用户名: 密码: 验证码:
液晶显示器动力学响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶显示器已经广泛应用于各种显示领域,具有重量轻、薄型化和功耗少等优点,但是其响应时间特性还不能令人满意。传统的动力学理论对典型液晶显示模式进行了详细的理论研究,指出液晶材料参数和器件参数决定了响应时间,液晶材料参数主要为转动粘滞系数和弹性常数,器件参数包括液晶层厚度和驱动电压。对于复杂的液晶显示模式,很少人去详细地理论研究它们的响应时间特性,多是采用数值模拟、实验测试结果的理论分析。本文中采用小形变近似和连续体理论研究液晶显示模式中的动力学响应。研究了表面锚定能和表面粘滞系数在液晶显示器动力学响应中的影响,详细地研究共面转换、光学自补偿弯曲和垂面排列液晶显示模式中的响应时间,并对目前可实现亚微妙响应时间的双频液晶、铁电液晶和蓝相液晶显示模式的快速响应机制进行了研究。
     应用等效盒厚和求本征值方法研究了锚定能对指向矢响应时间的影响。详细研究了基板表面处液晶的动力学响应,通过数值模拟确定表面转动粘滞系数对基板表面处液晶的快响应和慢响应的影响。研究光学和指向矢响应时间之间的关系,研究扭曲形变和弯曲、展曲形变在光学响应时间上的差别。理论上给出展弯曲形变的光学下降响应时间至少比扭曲形变快一倍。对于复杂的显示模式,可以比较其中的扭曲和展弯曲形变的响应时间来确定显示模式的光学响应时间。
     研究共面转换模式中大摩擦角度、扭曲和超扭曲结构对响应时间的影响,得到了它们的响应时间公式,并通过模拟计算了它们的动力学响应过程,得到超扭曲结构具有4倍快于传统结构的响应速度。对比共面转换模式,研究了双面边缘场驱动沿面排列液晶显示模式的响应机制,对该显示模式的光学特性进行了理论分析。
     研究光学自补偿弯曲模式中展曲和弯曲状态的临界电压,展曲到弯曲的转变电压以及弯曲状态下的响应机制。理论上给出临界电压的理论公式。对展曲到弯曲的转变过程及转变电压,给出了模拟结果,并提出了用于测量表面转动粘滞系数的一种方法。理论上研究该显示模式的响应时间的公式,给出动力学响应机制。
     研究垂面排列显示模式中使用负性和正性液晶材料的差别,以及在动力学响应过程中,它们的响应时间的不同点。负性液晶显示模式的响应时间为经典结果,而正性液晶显示较复杂,共面转换模式的响应时间与负性液晶相同。对于三层电极驱动的显示模式,则在上升和下降过程都有电场参与,理论上给出下降响应时间公式。对于双面边缘场驱动垂面排列厚盒模式,因为在液晶在横向的变化周期远小于液晶层厚,因此该显示模式的响应时间受到横向周期的影响,理论上推导出该显示模式的下降响应时间公式。
     研究双频液晶、铁电液晶和蓝相液晶显示模式的动力学响应机制,给出了双频液晶的响应时间公式。分析了铁电液晶响应过程中的介电力和自发极化与电场之间的作用力大小,明确了铁电液晶快速响应特点的响应机制。对蓝相液晶显示模式的阈值电压和响应时间进行了理论分析,建立了一个简单模型,模拟计算了该显示模式的电光特性
Liquid crystal displays were widely used in many fields because of its light weight, thin panel and low power consumption, however, its response speed is not favorable. Some typical liquid crystal display modes were researched in detail using the classical dynamical theory, the results show that the factors affect the response time include the rotational viscosity and elastic parameters of liquid crystal, the thickness of the liquid crystal layer and the driven voltage. For the liquid crystal display mode with complex configuration, most people gave the theoretical analysis on the results of numerical simulation or experimental data. In this thesis, the dynamic responses of liquid crystal display modes were researched through the small deformation approximation and the continuum elastic theory. The effects of surface anchoring and surface viscosity on the dynamical response of liquid crysal display were researched, the response times of the in-plane switching, optically compensated bend and vertical alignment liquid crystal display modes were studied in detail, moreover, the response mechanism of the dual frequency, ferroelectric and blue phase liquid crystal display modes with submillisecond response times were analyzed.
     The anchoring energy’s effect on the director response time is studied by using effective cell gap and solving eigenvalue method. The dynamic responses of the liquid crystal near the substrates in the fast and slow response processes were analyzed in detail, and the effect of surface rotational viscosity is determined by the numerical simulation. The relationships of the director and optical response times were shown from the theoretical analysis, in the pure twist, splay and bend deformations. From the results, the optical decay response time of the splay and bend deformation is improved 2X at least than that of the twist deformation. In the cell with the three deformations, the optical response time is also determined by comparing the response times of the twist and splay-bend deformation.
     The effects of the rubbing angle, twist and super twist configuration on the response times were researched, and the equations of response times were obtained. The response time of the super twist configuration has four times faster than that of the conventional configuration from the theoretical analysis and numerical simulation of the dynamic response. The response mechanism of double fringe field switching driven homogeneous alignment liquid crystal is researched comparing with in-plane switching mode, and the optical characteristics of this mode is analyzed.
     The critical voltage and transition voltage of the splay to bend transition, and the response mechanism in the bend state were studied in the optically compensated bend liquid crystal display mode. The analytical equation to calculate the critical voltage is derived, the transition voltage and the transitional process are simulated, and moreover the transitional process can be used to measure the surface rotational viscosity. The equations of the response time were derived and the fast response mechanism was summarized.
     The difference of the response time for the vertical alignment liquid crystal display mode with negative and positive dielectric liquid crystal material were researched. The response time of the cell with negative liquid crystal is similar to that of the classical vertical alignment mode. The in-plane switching vertical alignment cell with positive liquid crystal is same as that of the cell with negative liquid crystal. The vertical alignment cell driven by the tri-layers electrodes, the electric field has an effect in the rise and decay processes, the decay response time is derived. In the double fringe field switching vertical alignment mode, the period of liquid crystal deformation in the transversal direction is less than the thickness of liquid crystal layer, and instead of the cell gap in lognitudinal direction, shows the cell gap effect on the response time, the equation of the decay response time is theoretically derived.
