵活,复杂的控制算法容易通过软件实现,能够获得比模拟控制更好的控制性能。因此,目前磁轴承控制主要采用数字控制。
     为了研究验证磁轴承的控制算法和系统特性,利用实验室原有的磁轴承系统研发了一套基于DSP的五自由度磁轴承控制系统,并且对功率放大器进行了研究,对所研制的磁轴承控制系统进行了静态悬浮和高速无负载实验。
     4.1基于DSP的磁轴承控制系统的硬件
     4.1.1控制系统的构成
     随着微电子技术的快速发展,数字信号处理器(DSP)的性能变得越来越好,其成本不断下降,计算速度越来越快,已经广泛的应用在各行各业中。因为磁轴承的主要应用领域是高速电机,所以在设计磁轴承控制器时必须选用运算速度快的DSP控制芯片,同时也需要配合高速度的A/D转换器和D/A转换器。利用DSP作为主控芯片的磁轴承控制系统的结构如图4.1所示。首先利用涡流传感器测量磁轴承五个自由度位移信号,然后经过滤波电路滤波后送入A/D转换器转换成数字信号,经过DSP计算模块来实现所用的控制方法,计算处理完毕的数据再通过D/A转换器变换成模拟电压信号作为功率放大器的输入控制信号,形成磁轴承控制电流。
     4.1.2主控芯片TMS320F2812 DSP
     磁轴承控制器的主控芯片使用TI公司生产的TMS320F2812数字信号处理器。此验证了故障判断方法的有效性。
The high speed permanent magnet (PM) machine has been widely investigated in the field of electrical engineering since it has small volume, high power density and high efficiency. Compared with the convertional low-speed machine, the rotor speed can reach up to or even above 100000r/min, so that the mechanical bearing is difficult to meet the requirements of the high-speed operation. The active magnetic bearing(AMB), which levitates a rotor by magnetic forces, has many merits, such as no contact, frictionless and so on, particularly suitable for high speed motors. However, it also is a nonlinear and open-loop unstable complicated. control system. Therefore, how to improve the stability and reliability of magnetic bearing is the key of high-speed motor for safe operation.
     The research work of this thesis is a part of the project-“The distributed high speed generator system driven by micro-turbines and its energy conversion system”, which is supported by the National Natural Science Foundation of China (No. 50437010). The study of the thesis is concentrated to the suspension force analysis of AMB, linear active disturbance rejection control, PID control, and online monitoring of AMB fault. The main contents are as follows:
     (1) Due to the strong nonlinearity of magnetic bearing, a levitation force analysis of magnetic bearing based on field-circuit combined method was used. The linear operation range of AMB was determined. The factor of linear expressions for magnetic levitation force was revised, and the nonlinear expressions of magnetic levitation force was deduced by polynomial approximation. Moreover, the dynamical model of rotor-bearing system, model of control system and model of rotor displacement measuring system were established.
     (2) The linear active disturbance rejection control and PID of AMB control were studied. Because the tranditional PID control method for radial AMB cannot achieve good results, the linear active disturbance rejection controller was designed, which can enhanced the anti-disturbance capability for radial AMB. For axial AMB, the incomplete differential type PID controller was desingn, the PID parameters were optimized based on genetic algorithms.
     (3) Base on three-level power amplifier with carrier triangular wave reversed-phase method, the AMB control system was designed by using DSP as its micro-controller. Then, the AMB control platform was established, the static suspension experiment and high speed running experiment were carried out, and the stable levitation of AMB in 5 degrees of freedom was realized.
     (4) The monitoring system of AMB was designed based on LabVIEW, a method of failure judgement was proposed by using the wavelet energy distribution vectors, and the correctness and effectiveness of the failure judgement approach are verified by the experiments.
引文
[1] Hennagir T. Distributed generation hits markets. Power Engineering, 1997, 101(10): 18-23.
    [2] Zahawi B A T Al, James B P, Starr F. High speed turbo alternator for domestic combined heat and power unit. IEEE Trans. on EDM, 1997, I:215~218.
    [3]胡业发,周祖德,江征风.磁力轴承的基础理论与应用.北京:机械工业出社,2006
    [4]唐苏亚.磁力轴承及其在工业上的应用.微电机期刊,1994,28(4):28~31.
    [5]王凤翔.高速电机的设计特点及相关技术研究.沈阳工业大学学报,2006, 28(3): 258~264.
    [6]谢宝昌,任永德,王庆文.磁悬浮电机及其应用的发展趋势.微电机. 1999, 32(6):43~46.
