用户名: 密码: 验证码:
基于HPDLC光栅的DFB激光器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HPDLC光栅是一种由液晶层和聚合物层周期交替排列的光栅结构,这种光栅制备方法简单可控、一级衍射效率高,而且可以利用电场进行光强调谐。基于HPDLC光栅的DFB激光器是分布式反馈激光器,其光栅主体取代了在传统激光器中腔的作用,并可使光波发生多重光反射,产生特有的窄线宽、低阈值、且亮度可调谐的激光,拓展了反馈激光器的应用领域。另外这种小型化的激光发射器件在光纤通信、航空航天领域、天文学以及激光地面定位系统等都有极其广泛的应用前景。
     基于HPDLC光栅结构的DFB激光器,其关键的制备步骤是微型激光谐振腔即HPDLC光栅的形成效果。但是由于聚合物与液晶的相分离是很复杂的物理化学过程,完美的控制很难实现,存在着体系内残余未反应单体较多、光栅结构轮廓不光滑、光栅周期很难做到波长量级,光栅散射损失严重、衍射效率低等问题,从而导致DFB激光器的激射谱线过宽、泵浦能量阈值高,严重制约了该器件的实用化。为了解决上述问题,本论文进行了如下研究。
     首先从影响聚合物与液晶相分离的微观物理机理出发,分析了残余未反应单体较多、衍射效率低的原因,主要是反应速率与扩散速率不匹配,因此从反应单体的光敏度即平均官能度、曝光强度、制备温度等方面进行优化调整实验,得出当平均官能度为2.4、曝光强度在3.9~4.3mW/cm~2时,在室温下就可制备出波长级周期的HPDLC光栅,其衍射效率提高到75%,散射损失由22%减小到12%;为了进一步减小散射,进行了液晶的取向处理,实验表明取向处理对散射具有非常明显的抑制作用,散射损失降低到0.3%,得出非取向液晶畴在HPDLC中的重要散射机理。经过以上光栅制备条件的改进,获得了衍射效率高达98%、波长级周期的HPDLC光栅。
     基于HPDLC光栅的制备技术,制备了周期更小的HPDLC光栅,尝试了DFB激射泵浦实验,获得波长为610nm,宽度为6nm的发光谱线,判断这只是窄化的荧光光谱。在高倍率显微镜下观测,光栅的结构轮廓不够清晰,说明周期更小的HPDLC光栅的反应度不高。为此增添了交联剂NVP,不仅增加了双键转化率即反应度,使其高达84%,而且提高了光敏单体的聚合速率,光栅的衍射效率恢复到98%。再次进行泵浦实验,获得了中心波长为620.2nm的激光,实验结果与理论值相符,其泵浦阈值能量很低,只有5.91μJ,能量转化效率约为2‰,达到了国际领先水平。
     论文进一步分析了液晶分子排列取向对DFB激光器的影响。由于对液晶分子进行了取向处理,几乎消除了光栅散射损,液晶层和聚合物层的折射率差值增加,大幅度提高了光栅的衍射效率,制备出的DFB激光器泵浦阈值能量降低到3.44μJ,能量转化效率提高到3.5‰,线宽降低到0.4nm,超过了目前文献报道的最好水平。与此同时,由于染料分子和液晶分子都具有相似的棒状结构,使得激光器对泵浦光具有偏振依赖性,只有当泵浦激光的偏振矢量与液晶取向平行时出射光为激光,线宽为0.4nm。
     最后进行了更短波长的DFB激光器的制备以及DFB激光器的调谐特性研究。当HPDLC光栅周期为373nm时,获得了DFB激光器的最短出射波长585.7nm,能量转换效率为3‰,线宽为0.3nm,泵浦阈值为4.3μJ,这种波长的激光器目前还没有商业化的产品。另外通过外加电场改变液晶层的折射率,可以实现幅度高达90%的输出激光强度调制;通过改变温度,则可以实现出射波长在10nm范围的连续调谐,中心波长由626.5nm变为615.6nm,而且在调制波长的同时输出激光强度变化较小。
     本论文的探索性研究,展示了一种更有希望的DFB激光器。论文中所得出的学术结论为极有应用价值的光聚合反应研究提供了理论和实验依据。
Holographic polymer dispersed liquid crystal (HPDLC) grating is an alternate structure of liquid crystal lamella and polymer lamella making use of photo-initiated polymerization-induced phase separation. Due to its compactibility, high first order diffraction efficiency and electrically tunable characteristics, this grating exhibits a bright prospect in the fields of optical communication, integrated optics, data storage and laser techniques. In a distributed feedback (DFB) laser based on HPDLC transmission grating, laser cavity is substituted by the grating structure. Photons corresponding to some specific frequencies selected by the periodic structure will undergo multi-reflections which results in effective light feedback. And then, lasing action with narrow linewidth, low threshold and switchable luminance can be obtained. This kind of compact laser has been explored a wide range of applications in the fields of fiber-optic communication, aerospace and astronomy.