     The dynamic response mechanism of dual frequency liquid crystal, ferroelectric liquid crystal and blue phase liquid crystal modes were analyzed. The equations to calculate the response times of the dual frequency liquid crystal display are analyzed through the theoretical analysis. Through comparing the dielectric force and the force between the spontaneous polarization and the electric field, the fast response mechanism of the ferroelectric liquid crystal is clear. The threshold voltage and the response time of the blue phase liquid crystal mode were theoretically analyzed, and numerically simulate the electro-optic characteristics using a simple model.
引文
[1] [日]金子英二著,王新久,田建民译,液晶电视:液晶显示的原理和应用,电子工业出版社,北京,1991
    [2]日本学术振兴会第142委员会编,黄锡珉等译,液晶器件手册,航空工业出版社,北京,1992
    [3]施善定,黄嘉华,李秀娥编著,液晶与显示应用,华东化工学院出版社,上海,1993
    [4]刘永智,杨开愚编著,液晶显示技术,电子科技大学出版社,西安,2000
    [5]应根裕,胡文波,邱勇等编著,平板显示技术,人民邮电出版社,北京,2002
    [6] [日]新居宏壬,栗田泰市郎,酒井重信,显示器的应用,科学出版社,北京,2003
    [7] [日]堀浩雄,铃木幸治,彩色液晶显示,科学出版社,北京,2003
    [8] [日]小林俊介,下一代液晶显示,科学出版社,北京,2003
    [9]王新久著,液晶光学和液晶显示,科学出版社,北京,2006
    [10]高鸿锦,董友梅主编,液晶与平板显示技术,北京邮电大学出版社,北京,2007
    [11] Wu S T, Liquid crystal materials and devices [讲义]。
    [12] Gunjima T Ozeki M, Ooi Y, New back-light devices for liquid crystal displays [J], Proceeding of the 15th international display research conference (Asia Display’95) Hamamtsu, Japan, p731-734, 1995.
    [13] Broer D J, Lub J and Mol G N, Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient [J], Nature 1995 378:467-469.
    [14] Ge Z and Wu S T, Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays [J], Appl. Phys. Lett. 2008, 93: 121104.
    [15] Konno A, Yamamoto Y, and Inuzuka T, RGB color contral system for LED backlights in IPS-LCD TVs, SID Int. Symp. Digest Tech. Papers, 2005 36: 1380-1383.
    [16] Ito T, Yasuda S. Oikawa T, Ito Y, and Takahashi Y, Review of viewing angle compensation of TN-mode LCDs using WV film, SID Int. Symp. Digest Tech. Papers, 2008 39:125-128.
    [17] Park S H, Park I C, Kim J H, Kim J R, Shin J K, Lee K H, Jung I J, Ru J B, Kim B N, and Yun J H, A novel moving picture study of the IPS mode TV with 120Hz driving for full HDTV application, SID Int. Symp. Digest Tech. Papers, 2008 39:129-132.
    [18] Song J K, Lee K E, Chang H S, Hong S M, Jun M B, Park B Y, Seomun S S, Kim K H, and Kim S S, DCCII: Novel method for fast response time in PVA mode, SID Int. Symp. Digest Tech. Papers, 20048 35: 1344-1347.
    [19] Yang D K, and Wu S T, Fundamentals of liquid crystal devices, Wiley, 2006.
    [20] de Gennes P G, Prost J, The physics of liquid crystals, Oxford Univeristy Press, 1994.
    [21] Gooch C H, and Tarry H A, The optical properties of twisted nematic liquid crystal structures with twistangles<90o, J. Phys. D: Appl. Phys., 1975 8: 1575-1584.
    [22]孙玉宝,赵长彬,姜鹏等,液晶显示模式,河北工业大学应用物理系专业教材(自编教材),2008.
    [23] Erickson J L, Conservation laws for liquid crystals, Trans. Soc. Rheol., 1961 5:23-24.
    [24] Leslie F M, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 1968 28:265-283.
    [25] Van Doorn C Z, Dynamic behavior of twisted nematic liquid-crystal layer in switched fields, J. Appl. Phys., 1975 46: 3738-3745.
    [26] Chen G P, Yamaguti M, Ito N, Aoki T. and Fukuda A, Target response times of liquid crystal displays estimated by analyzing the front and rear part gray levels of moving square patterns, Jpn. J.Appl. Phys. 1999 38: L646-648,
    [27] Jakeman E, and Raynes E P, Electro-optical response times in liquid crystal, Phys. Lett., 1972 39A: 69-70.
    [28] Wu S T, Phase retardation dependent optical response time of parallel-aligned liquid crystal, J. Appl. Phys., 1986 60:1836-1838.
    [29] Berreman D W, Liquid-crystal twist cell dynamics with backflow, J. Appl. Phys., 1975 46:3746-3751.
    [30] Oh-e M, and Kondo K, Response mechanism of nematic liquid crystals using the in-plane switching mode, Appl. Phys. Lett., 1996 69:623-625.
    [31] Oh-e M, and Kondo K, The in-plane switching of homogeneously aligned nematic liquid crystals, Liq. Cryst., 1997 22:379-390.
    [32]李志勇,单艾娴,孙玉宝,自然螺距对扭曲向列相液晶显示器的影响,液晶与显示(待发表)
    [33] Rapini A and Papoular M, Distorsion d’une lamelle nematique sous champ magnetique conditions d’ancrage aux parois, J. Phys. (Paris) Colloq., 1969 30 C4:54-56.
    [34]谢毓章,液晶物理学,科学出版社,北京,1988。
    [35] Nie X, Lu R, Xianyu H, Wu T X, and Wu S T, Anchoring energy and cell gap effects on liquid crystal response time, J. Appl. Phys., 2007 101: 103110.
    [36] Derzhanski A I and Petrov A G, Flexoelectricity in nematic liquid crystals, Acta Phys. Pol. A 1979 55:747-767.
    [37] Derfel G, Gajewska B, Transient phenomena in weakly anchoring nematic in magnetic field, SPIE, 1997 3318:292-295.
    [38] Derfel G, Gajewska B, Dynamics of the field-induced twist deformation in weakly anchoring nematic layers, Liq. Cryst., 1997 22:297-300.
    [39] Oseen C W, The theory of liquid crystals, Trans. Faraday Soc., 1933 29:883-889.
    [40] Zocher H, The effect of a magnetic field on the nematic state, Trans. Faraday Soc., 1933 29:945-957.
    [41] Frank F C, On the theory of liquid crystals, Discuss. Faraday Soc., 1958 25:19-28.