    [7]黄云凯,余莉,胡虔生.高速永磁电动机设计的关键问题.微电机, 2006, 39(8): 6~9.
    [8] Schweiter G,Bleuler H,Traxler A.Active Magnetic Bearings―Basics,Properties and Application of Active magnetic Bearings.ETH,Switzerland: Hochschulerlag A G, 1994: 1~8.
    [9]王军.磁悬浮轴承功率放大器建模及其软开关技术研究:(博士学位论文).南京:南京航空航天大学,2010.
    [10]王继强,王凤翔,宗鸣.高速电机磁力轴承–转子系统临界转速的计算.中国电机工程学报,2007,27(27):94~98.
    [11]王继强,王凤翔,鲍文博,等.高速永磁电机转子设计与强度分析.中国电机工程学报,2005,25(15):140~145.
    [12] Wang Fengxiang,Zheng Wenpeng,Zong Ming,et al.Design Considerations of High-speed PM Generators for Microturbines . International Conference on Power System Technology , Kumming,China,2002:158~162.
    [13] Pang Y , Zhu Z Q , Howe D . Optimal Split Ratio for Permanent Magnet Brushless Machines.ICEMS,Beijing,China,2003:128~131.
    [14] Wang Fengxiang,Zong Ming,Zheng Wenpeng,et al.Design Features of High Speed PM Machine.ICEMS,Beijing,China,2003:66~70.
    [15]王继强,王凤翔,孔晓光.高速永磁发电机的设计与电磁性能分析.中国电机工程学报,2008,28(20):105~110.
    [16]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003,23(3):108~111.
    [17]王晓琳,邓智泉,严仰光.一种新型的五自由度磁悬浮电机.南京航空航天大学学报,2004,36(2):210~214.
    [18]刘贤兴,孙宇新,朱熀秋等.无轴承永磁同步电机的发展、应用和前景.中国机械工程,2004,17(15):1594~1597.
    [19]刘晓军,刘小英,胡业发,等.人工心脏泵磁悬浮转子非线性特性及控制方法研究.中国机械工程,2006,20(17):2091~2094.
    [20] Earnshow S.On the Nature of the Molecular Forces which Regulate the Constitution of the Lumiferous Ether.Transaction Cambridge Philosophy Society, 1842, 7: 97~112.
    [21] Jams P Lyons,Mark A Preston,Ram Gurumoorthy.Design and Control of a Fault-tolerant Active Magnetic Bearing System for Aircraft Engines.Proceedings of 4th International Symposium on Magnetic Bearings,Zurich,Switzerland, 1994: 449~454.
    [22]白金刚,张小章,张剀等.磁悬浮储能飞轮系统中的磁轴承参数辨识.清华大学学报,2008,48(3):382~385.
    [23]张萌,时振刚,于溯源.HTR-10磁力轴承传感器的磁路分析.第二届全国磁悬浮轴承学术会议论文集,北京,原子能出版社,2007:79~83.
    [24]胡业发,丁国平,周祖德.磁悬浮硬盘驱动器径向磁力轴承的磁场分析和测试.第一届全国磁悬浮轴承学术会议论文集,北京,原子能出版社,2005:52~56.
    [25]丁国平,胡业发,许开国.径向磁力轴承磁极布置对磁场和磁力的影响分析.第二届全国磁悬浮轴承学术会议论文集,北京,原子能出版社,2007:199~202.
    [26]王晓光,胡业发,江征风.磁悬浮硬盘驱动器及其静电防护设计.机械设计与制造,2005,3:43~45.
    [27]吴国庆,张钢,张建生等.基于DSP的主动磁轴承电主轴控制系统研究.电机与控制学报,2006,10(2):112~120.
    [28]楚云凌,汪希平,雷永锋等.电磁轴承系统中信息存储与接口技术的智能化方法.轴承,2007,9:4~6.
    [29]吴刚,张育林,刘昆.四轴型磁悬浮动量轮变结构控制.上海航天,2006,1:12~17.
    [30]吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究.宇航学报,2005,3:385~390.
    [31]吴宝贵.轴向磁悬浮轴承的研究:(硕士学位论文).南京:南京航空航天大学,2008.
    [32]吴国庆.用于数控机床的磁悬浮支承系统及其控制技术:(博士学位论文).上海:上海大学2006.
    [33]何钦象,王怀颖,曹升虎.电磁轴承中电磁场的有限元分析.机械科学与技术, 2002,21(8):888~889.