     Based on HPDLC transmission grating, the output lasing properties are inherently dependent on the nature of the HPDLC transmisstion grating. Limited by photochemical properties of monomers, chemical structure of molecules, and some complicated molecular dynamic problems, it is very difficult to manipulate the PIPS process, leading to low monomer conversion, incomplete phase separation and low diffraction efficiency. So that the FWHM of the DFB laser is broad and the lasing threshold is high, which restrict its applications. In order to resolve these problems from the root, this paper has done the following research.
     To fabricate HPDLC grating with high diffraction efficiency and low scattering loss, the effects of reaction system average functionality, exposure energy, fabricating temperature and the surface alignment treatment on HPDLC grating are discussed. It is found that when the average functionality is 2.4, exposure energy is 3.9~4.3mW/cm~2 and at room temperature, the diffraction efficiency increases from 47.8% to75.6% and the scattering reduced to 12.2%. In order to decrease the scattering loss further, the LC domains are aligned uniformly and the scattering was disappeared thoroughly. Through theoretical analysis, the key problem of scattering loss is the non-uniform alignment of LC domains in the grating. Experimental results indicate that the diffraction efficiency of the grating increases to 98.1% which is almost the same with theoretical result, and the scattering loss is decreased from 12.2% to 0.3%.
     Optically pumped lasing with the 6nm linewidth at 610nm was achieved from dye-doped laser HPDLC grating. It actually is the amplified spontaneous emission (ASE) due to the imperfections within the grating. In order to get narrow linewidth lasing action, mono-vinyl NVP is added to the reaction system. NVP significantly increases the rate of polymerization in HPDLC photopolymerization, and also it facilitates additional conversion of pendant double bonds otherwise trapped in the polymer network. As NVP concentration is 15%, the reaction system conversion increases from 55 % to 84%. And consequently, the emitted lasing with the 0.4nm linewidth at 620.2nm was obtained.
     The effect of liquid crystal alignment on DFB laser is also demonstrated. When the liquid crystals are parallel oriented, the pumping threshold is very low (3.44μJ) due to the low scattering loss of the grating. It is also found that the lasing phenomenon is dependent on the pumping light polarization. This can be explained by the anisotropic alignment of the dye molecules inside the HPDLC. Experimental results indicate that S-polarized pump laser will generate much more lasing emission.
     At the end, the wavelength and intensity switchable properties of DFB laser are studied. The experimental results demonstrated that the emitted laser can be obtained at different wavelength varied from 585nm~680nm, corresponding to the different grating spacings. And the lasing emission can also be electrically and thermally switchable due to the change of the refractive index modulation. The maximum switchable extent can reach 90.2%.
     The exploratory studies in this dissertation, exhibits a kind of more promising DFB laser. The academical conclusion can provide an important theoretical and experimental basis for the photo-polymerization reaction with high application value.