    [42] Ericksen J L, Anisotropic fluids, Arch. Rat. Mech. Anal., 1960 4:231-237.
    [43] Parodi O J, Stress tensor for a nematic liquid crystal, J. Phys. (Paris), 1970 31:581-584.
    [44] Qian T, Qiu C, Sheng P, A scaling approach to the derivation of hydrodynamic boundary conditions, J. Fluid Mech., 2008 611:333-364.
    [45] Qian T and Sheng P, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 1998 58:7475-7485.
    [46] Barbero G, Dahl I and Komitov L, Continuum description of the interfacial layer of nematic liquid crystals in contact with solid surfaces, J. Chem. Phys., 2009 130:174902.
    [47] Barbero G and Pandolfi L, Surface viscosity in nematic liquid crystals, Phys. Rev. E 2009 79:051701.
    [48] Sonnet A M, Virga E G, and Durand G E, Dilution of nematic surface potentials: Relaxation dynamics, 2000 62:3694-3701.
    [49] Sonnet A M and Virga E G, Dilution of nematic surface potentials: Statics, Phys. Rev. E 2000 61:5401-5406.
    [50] Sun Y, Zhang Z, Ma H, Li Z, Jiang L, Cui Y and Fu G, Nematic liquid crystal reorientation: Surface equation reexamined, (未发表)
    [51] Nehring J, Kmetz A R and Scheffer T J, Analysis of weak-boundary-coupling effects in liquid-crystal displays, J. Appl. Phys., 1976 47:850-857.
    [52] Joly S, Antonova K, Martinot-Lagarde P and Dozov I, Zenithal gliding of the easy axis of a nematic liquid crystal, Phys. Rev. E, 2004 70:050701(R).
    [53] Janossy I and Kosa T I, Gliding of liquid crystals on soft polymer surfaces, Phys. Rev. E, 2004 70:052701.
    [54] Vorflusev V P, Kitzerow H S and Chigrinov V G, Azimuthal surface gliding of a nematic liquid crystal, Appl. Phys. Lett., 1997 70:3359-3361.
    [55] Faetti S, Nobili M and Raggi I, Surface reorientation dynamics of nematic liquid crystals, Eur. Phys. J. B, 1999 11:445-453.
    [56] Faetti S and Marianelli P, Strong azimuthal anchoring energy at a nematic-polyimide interface, Phys. Rev. E, 2005 72:051708.
    [57] Campanelli E, Faetti S and Nobili M, Azimuthal anchoring energy at the interface between a nematic liquid crystal and a PTFE substrate, Eur. Phys. J. E, 2003 11:199-209.
    [58] Ge J J, Li C Y, Xue G, Mann I K, Zhang D, Wang S Y, Harris F W, Cheng S Z D, Hong S C, Zhuang X W, and Shen Y R, Rubbing-induced molecular reorientation on an alignment surface of aromatic polyimide containing cyanobiphenyl side chains, J. Am. Chem. Soc., 2001 123:5768-5776.
    [59] Lee Y J, Choi J G, Song I, Ph J M, Yi M H, Effect of side chain structure of polyimide on a pretilt angle of liquid crystal cells, Polymer, 2006 47:1555-1562.
    [60] Fakhraai Z and Forrest J A, Measuring the surface dynamics of glassy polymers, Science, 2008 319:600-604.
    [61] Oh-e M, and Kondo K, Electro-optical characteristics and switching behavior of the in-plane switching mode, Appl. Phys. Lett., 1995 67:3895-3897.
    [62] Lee S H, Lee S L, and Kim H Y, Electo-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching, Appl. Phys. Lett., 1998 73:2881-2883.
    [63] Hong S H, Park I C, Kim H Y, and Lee S H, Electro-optic characteristic of fringe-field switching modedepending on rubbing direction, Jpn. J. Appl. Phys., 2000 39:L527-L530.
    [64] Kim H Y, Song I S, Baik I S, Kim S Y, and Lee S H, Color characteristics of the fringe-field switching liquid crystal mode depending on E- and O-modes, Curr. Appl. Phys., 2007 7:160-167.
    [65] Wang H, Wu T X, Zhu X, and Wu S T, Correlations between liquid crystal director reorientation and optical response time of a homotropic cell, J. Appl. Phys., 2004 95:5502-5508.
    [66] Soref R A, Transverse field effects in nematic liquid crystals, Appl. Phys. Lett., 1973 22:165-166.
    [67] Soref R A, Field effects in nematic liquid crystals obtained with interdigital electrodes, 1974 45:5466-5468.
    [68] Kiefer R, Weber B, Windscheid F and Baur G, In-plane switching of nematic liquid crystals, Proceedings of the 12th international display research conference, Hiroshima, Japan, 1992, p.547.
    [69] Sasaki T, Takeda A, Kataoka S, Chida H, Tsuda H, Ohmuro K, Koike Y, Sasabayashi T, and Okamoto K, A super-high image quality muti-domain vertical alignment LCD, Proceedings fo the 18th international display research conference, Asia Display’98 Workshop Digest, 1998, pp.95-98.
    [70] Takeda A, Kataoka S, Sasaki T, Chida H, Tsuda H, Ohmuro K, Koike Y, Sasabayashi T, and Okamoto K, A-super-high-image-quality multi-domain vertical alignment LCD by new rubbing-less technology, SID Int. Symp. Digest Tech. Papers, 1998 29: 1077-1080.
    [71] Kim K H, Lee K, Park S B, Song J K, Kim S and Souk J H, Domain divided vertical alignment mode with optimized fringe field effect, Proceedings fo the 18th international display research conference, Asia Display’98 Workshop Digest, 1998, pp.383-385.
    [72] Koike Y, and Okamoto K, Super high quality MVA-TFT liquid crystal displays, Fujitsu Sci. Tech. J., 1999 353:221-228.
    [73] Yang D K, Wu S T, Fundamentals of liquid crystal devices, Wiley, 2006.
    [74] Chandrasekhar S, Liquid crystals, Cambridge Univ. Press, 1992.
    [75] Pieranski P, Brochard F, and Guyon E, Static and dynamic behavior of a nematic liquid crystal in a magnetic field Part II: Dynamics, J. Phys. (Paris), 1973 34:35-48.
    [76] Pieranski P, Brochard F, and Guyon E, Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field, Phys. Rev. Lett., 1972 28:1681-1683.