    [34]任双艳,边春元,刘杰.基于ANSYS的主动磁轴承电磁场的有限元分析.机械制造. 2007,45(520):16~18.
    [35]韩邦成,李也凡,贾宏光,吴一辉.利用有限元法计算径向磁轴承性能.摩擦学学报. 2004,24(2):160~162.
    [36]韩邦成,吴一辉.有限元法计算偏心对径向磁轴承参数的影响.哈尔滨工业大学学报. 2005,37(2):187~189.
    [37] Christopher P Forbric.Modeling and identification of active magnetic bearings and a toothless self-bearing servomotor:(Dissertation for the Doctor degree). Alberta,University of Alberta, 2009.
    [38]董长宝,王凤翔,邢军强.高速电机磁力轴承动态特性分析.大电机技术, 2007(8):6~9.
    [39]苏涛,吴顺君,廖晓群.高性能数字信号处理器与高速实时信号处理.西安:西安电子科技大学出版社, 1999.
    [40]刘和平,严利平,张学锋. TMS320LF240xDSP结构、原理及应用.北京:北京航空航天大学出版社, 2002.
    [41] Xu Longxiang,Zhu Huangqiu,Zeng Xueming,et al. Design and Realization of Digital Controller of HMB Based on DSP. Journal of Data Acquisiton&Processing, 2000, 15(2):213~216.
    [42] Cristina G,Alfredo O,Van Den Keybus J,et al. Implementation and Comparison of Power Definitions Using a DSP Based Prototyping System. International Conference on Harmonics and Quality of Power.Lake Placid, United States: Institute of Electrical and Electronics Engineers Inc, New York, 2004:215~219.
    [43] Cai Z,Shen Z P,Zhang Z M,et al. Computer Aided Design of Digital Controller for Radial Active Magnetic Bearings. International Symposium on Magnetic Suspension Technology. Hampton,Virginia,USA:NASA Conference Publications 3152, 1992:423~431.
    [44] Knospe C R.Stability and Performances of Notch Filtering Controllers for Unbalanced Response.In:Groom N J,Britcher C P,eds. International Symposium on Magnetic Suspension Technology.Hampton,Virginia,USA:NASA Conference Publications 3152, 1992:181~208.
    [45] Inoue T,Takagi M,Takahashi N,et al. Load Test in an Air Turbine Borne by Active Magnetic Bearings. Proceedings of the Second International Symposium on Magnetic Bearings.Tokyo, Japan:NISSEI Eblo, 1990:57~64.
    [46] Matsushita O,Yoshida T,Takahashi N. Rotor Vibration Simulation Method for Active Magnetic Bearings Control. Proceedings of the Second International Symposium on Magnetic Bearings. Tokyo, Japan:NISSEI Eblo, 1990:139~145.
    [47] Cole M O T,et al.Control and Nonlinear Compensation of a Rotor/Magnetic Bearing System Subject to Base Motion. Allaire P E,Trumper D L.Proceedings of the 6th International Symposium on Magnetic Bearings, MIT:Technomic Publishing Co. Inc, 1998:618~630.
    [48] Larsonneur R. Design and Control of Active Magnetic Bearing Systems for High Speed Rotation:[Diss.ETH No.9140]. Zurich, 1994.
    [49] Akishita S,Morimura T,Hamaguchi S.Vibration Control of Magnetically Suspended Flexible Rotor by the Use of Optimal Regulator.In:Higuchi T,eds.Proceedings of the Second International Symposium on Magnetic Bearings.Tokyo, Japan:NISSEI Eblo, 1990:147~154.
    [50] Hampton R D , Knospe C R.Extended H2 Synthesis for Multiple Degree-of-Freedom Controllers.In:Groom N J,Britcher C P,eds.International Symposium on MagneticSuspension Technology. Hampton,Virginia, USA:NASA Conference Publications, 1992:363~383.
    [51] Matsumura F,Fujita M,Okawa K.Modeling and Control of Magnetic Bearing Systems Achieving a Rotation Around the Axis of Inertia.In:Higuchi T,eds. Proceedings of the Second International Symposium on Magnetic Bearings.Tokyo, Japan:NISSEI Eblo, 1990, 273~280.
    [52] Larsonneur R,Herzog R.Optimal Design of Structure Predefined Discrete Control for Rotors in Magnetic Bearings. Higuchi T.Proceedings of the 2nd International Symposium on Magnetic Bearings.Tokyo:University of Tokyo, 1990, 347~356.