引文
[1]苏显渝,李继陶.信息光学[M].北京:科学出版社,2003.111-112.
    [2]韩昌元.信息光学基础理论及其应用[M].长春:长春出版社,1989.110-123.
    [3] Sutherland R.L., Todiglia V.P., Natarajan L.V. et al.Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid crystal planes[J]. Chem. Mater.,1993, 5:1533-1538.
    [4] Bunning T.J., Natarajan L.V., Tondiglia V.P., et al . Holographic polymer-dispersed liquid crystals[J].Annu. Rev. Mater. Sci.,2000, 30:83-115.
    [5] Pogue R.T., Sutherland R.L., Schnitt M.G. et al.Electrically switchable Bragg gratings from liquid crystal/polymer composites[J].Appl. Spectro., 2000, 54:12A-28A.
    [6] G. S. He, T. C. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, T. J. Bunning. Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element[J].Applied Physics Letters, 2003,83: 2733-2735.
    [7] Jakubiak R., Bunning T. J., Vaia R. A., Natarajan L. V., Tondiglia V. P. Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials[J]. Adv. Mater., 2003,15:241.
    [8] T. Matsui, M. Ozaki, K. Yoshino. Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation[J]. Applied Physics Letters ,2003, 83:422-424.
    [9] T. Matsui, M. Ozaki, K. Yoshino. Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation[J]. Japanese Journal of Applied Physics , 2003, 2, 42:462-L1464.
    [10] D. E. Lucchetta, L. Criante, O. Francescangeli, F. Simoni.Wavelength flipping in laser emission driven by a switchable holographic grating[J]. Applied Physics Letters, 2004,84:837-839.
    [11] D. E. Lucchetta, L. Criante, O. Francescangeli, F. Simoni. Light amplification by dye-doped holographic polymer dispersed liquid crystals[J]. Applied Physics Letters 2004,84:4893-4895.
    [12] D. E. Lucchetta, L. Criante, F. Simoni. Optical characterization of polymerdisperseliquid crystals for holographic recording[J]. Journal of Applied Physics, 2003,93:9669-9674.
    [13] V. K. Hsiao, C. G. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia, T. J. Bunning. High contrast switching of distributed-feedback lasing in dye-doped HPDLC transmission grating structures[J]. Optics Express 2005,13:3787-3794.
    [14] M. J. Escuti, G. P. Crawford. Holographic photonic crystals[J].Optical Engineering,2004, 4:1973-1987.
    [15] R. Jakubiak, L. V. Natarajan, V. Tondiglia, G. S. He, P. N. Prasad, T. J. Bunning, R. A. Vaia. Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals[J].Appl. Phys. Lett., 2004 ,85(25): 6095–6097.
    [16] S.T. Wu, A. Y.-G. Fuh. Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings[J]. Jpn. J. Appl. Phys., 2005,44(2);977–980.
    [17] Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, X. H. Zhang. Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings[J]. Appl. Phys. Lett., 2006,88(6):061107.
    [18] S. J. Woltman, M. E. Sousa, H. Zhang, G. P. Crawford. Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions[J]. SPIE ,2006,6135: 61350B.
    [19] Y. J. Liu, X. W. Sun, H. I. Elim, W. Ji. Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings[J]. Appl. Phys. Lett., 2007, 90(1):011109.
    [20]A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, T. Bunning. Optically switchable liquid crystal photonic structures[J]. J. Am. Chem. Soc., 2004,126(42):13580–13581.
    [21]高丽艳.1550nm分布反馈激光器的模拟及制作均匀光栅的研究[D].河北工业大学硕士学位论文,2005.
    [22]姚小科.分布反馈超短脉冲可调谐固态激光器研究[D].浙江大学硕士学位论文,2005.
    [23]Wehr Richards.Physics of the Atom[M] Addison-Wesley Publishing Company,1970.l83.