    [77] Sun Y, Zhang Z, Ma H, Zhu X and Wu S T, Optimal rubbing angle for reflective in-plane-switching liquid crystal displays, Appl. Phys. Lett., 2002 81:4907-4909.
    [78] Oka S, Kimura M, and Akahane T, Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching, Appl. Phys. Lett., 2002 80:1847-1849.
    [79] Oka S, Kobayashi K, Iwamoto Y, Toko Y, Kimura M and Akahane T, Electro-optical properties of the in-plane switching twisted nematic mode, Jpn. J. Appl. Phys., 2003 42:7445-7451.
    [80] Oka S, Kobayashi K, Iwamoto Y, Toko Y, Kimura M and Akahane T, Optical compensation method for in-plane switching twisted nematic mode, Jpn. J. Appl. Phys., 2004 43:3443-3447.
    [81] Kobayashi K, Fujiwara T, Oka S, Iwamoto Y, Toko Y, Takahashi T, Kimura M and Akahane T, Amorphousin-plane switching twisted nematic liquid crystal displays fabricated without rubbing process show a wide viewing angle and fast response characteristics, Jpn. J. Appl. Phys. 2004 43:1464-1468.
    [82] Sun Y, Ma H, Zhang Z, and Wu S T, Reflective liquid-crystal display using an in-plane-switching super-twisted nematic cell, J. Appl. Phys., 2002 92:1956-1959.
    [83] Sun Y, Ma H, Zhang Z, Zhu X, and Wu S T, Twist angle effects on the dynamic response of in-plane-switching liquid crystal displays, Appl. Phys. Lett., 2006 89:041110.
    [84] Guan R, Kang W and Sun Y, Response speed of in-plane switching mode liquid crystal displays, Liq. Cryst., 2007 34:467-471.
    [85] Xiang C Y, Sun X W, and Yin X J, Fast response wide viewing angle liquid crystal cell with double-side fringe-field switching, Appl. Phys. Lett., 2003 83:5154-5156.
    [86] Xiang C Y, and Sun X W, Electro-optical properties of a nematic liquid crystal cell by double-side fringe-field switching, J. Appl. Phys., 2004 96:3520-3523.
    [87] Xiang C Y, and Sun X W, Vertically aligned liquid crystal light valve controlled by double-side fringe-field switching with memory effect, Appl. Phys. Lett., 2004 84:4397-4399.
    [88] Jiao M, Ge Z, Wu S T and Choi W K, Submilisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell, Appl. Phys. Lett., 2008 92:111101.
    [89] Jiao M, Wu S T, and Choi W K, Fast-response single cell gap transflective liquid crystal displays, J. Disp. Tech., 2009 5:83-85.
    [90] Bos P J, and Koehler-Beran K R, The pi-cell: a fast liquid-crystal optical-switching device, Mol. Cryst. Liq. Cryst., 1984 113:329-339.
    [91] Miyashita T, Vetter P, Suzuki M, Yamaguchi Y, and Uchida T, Wide viewing angle display mode for active matrix LCD using bend alignment liquid crystal cell, Proc. 13th Int. Disp. Res. Conf., 1993, pp.149-152.
    [92] Mi X D, Xu M, Yang D K, and Bos P J, Effects of pretilt angle on electro-optical properties of ?-cell LCDs, SID Int. Symp. Digest Tech. Papers, 1999 30:24-27.
    [93] Flynn M F, and Bos P J, Contrast and color uniformity optimization of an LCD Pi cell pixel, Mol. Cryst. Liq. Cryst., 1995 263:377-387.
    [94] Xu M, Yang D K, Bos P J, Jin X, Harris F W, Cheng S, Very high pretilt alignment and its application in Pi-cell LCDs, SID Int. Symp. Digest Tech. Papers, 1998 29:139-142.
    [95] Mori H, and Bos P J, Optical performance of the pi cell compensated with a negative-birefringence film and an A-plate, Jpn. J. Appl. Phys., 1999 38:2837-2844.
    [96] Jang Y K, and Bos P J, Optimization of the white state director configuration for perfectly compensated Pi-cell devices, Jpn. J. Appl. Phys., 2007 46:5821-5828.
    [97] Wang B, Zhang Y, Jang Y K, and Bos P J, Enhancement of the direct symmetric splay to bend transition in liquid crystal cell, Jpn. J. Appl. Phys., 2009 48:022502.
    [98] Miyashita T, Yamagushi Y, and Uchida T, Wide-viewing-angle display mode using bend alignment liquid crystal cell, Jpn. J. Appl. Phys., 1995 34:L177-L179.
    [99] Kuo C L, Miyashita T, Suzuki M, and Uchida T, Optimum dark-state voltage for wide viewing angle optically compensated bend mode liquid crystal displays, Jpn. J. Appl. Phys., 1995 34:L1362-L1364.
    [100] Kuo C L, Miyashita T, Suzuki M, and Uchida T, Crucial influences of K33/K11 ratio on viewing angle of display mode using a bend-alignment liquid-crystal cell with a compensator, Appl. Phys. Lett., 1996 68:1461-1463.
    [101] Kuboki K, Miyashita T, Ishinabe T, and Uchida T, The transition from the splay to bend state in the OCB cell, Mol. Cryst. Liq. Cryst., 2004 410:391-400.
    [102] Ogasawara F. Kubaoki K, Wako K, Uchida T, and Yoshizawa A, Chiral additive effects on bend growth rate for an optically compensated bend-mode liquid crystal display, Jpn. J. Appl. Phys., 2009 48:051507.
    [103] Ishinabe T, Miyashita T, Uchida T, Wko K, Kishimoto T, and Sekiya K, Improvement of transmittance and viewing angle of optically compensated bend mode liquid crystal display using wide-viewing-angle circular polarizer, Jpn. J. Appl. Phys., 2009 48:092403.
    [104] Yu X J, and Kwok H S, Bistable bend-splay liquid crystal display, Appl. Phys. Lett., 2004 85:3711-3713.
    [105] Yu X J, and Kwok H S, Fast response film-compensated liquid crystal on silicon display, Appl. Phys. Lett., 2006 89:031104.
    [106] Yeung F S, and Kwok H S, Fast-response No-bias-bend liquid crystal displays using nanostructured surfaces, Appl. Phys. Lett., 2006 88:063505.
    [107] Yeung F S, Li Y W, and Kwok H S, Pi-cell liquid crystal displays at arbitrary pretilt angles, Appl. Phys. Lett., 2006 88:041108.