    [53] Kanemitsu Y,et al. Real Time Balancing of a Flexible Rotor Suspended by Magnetic Bearing. Higuchi T.Proceedings of the 2nd International Symposium on Magnetic Bearings, Tokyo:University of Tokyo, 1990, 265~272.
    [54] Shafai B,Beale S,LaRocca P,et al. Magnetic Bearing Control Systems and Adaptive Forced Balancing. Control Systems Magazine, 1994, 14(2):4~13.
    [55] Mohamed A M,Ilene B V. Imbalance Compensation and Automatic Balancing in Magnetic Bearing Systems Using the Q-Parameterization Theory. Proceedings of the American Control Conference, Baltimore,MD,USA:American Automatic Control Council,Green Valley,AZ,USA, 1994:2952~2957.
    [56] Nonami K. H∞Control of Milling AMB Spindle. JSME International Journal, Series C, 1996, 39(3):502~508.
    [57] Sivrioglu S,Nonami K. LMI Approach to Gain Scheduled H∞Control beyond PID Control for Gyroscopic Rotor-Magnetic Bearing System. Proceedings of the 35th Conference on Decision and Control.Kobe, Japan, 1996:3694~3699.
    [58] Oguchi K,Okada K. Contactless Starting and Positioning of a Steel Ball in Single-axis Magnetic Suspension Device by Variable Structure Control. Allaire P E.Proceedings of the 3rd International Symposium on Magnetic Bearings, Virginia: Technotomic Publishing Co, 1992:60~69.
    [59] Smith R D,Weldon W F. Nonlinear Control of a Rigid Rotor Magnetic Bearing System:Modeling and Simulation with Full State Feedback. IEEE Transactions on Magnetics, 1995, 31(2):973~980.
    [60] Nonami K,Yamaguchi H. Robust Control of Magnetic Bearing Systems by Means of Sliding Mode Control. Allaire P E.Proceedings of the 3rd International Symposium on Magnetic Bearings, Virginia, Technotomic Publishing Co, 1992:537~546
    [61] Nonami K , Takayuki I.μSynthesis of Flexible Rotor-Magnetic Bearing Systems. IEEE Transactions on Control Systems Technology, 1996, 4(5):503~512.
    [62] Schroder P,Feleming P J,Green B. On-line Genetic Auto-Tuning of Magnetic International Symposium on Magnetic Bearings. MIT:Technomic Publishing Co. Inc, 1998:321~330
    [63]苏义鑫.主动磁力轴承模糊控制的相关理论与技术研究:(博士学位论文).武汉:华中科技大学, 2006.
    [64] Lindlau J D,Knospe C R.Feedback Linearization of an Active Magnetic Bearing With Voltage Control.IEEE Transactions on Control Systems Technology,January 2002, 10(1):21~31
    [65] Jeng J T,Lee T T. Control of Magnetic Bearing Systems Via the Chebyshev Polynomial-Based Unified Model(CPBUM)Neural Network. IEEE Transactions on Systems,Man and Cybernetics—Part B Cybernetics, 2000, 30(1):85~92.
    [66] Sinha P K. Electromagnetic Suspension:New Result Using Neural Network. IEEE Transactions on Magnetics, 1993, 29(6):2791~2793.
    [67] Liu Shuqin, Li Debin, Yu Wentao, et al. Stiffness Analysis of the Magnetic Bearings System. Allair P. Proceedings of the 9th International Symposium on Magnetic Bearings.Kentucky, University of Kentucky, 2004.
    [68] Cao Jianrong, Chen Quanshi. Decoupling Control for a 5-Dof Rotor Supported by Active Magnetic Bearings. Proceedings of the 6th International Conference on Electrical Machines and Systems. Beijing, 2003:477~480.
    [69] Youcef-Toumi K,Reddy S,Vithiananthan I.A Digital Time Delay Controller for Active Magnetic Bearings.in:Higuchi T.Proceedings of the 2nd International Symposium on Magnetic Bearings. University of Tokyo, 1990:15~22.
    [70] Higuchi T.Identification of Rotor Unbalanced and Reduction of Housing Vibration by Periodic Learning Control in Magnetic Bearing. Allaire P E.Proceedings of the 3rd International Symposium on Magnetic Bearings. Virginia:Technotomic Publishing Co, 1992:571~579.
    [71] Bi Chao,Wu Dezheng,Jiang Quan,et al. Automatic Learning Control for Unbalance Compensation in Active Magnetic Bearings. IEEE Transactions on Magnetics,2005, 4(7): 2270~2280.