    [108] Acosta E J, Towler M J, and Tillin M D, Route towards optimization of the response times of a pi-cell liquid-crystal mode, J. Appl. Phys., 2005 97:093106.
    [109] Acosta E J, Towler M J, and Walton H G, The role of surface tilt in the operation of pi-cell liquid crystal devices, Liq. Cryst., 2000 27:977-984.
    [110] Walton H G, and Towler M J, On the response speed of pi-cells, Liq. Cryst., 2000 27:1329-1335.
    [111] Brimicombe P D, Elston S J, and Raynes E P, Dynamic properties of polymer stabilized pi-cells, Mol. Cryst. Liq. Cryst., 2007 476:165-179.
    [112] Chen S H, and Yang C L, Dynamics of twisted nematic liquid crystal pi-cells, Appl. Phys. Lett., 2002 80:3721-3723.
    [113] Wu C S, Kuo L Y, Cheng Y H, Lee K L, Chen T J, Wu J J, and Wu S L, Study of twisted nematic optically compensated bend cell using patterned alignment, Jpn. J. Appl. Phys., 2009 48:081502.
    [114] Lee S H, Hong S H, Noh J D, Kim H Y, and Seo D S, Chiral-doped optically compensated bend nematic liquid crystal cell with continuous deformation from twist to twisted bend state, Jpn. J. Appl. Phys., 2001 40:L389-L392.
    [115] Yao I A, Ke H L, Yang C L, Chen C J, Pang J P, Chen T J, and Wu J J, Electrooptics of transflective displays with optically compensated bend mode, Jpn. J. Appl. Phys., 2006 45:7831-7836.
    [116] Lee S R, Yoon T H, and Kim J C, Enhancement of electrooptical properties of optically compensatedbend cell with pixel-isolating polymer wall, Jpn. J. Appl. Phys., 2008 47:1550-1552.
    [117] Lee S H, Kim T J, Lee G D, Yoon T H, and Kim J C, Geometric structure for the uniform splay-to-bend transition in a ?-cell, Jpn. J. Appl. Phys., 2003 42:L1148-L1151.
    [118] Lee S H, Kang J W, Lee G D, Yoon T H, and Kim J C, A novel driving method for fast switching of a ? cell for display of moving pictures, Jpn. J. Appl. Phys., 2004 43:1416-1420.
    [119] Huang C Y, Fung R X, and Lin Y G, Effects of curing conditions on electrooptical properties of polymer-stabilized liquid crystal Pi cells, Jpn. J. Appl. Phys., 2007 46:5230-5232.
    [120] Huang C Y, Jhuang W Y, Hsieh C T, and Lin C H, Switching of polymer-stabilized vertical alignment liquid crystal Pi cell-curing voltage and driving scheme effects, Jpn. J. Appl. Phys., 2009 48:020210.
    [121] Ruan L Z, and Sambles J R, Leaky-wave exploration of two-stage switch-on in a nematic pi-cell, Appl. Phys. Lett., 2005 86:052502.
    [122] Brimicombe P D, Raynes E P, Symmetric H state lifetime in splayed nematic liquid crystal devices, Appl. Phys. Lett., 2006 89:031121.
    [123] Nakamura H, and Noguchi M, Bend transition in Pi-cell, Jpn. J. Appl. Phys., 2000 39:6368-6375.
    [124] Kim J B, Kim K C, Ahn H J, Hwang B H, Kim J T, Jo S J, Kim C S, Baik H K, Choi C J, Jo M K, Kim Y S, Park J S, and Kang D, No bias pi cell using a dual alignment layer with an intermediate pretilt angle, Appl. Phys. Lett., 2007 91:023507.
    [125] Sun Y, Ma H, Li Z, and Zhang Z, Critical voltage of ?-cell liquid crystal displays, Jpn. J. Appl. Phys., 2006 45:5810-5811.
    [126] Sun Y, Ma H, Li Z, Zhang Z, and Guan R, Pretilt angle effects on critical voltage and dynamic response of pi cell, Appl. Phys. Lett., 2007 90:091103.
    [127] Lee C H, Chang H S, Lyu J J, Kim K H, and Souk J H, High performance 17.0’’SVGA OCB panel with fast initial bend transition, SID Int. Symp. Digest Tech. Papers, 2002 33:570-573.
    [128] Noguchi M, and Nakamura H, The phase initialization in the pi-cell, SID Int. Symp. Digest Tech. Papers, 1997 28:739-742.
    [129] Jhun C G, Chen C P, Lee U J, Lee S R, Yoon T H, and Kim J C, Tristate liquid crystal display with memory and dynamic operating modes, Appl. Phys. Lett., 2006 89:123507.
    [130] Nakao K, Suzuki D, Kojima T, Tsukane M, and Wakemoto H, High-speed bend transition method using electrical twist field in OCB mode TFT-LCDs, SID Int. Symp. Digest Tech. Papers, 2004 35:1416-1419.
    [131] Xu P, Chigrinov V, and Kiselev A D, Optical response of a nematic liquid crystal cell at the splay-bend transition: a model and dynamic simulation, Liq. Cryst., 2005 32:699-706.
    [132] Brimicombe P D, and Raynes E P, The influence of flow on symmetric and asymmetric splay state relaxations, Liq. Cryst., 2005 32:1273-1283.
    [133] Yang B R, Elston S J, Raynes P, and Shieh H P D, Investigation of the transient symmetric H state in a pi cell, Appl. Phys. Lett., 2007 91:071119.
    [134] Koma N, Miyashita T, Uchida T, and Yoneda K, Using an OCB-mode TFT-LCD for high-speedtransition from splay to bend alignment, SID Symp. Digest Tech. Papers, 1999 30:28-31.
    [135] Mertelj A, and Copic M, Surface-dominated orientational dynamics and surface viscosity in confined liquid crystals, Phys. Rev. Lett, 1998 81:5844-5847.
    [136] Durand G E, and Virga E G, Hydrodynamic model for surface nematic viscosity, Phys. Rev. E, 1999 59:4137-4142.
    [137] Vilfan M, Olenik I D, Mertelj A, and Copic M, Aging of surface anchoring and surface viscosity of a nematic liquid crystal on photoaligning poly(vinyl-cinnamate), Phys. Rev. E, 2001 63:061709.
    [138] Stelzer J, Hirning R, and Trebin H R, Influence of surface anchoring and viscosity upon the switching behavior of twisted nematic cells, J. Appl. Phys., 1993 74:6046-6052.
    [139] Sun Y, Ma H, Zhang Z, and Fu G, Rapid response mechanism of pi cell, Appl. Phys. Lett., 2008 92:111117.
    [140] Guan R, Sun Y, and Fu G, Response times in pi-cell liquid crystal displays, Liq. Cryst., 2008 35:841-845.
    [141] Schieckel M F, and Fahrenschon K, Deformation of nematic liquid crystals with vertical orientation in electrical fields, Appl. Phys. Lett., 1971 19:391-393.
    [142] Kahn F J, Electric-field-induced orientational deformation of nematic liquid crystals: tunable birefringence, 1972 20:199-201.
    [143] Labrunie G, and Robert J, Transient behavior of the electrically controlled birefringence in a nematic liquid crystal, J. Appl. Phys., 1973 44:4869-4874.
    [144] Kume Y, Ymada N, Kozaki S, Kishishita H, Funada F, and Hijikigawa M, Advanced ASM mode (Axially symmetric aligned microcell mode): improvement of display performances by using negative dielectric liquid crysal, SID Symp. Digest Tech. Papers, 1998 29:1089-1092.
    [145] Xiang C Y, Guo J X, Sun X W, Yin X J, and Qi G J, A fast response, three-electrode liquid crystal device, Jpn. J. Appl. Phys., 2003 42:L763-L765.
    [146] Xiang C Y, Sun X W, Guo J X, Yin X J, and Qi G J, The electro-optic properties of a fast response, three-electrode liquid crystal device, Jpn. J. Appl. Phys., 2004 43:1068-1072.
    [147] Xiang C Y, Sun X W, and Yin X J, The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving, J. Phys. D: Appl. Phys., 2004 37:994-997.
    [148] Shin H K, Kim K H, Yoon T H, and Kim J C, Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal, J. Appl. Phys., 2008 104:084515.
    [149] Hong S H, Jeong Y H, Kim H Y, Cho H M, Lee W G, and Lee S H, Eletro-optic characteristics of 4-domain vertical alignment nematic liquid crystal with interdigital electrode, J. Appl. Phys., 2000 87:8259-8263.
    [150] Gwag J S, Lee Y J, Kim M E, Kim J H, Kim J C, and Yoon T H, Viewing angle control mode using nematic bistability, Opt. Exp., 2008 16:2663-2669.
    [151] Ma H, Sun Y, and Fu G, Response mechanism of a vertical alignment mode driven by fringe-fieldswitching, Liq. Cryst., 2009 36:999-1002.
    [152] Meng Z, Kwok H S, and Wong M, Comb-on-plane switching electrodes for liquid crystal displays, J. Soc. Inf. Disp., 2000 6:139-145.
    [153] Bucher H K, Klingbiel R T, and VanMeter J P, Frequency-addressed liquid crystal field effect, Appl. Phys. Lett., 1974 25:186-188.
    [154] Jewell S A, and Sambles J R, Optical characterization of a dual-frequency hybrid aligned nematic liquid crystal cell, Opt. Exp., 2005 13:2627-2633.
    [155] Fan Y H, Ren H, Liang X, Lin Y H, and Wu S T, Dual-frequency liquid crystal gels with submillisecond response time, Appl. Phys. Lett., 2004 85:2451-2453.
    [156] Liang X, Lu Y Q, Wu Y H, Du F, Wang H, and Wu S T, Dual-frequency addressed variable optical attenuator with submillisecond response time, Jpn. J. Appl. Phys., 2005 44:1292-1295.
    [157] Xianyu H, Gauza S, and Wu S T, Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal, Liq. Cryst., 2008 35:1409-1413.
    [158] Lu Y Q, Liang X, Wu Y H, Du F, and Wu S T, Dual-frequency addressed hybrid-aligned nematic liquid crystal, Appl. Phys. Lett., 2004 85:3354-3356.
    [159] Huang Y, Wen C H, and Wu S T, Polarization-independent and submillisecond response phase modulators using a 90o twisted dual-frequency liquid crystal, Appl. Phys. Lett., 2006 89:021103.
    [160] Jewell S A, and Sambles J R, Dynamic response of a dual-frequency chiral hybrid aligned nematic liquid-crystal cell, Phys. Rev. E, 2006 73:011706.
    [161] Brimicombe P D, Parry-Jones L A, Elston S J, and Raynes E P, Modeling of dual frequency liquid crystal materials and devices, J. Appl. Phys., 2005 98:104104.
    [162] Khoo I C, Wu S T, Optics and nonlinear optics of liquid crystals, World Scientific, Singapore, 1993.
    [163] Clark N A, and Lagerwall S T, Submicrosecond bistable electro-optic switching in liquid crystals, Appl. Phys. Lett., 1980 36:899-901.
    [164] Clark N A, Handschy M A, and Lagerwal S T, Ferroelectric liquid crystal electro-optics using the surface stabilized structure, Mol. Cryst. Liq. Cryst., 1983 94:213-233.
    [165] Bawa S S, Biradar A M, and Chandra S, Dynamics of helix winding, unwinding and switching of ferroelectric liquid crystals, Jpn. J. Appl. Phys., 1987 26:189-192.
    [166] Furue H, Miyama T, Iimura Y, Hasebe H, Takatsu H, and Kobayashi S, Mesogenic polymer stabilized ferroelectric liquid crystal display exhibiting monostability with high contrast ratio and grayscale capability, Jpn. J. Appl. Phys., 1997 36:228-231.
    [167] Chiang C H, Wu P C, and Wu J J, Effect of alignment layers on the response time in a half V-shaped ferroelectric liquid crystal cell, Jpn. J. Appl. Phys., 2009 48:020215.
    [168] Kim D W, Yu C J, Lim Y W, Na J H, and Lee S D, Mechanical stability of a flexible ferroelectric liquid crystal display with a periodic array of columnar spacers, Appl. Phys. Lett., 2005 87:051917.
    [169] Beresnev L A, Chigrinov V G, Dergachev D I, Poshidaev E P, Funfschilling J, and Schadt M, Deformedhelix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals, Liq. Cryst., 1989 5:1171-1177.
    [170] Kim D W, Na J H, Hong J H, and Lee S D, A fast transflective ferroelectric liquid crystal display with gray scales in a single gap geometry with dual transverse electric fields, Jpn. J. Appl. Phys., 2009 48:090204.