    [72] Sato T,Tanno Y. Magnetic Bearing Having PID Controller and Discontinuous Controller. Proceedings of the International Conference on Industrial Electronics, Control and Instrumentation, Las Vegas , NV , United States:Institute of Electrical and Electronics Engineers Inc, 1993:2121~2125.
    [73] Lin Chin-teng,Jou Chong-ping. GA-Based Fuzzy Reinforcement Learning for Control of a Magnetic Bearing System. IEEE Transactions on Systems, Man and Cybernetics—Part B Cybernetics,2000, 30(2):276~289.
    [74] Kawanishi M,Ukibune M.Unfalsified PID Controller Design for Active Magnetic Actuators Based on Direct Measured Data and L2 Gain Criterion. Allair P. Proceedings of the 9th International Symposium on Magnetic Bearings.Kentucky: University of Kentucky,2004.
    [75] Chen Min,Knospe C R.Implementation of Robust Feedback Linearization on Active Magnetic Bearing Actuators. Allair P.Proceedings of the 9th International Symposium on Magnetic Bearings.Kentucky:University of Kentucky, 2004.
    [76] Chen H M,Lewis P. Pulse-based Damping Control for Magnetic Bearing. Allaire P E.Proceedings of the 3rd International Symposium on Magnetic Bearings.Virginia: Technotomic Publishing Co, 1992.25~34.
    [77]张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁轴承系统性能的影响.清华大学学报(自然科学版),2001,41(6):23~26.
    [78] Yang Jing,He Qing Xiang,Wang Kai. Effects of AMB Power Amplifier Structure upon the System Performance. Proceedings of the 8th International Symposium on Magnetic Bearings.Mito,Japan.2002:97~100.
    [79] Jung-sik Yim,Jang-hwan Kim,Seung-Ki Sul. A Novel Cost-Effective Scheme of Power Amplifier for AMB Using Space Vector Technology. Proceedings of the 8th International Symposium on Magnetic bearings,Mito,Japan, 2002:101~105.
    [80]李冰,邓智泉,严仰光.磁轴承三态开关功率放大器的电流模式控制.电力电子技术,2003,37(4):52~55.
    [81]臧晓敏,王晓琳,仇志坚等.一种改进的基于采样-保持策略磁轴承用电流三态调制开关功放.电工技术学报,2004,19(10):85~90.
    [82]刘迎春,叶湘滨等.传感器原理设计与应用(第四版).长沙:国防科技大学出版社2004.
    [83] Alexandre Schammass, Hanes Bleulero. Experimental Results on Self-sensing AMB Using a three-state PWM. Proceedings of the 8th International Symposium on Magnetic bearings,Mito,Japan, 2002: 289~292.
    [84] Satoshi Ueno,Ken-ichi Matsuda,Hiroshi Sato,Yohji Okada. Position Self-sensingControl of an Axial Self-bearing Motor. Proceedings of the 8th International Symposium on Magnetic bearings,Mito,Japan, 2002:299~304.
    [85]库少平.磁力轴承故障诊断的相关理论与试验研究:(博士学位论文).武汉:武汉理工大学,2005.
    [86]冯斌.磁悬浮转子状态监测与故障诊断:(硕士学位论文).武汉:武汉理工大学,2009.
    [87] Diao Xing Zhong,Yu Suyuan. Preliminary tests for the htr-10 helium circulator with active magnetic bearing. Proceeding of the 11th International Symposium on Magnetic Bearings, NaraJapan, 2008:26~29.
    [88] Nan-Chyuan Tsai,Yueh-Hsun King, Rong-Mao Lee. Fault diagnosis for magnetic bearing systems. Mechanical Systems and Processing, 2009:1339~1351.
    [89] Iain S.Cade, Patrick S.Keogh,and M.Necip Sahinkaya. Faut Identification In Rotor/Magnetic Bearing Systems Using Discrete Time Wavelet Coeffcients. IEEE/ASME.Transactions on Mechatronics, 2005, 10(6):648~657.
    [90] M N Sahinkaya, M O T Cole, C R Burrows. Fault detection and tolerance in synchronous vibration control of rotor-magnetic bearing systems. Proc Instn Mech Engrs, 2001,215 (part C).
    [91] M O T Cole, P S Keogh, C R Burrows .Faut-tolerant control of rotor magnetic bearing systems using reconfigurable control with built-in fault detection. Proc Instn Mech Engrs, 2000, 214(part C).