    [171] Chen H M P, and Lin C W, Free alignment defect, low driving voltage of half-V ferroelectric liquid crystal device, Appl. Phys. Lett., 2009 95:083501.
    [172] Kiselev A D, Chigrinov V G, and Pozhidaev E P, Switching dynamics of surface stabilized ferroelectric liquid crystal cells: Effects of anchoring energy asymmetry, Phys. Rev. E, 2007 75:061706
    [173] Mckay G, and Mackenzie K R, In-plane switching of a homeotropically aligned, thin smectic C* liquid crystal, Ferroelectrics, 2002 277:107-116.
    [174] Xue J, Handschy M A, and N A Clark, Electrooptic response during switching of a ferroelectric liquid crystal cell with uniform director orientation, Ferroelectrics, 1987 73:305-314.
    [175] Meyer R B, Effects of electric and magnetic fields on the structure of cholesteric liquid crystal, Appl. Phys. Lett., 1968 12:281-282.
    [176] Meyer R B, Distortion of a cholesteric structure by a magnetic field, Appl. Phys. Lett., 1969 14:208-209.
    [177] Gennes P G D, Calculation of the distortion of a cholesteric structure by a magnetic, Sol. State Commun. 1968 6:163-165.
    [178] Greubel W, Wolf U, and Kruger H, Electric field induced texture changes in certain nematic/cholesteric liquid crystal mixtures, Mol. Cryst. Liq. Cryst., 1973 24:103-111.
    [179] Yang D K, West J L, Chien L C, and Doane J W, Control of the reflectivity and bistability in displays based on cholesteric liquid crystals, J. Appl. Phys., 1994 76:1331-1333.
    [180] Yang D K, Huang X Y, and Zhu Y M, Bistable cholesteric reflective displays: material and drive schemes, Annu. Rev. Mater. Sci., 1996 27:117-146.
    [181] Yang D K, Doane J W, Yaniv Z, and Glasser J, Cholesteric reflective display: drive scheme and contrast, Appl. Phys. Lett., 1994 65:1905-1907.
    [182] Ma R Q, and Yang D K, Optimization of polymer stabilized bistable black-white cholesteric reflective display, J. Soc. Inf. Disp., 1999 7:61-65.
    [183] Huang X Y, Miller N, Khan A, Davis D, and Doane J W, Gray scale of bistable reflective cholesteric displays, SID Symp. Dig. Tech. Paper, 1998 29:810-813.
    [184] Xu M, and Yang D K, Optical properties of the gray-scale states of cholesteric reflective displays, SID Symp. Dig. Tech. Paper, 1999 30:950-953.
    [185] Chien L C, Muller U, Nabor M F, and Doane J W, Multicolor reflective cholesteric displays, SID Symp. Dig. Tech. Paper, 1995 26:169-171.
    [186] Vicentini F, and Chien L C, Tunable chiral materials for multicolor reflective cholesteric displays, Liq. Cryst., 1998 24:483-488.
    [187] Hashimoto K, Okada M, Nishguchi K, Masazumi N, Yamakawa E, and Taniguchi T, Reflective color display using cholesteric liquid crystals, SID Symp. Dig. Tech. Paper, 1998 29:897-900.
    [188] Davis D, Kahn A, Huang X Y, and Doane J W, Eight-color high-resolution reflective cholesteric LCDs, SID Symp. Dig. Tech. Paper, 1998 29:901-904.
    [189] Schneider T, Nicholson F, Kahn A, and Doane J W, Flexible encapsulated cholesteric LCDs by polymerization induced phase separation, SID Symp. Dig. Tech. Paper, 2005 36:1568-1571.
    [190] Stephenson S W, Johnson D M, Kilburn J I, Mi X D, Rankin C M, and Capurso R G, Development of a flexible electronic display using photographic technology, SID Symp. Dig. Tech. Paper, 2005 36:774-777.
    [191] McCollough G T, Johnson C M, and Weiner M L, Roll-to-roll manufacturing considerations for flexible, cholesteric liquid crystal (ChLC) display media, SID Symp. Dig. Tech. Paper, 2005 36:64-67.
    [192] Hiji N, Kakinuma T, Araki M, and Hikichi Y, Cholesteric liquid crystal micro-capsules with perpendicular alignment shell for photo-addressable electronic paper, SID Symp. Dig. Tech. Paper, 2005 36:1560-1563.
    [193] Harada H, Gomyo M, Okano Y, Gan T, Urano C, Ymaguchi Y, Uesaka T, and Arisawa H, Full-color photo-addressable electronic paper using cholesteric liquid crystals and organic phoconductors, J. Soc. Inf. Disp., 2008 12:1243-1250.
    [194] Yang D K, Flexible bistable cholesteric reflective displays, J. Disp. Tech., 2006 2:32-37.
    [195] Lehman O, stoffe mit drei flussigen zustanden, einem isotropund zwei kristallinisch-flussigen, Z. Phs. Chem. 1906 56: 750.
    [196] Wright D C, and Mermin N D, Crystalline liquids: the blue phase, Re. Mod. Phys., 1989 61:385-433.
    [197] Fukuda J I, and Zumer S, Novel defect structues in a strongly confined liquid-crystalline blue phase, Phys. Rev. Lett., 2010 104: 017801.
    [198] Kitzerow H S, and Bahr C,“Blue phases”in Chirality in liquid crystals. New York: Springer, 2001, Ch.7, 186-222.
    [199] Demus D, Goodby J, Gray G W, Spiess H W, and Vill V, Handbook of liquid crystals: Fundamentals, New York: Wiley-Vch, 1998, 129-130.
    [200] Oswald P, and Pieranski P,“Blue phases: a second example of a frustrated mesophase”in Nematic and Cholesteric liquid crystals, London: Taylor & Francis Group, 2005 Ch. B VIII, 493-552.
    [201] Kikuchi H, Yokota M, Hiskado Y, Yang H, and Kajiyama T, polymer-stabilized liquid crystal blue phases, Nat. Mater., 2002 1:64-68.
    [202] Haseba Y, Kikuchi H, Nagamura T, and Kajiyama T, Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range, Adv. Mater., 2005 17:2311-2315.
    [203] Hisakado Y, Kikuchi H, Nagamura T, and Kajiyama T, Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases, Adv. Mater., 2005 17:96-98.