    [92] Alexander Schulz,Manfred Schneebeeger, Johann Wassermann. A Reliable Switching Amplifier for Active Magnetic Bearings Error Detection Strategies and Measurement Results. IEEE international Conference on industrial Technology, 2004.
    [93] Seung-Jong Kim,Chong-Won Lee. Diagnosis of Sensor Faults in Active Magnetic Bearing System Equipped With Built-In Force Transducers. IEEE/ASME Transactions on Mechatronics. 1999, 4(2):180~186.
    [94] Rupert Gouws,George van Schoor. A Comparative Study on Fault Detection and Correction Techniques on Active Magnetic Bearing Systems. IEEE Africon conference, 2007:1~9.
    [95] Frank Worlitz, Torsten Rottenbach. Long-term operation of an amb-supported collant pump in a lignte-fired power station-results and operational experience. Proceeding of the I 1th International Symposium on Magnetic Bearings, Nara Japan, 2008:26~29.
    [96]韩京清.自抗扰控制器及其应用,控制与决策,1998,13(1):19~23
    [97]韩京清.从PID技术到自抗扰控制技术,控制工程,2002,9(3):13~18
    [98]黄一,张文革.自抗扰控制器的发展,控制理论与应用,2002,19(4):485~492
    [99]韩京清.自抗扰控制技术,前沿科学,2007,(1):24~31
    [100]张荣,韩京清.用模型补偿自抗扰控制器进行参数辨识,控制理论与应用,2002,19(4):485~492
    [101]刘丽英,许镇琳,梅强.基于线性自抗扰控制器的异步电机调速系统,组合机床与自动化加工技术,2009(5):56~60
    [102] Liu Liying,Xu Zhenlin,Mei Qiang.Induction motor drive system based on theflux observer LESO and LADRC,2009,GCIS 2009, 248~252.
    [103]刘丽英.线性自抗扰控制策略在异步电机调速系统中的应用研究:(博士学位论文).天津:天津大学, 2010.
    [104] Gao Zhiqiang. Scaling and bandwidth-parameterization based controllertuning. Proceedings of American Control Conference,2003:4989~4996.
    [105] Zheng Qing,Gao Zhiqiang. Motion control opmitimization:problem and solutions. Interntional Journal of Intelligent control and systems,2006,10,(4):269~276.
    [106]李宜达.控制系统设计与仿真.北京:清华大学出版社,2004,75~89.
    [107]胡立波,程昌银.磁力轴承控制系统功率放大器研究.武汉理工大学学报,2004,26(5):21~25.
    [108]苏义鑫,周祖德,胡业发.磁悬浮轴承功率放大器的研究.武汉理工大学学报,2003,25(6):11~16.
    [109] Zhang Jing. Power amplifier for magnetic bearings. Switzerland: Swiss Federal Institute of Technology, 1995.
    [110]臧晓敏.磁轴承开关型功率放大器的研究:(硕士学位论文).南京:南京航空航天大学,2004.
    [111]张亮,房建成.电磁轴承脉宽调制型开关功放的实现及电流纹波的分析.电工技术学报,2007, 22(3):14~20.
    [112]赵旭升,邓智泉,梅磊等.永磁偏置磁轴承在线监测系统的研制.微特电机, 2006,12:7-9.
    [113]韩士胜.磁悬浮减振降噪平台控制系统的设计与研究:(硕士学位论文).武汉:武汉理工大学,2009.
    [114]薛阳.磁悬浮转子集成位移检测系统的研究:(硕士学位论文).武汉:武汉理工大学,2009.
    [115]张彦梅,阳进.一种基于小波能量分析的目标识别方法.北京理工大学学报, 2010, 30(7):831-834.
    [116]石浪涛.基于小波变换的汽轮机轴系复合故障诊断实验研究:(硕士学位论文).赣州:江西理工大学,2008.
    [117]杨洪.基于小波分析的韶钢4号风机故障诊断子系统的研究:(硕士学位论文).长沙:中南大学,2007.
    [118]赵琳.马氏距离判别法的若干改进及其在旅游信息智能推荐系统中的应用:(硕士学位论文).长沙:湖南大学,2007.
    [119]宋运红.河北三沟地区水系沉积物数据马氏距离处理与应用:(硕士学位论文).长春:吉林大学,2009.
    [120]孙增寿,林友勤,任伟新.基于小波能量分布向量的结构损伤识别.地震工程与工程振动, 2007, 27(5):103-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700