    [204] Choi S W, Yamamoto S I, Haseba Y, Higuchi H, and Kikuchi H, Optically isotropic-nanostructured liquid crystal composite with high Kerr constant, Appl. Phys. Lett., 2008 92:043119.
    [205] Yoneya M, Takada S, Maeda Y, and Yokoyama H, Electro-optic response of cubic liquid crystal compounds in Kerr cell geometry, Liq. Cryst., 2008 35:339-342.
    [206] Oonishi M, Samsung develops high-speed, low-cost LCD panel, http://techon.nikkeibp.co.jp/english/news_en/20080515/51754/
    [207] Ge Z, Gauza S, Jiao M, Xianyu H, and Wu S T, Electro-optics of polymer-stabilized blue phase liquid crystal displays, Appl. Phys. Lett., 2009 94:101104.
    [208] Rao L, Ge Z, Wu S T, and Lee S H, Low voltage blue-phase liquid crystal displays, Appl. Phys. Lett., 2009 95:231101.
    [209] Chen K M, Gauza S, Xianyu H, and Wu S T, Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal, J. Disp. Tech., 2010 6:49-51.
    [210] Ge Z, Rao L, Gauza S, and Wu S T, Modeling of blue phase liquid crystal displays, J. Disp. Tech., 2009 5:250-256.
    [211] Lu S Y, and Chien L C, Electrically induced color with polymer-stabilized blue phase, SID Symp. Dig. Tech. Paper, 2009 40:1193-1195.
    [212] Kim M S, Kim M, Jung J H, Ha K S, Yoon S, Song E G, Srivastava A K, Choi S W, Lee G D, and Lee S H, Blue phases liquid crystal cell driven by strong in-plane electric field, SID Symp. Dig. Tech. Paper, 2009 40:1615-1618.
    [213] Lu L, Hwang J Y, and Chien L C, Effect of IPS cell structure on the electro-optical property of a room-temperature blue phase liquid crystal, SID Symp. Dig. Tech. Paper, 2009 40:1608-1610.
    [214] Kim M, Kim M S, Kang B G, Kim M K, Yoon S, Lee S H, Ge Z, Rao L, Gauza S, and Wu S T, Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays, J. Phys. D: Appl. Phys., 2009 42:235502.
    [215] Kikuchi H, Haseba Y, Yamamoto S I, Iwata T, and Higuchi H, Optically isotropic nano-structured liquid crystal composites for display application, SID Symp. Dig. Tech. Paper, 2009 40:578-561.
    [216] Kikuchi H, Higuchi H, Haseba Y, and Iwata T, Fast electro-optical switching in polymer-stabilized liquid crystalline blue phases for display application, SID Symp. Dig. Tech. Paper, 2007 38:1737-1740.
    [217] Yang Y C, Bao R, Li K, and Yang D K, Sub-millisecond liquid crystal mode utilizing electro-optic Kerr effect comprising polymer-stabilized isotropic liquid crystals, SID Symp. Dig. Tech. Paper, 2009 40:586-589.
    [218] Memmer R, Computer simulation of chiral liquid crystal phases, NIC Series, 2002 9:325-334.
    [219] Dolganove V K, and Korshunove V V, Dynamic effects in the blue phases of liquid crystal, JETP Lett., 1990 52:636-639.
    [220] Yan J, Cheng H C, Gauza S, Li Y, Jiao M, Rao L, and Wu S T, Extended Kerr effect of polymer-stabilized blue-phase liquid crystals, Appl. Phys. Lett., 2010 96:071105.
    [221] Yoon S, Kim M, Ki M S, Kang B G, Kim M K, Srivastava A K, Lee S H, Ge Z, Rao L, Gauza S, and Wu S T, Optimization of electrode structure to improve the electro-optic characteristics of liquid crystaldisplay based on the Kerr effect, Liq. Cryst., 2010 37:201-208.
    [222] Jiao M, Li Y, and Wu S T, Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes, Appl. Phys. Lett., 2010 96:011102.
    [223] Choi S W, Yamamoto S I, Iwata T, and Kikuchi H, Optically isotropic liquid crystal composite incorporating in-plane electric field geometry, J. Phys. D: Appl. Phys., 2009 42:112002.
    [224] Radzihovsky L, and Vishwanath A, Quantum liquid crystals in an imbalanced Fermi gas: fluctuations and fractional vortices in Larkin-Ovchinnikov states, Phys. Rev. Lett., 2009 103:010404.
    [225] Brasselet E, Murazawa N, Misawa H, and Juodkazis S, Optical vortices from liquid crystal droplets, Phys. Rev. Lett., 2009 103:103903.
    [226] Wilk R, Vieweg N, Kopschinski O, Hasek T, and Koch M, THz spectroscopy of liquid crystals from the CB family, J. Infrared, Millimeter and Terahertz waves, 2009 30:1139-1147.
    [227] Pei Y, Yao F, Zhang J, Hou C, and Sun X, Nematic liquid crystal optical amplifier consisting of layered structures, Appl. Opt., 2009 48:2707-2710.
    [228] Zhang F, Kang L, Zhao Q, Zhou J, Zhao X, and Lippens D, Magnetically tunable left handed metamaterials by liquid crystal orientation, Opt. Exp., 2009 17:4360-4366.
    [229] Residori S, Bortolozzo U, and Huignard J P, Slow light using wave mixing in liquid crystal light valve, Appl. Phys. B: Lasers and Optics, 2009 95:551-557.
    [230] Yokoyama H, Liquid crystal: Tunable whispers, Nature Photonics, 2009 3:560-561.
    [231] Honma M, Horiuchi T, and Nose T, Light-emitting liquid crystal cells with polarization switching function: Electrochemiluminescent method, J. Appl. Phys., 2009 106:014507.
    [232] Park S, and Hong J W, Polymer dispersed liquid crystal film for variable-transparency glazing, Thin Solid Films, 2009 517:3183-3186.
    [233] Chen C Y, and Lo Y L, Integratio of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics, Solar Energy Materials and Solar Cell, 2009 93:1268-1275.
    [234] Buytaert J A N, Dirckx J J J, Phase-shifting Moire topography using optical demodulation on liquid crystal matrices, Optics and Lasers in Engineering, 2010 48:172-181.
    [235] Minzoni A A, Smyth N F, Xu Z, and Kivshar Y S, Stabilization of vortex-solition beams in nematic liquid crystals, Phys. Rev. E, 2009 79:063808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700