    [24]H.Kogelnik, C.V.Shank.J. Appl. Phys.,1972,43:2327.
    [25] Collier R.J.著,盛尔镇译.全息光学[M].机械工业出版社,1983:77.
    [26]梁柱.高级光学教程[M].长春光机所内部讲义,2005:67.
    [27]刘思敏,许京军,郭儒.相干光学原理及应用[M].南开大学出版社,2001:106.
    [28] Shen C., Kyu T..Spinodals in a polymer dispersed liquid crystal[J]. J. Chem. Phys.,1995, 102:556-562.
    [29] Chiu H.W., Kyu T..Equilibrium phase behavior of nematic mixture[J]. J. Chem. Phys. ,1995, 103:7471-7481.
    [30] Kyu T., Chiu H.W..Phase equilibria of a polymer-smectic-liquid-crystal mixture[J]. Phys. Rev. E , 1996, 53:3618-3622.
    [31] Nwabunma D., Kim K.J., Lin Y., et al.Phase diagram and photopolymerization behavior of mixtures of UV-curable multifunctional monomer and low molar mass namatic liquid crystal[J]. Macromolecules, 1998, 31:6806-6812.
    [32] Lin Z., Zhang H., Yang Y..Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field[J]. Phys. Rev. E, 1998, 58,5867-5872.
    [33] Meng S., Kyu T., Natarajan L.V., et al.Holographic photopolymerization induced phase separation in reference to the phase diagram of a mixture of photocurable monomer and nematic liquid crystal[J]. Macromolecules, 2005, 38:4844-4854.
    [34] Burghardt W.R..Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility[J]. Macromolecules, 1989, 22:2482-2486.
    [35] Kyu T., Lee J.H..Nucleation initiated spinodal decomposition in a polymerizing system [J].Phys. Rev. Lett., 1996, 76:2746-3749.
    [36] Kyu T., Nwabunma D., Chiu H.W. . Theoretical simulation of holographic polymer-dispersed liquid crystal films via pattern photopolymerization-induced phase separation[J].Phys. Rev. E, 2001, 63:061802-1-061802-8.
    [37] Bowley C.C., Crawford G.P..Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials[J].Appl. Phys. Lett. , 2000, 76:2235-2237.
    [38] Vardanyan K.K., Qi J., Eakin J.N., et al.Polymer scaffolding model for holographic polymer-dispersed liquid crystals[J].Appl. Phys. Lett., 2002, 81:4736-4738.
    [39] Qi J., Li L., Sarkar M.D., et al.Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystal[J]. J. Appl. Phys., 2004, 96: 2443-2450.
    [40] Sutherland R.L. . Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings.Ⅰ. Theoretical model, J. Opt. Soc. Am. B [J].2002, 19:2995-3003.
    [41] Sutherland R.L., Tondiglia V.P., Natarajan L.V., et al.Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures, J. Appl. Phys. [J].2004, 96:951-965.
    [42] Sutherland R.L., Tondiglia V.P., Natarajan L.V., et al.Coherent diffraction and random scattering in thiol-ene-based holographic polymer-dispersed liquid crystal reflection gratings[J]. J. Appl. Phys., 2006, 99:123104-1-123104-12.
    [43] Caputo R., Sio L.D., Veltri A..POLICRYPS switchable holographic grating: A promising grating electro-optical pixel for high resolution display application[J]. J. Disp. Tech., 2006, 2:38-51.
    [44] Veltri A., Caputo R., Umeton C., et al.Model for the photoinduced formation of diffraction gratings in liquid- crystalline composite materials[J]. Appl. Phys. Lett., 2004, 84:3492-3494.
    [45] Bhargava R., Wang S.Q., Koenig J.L. Studying polymer-dispersed liquid crystal formation by FTIR spectroscopy: 1.Monitoring curing reactions[J].Macromolecules, 1999, 32: 8982-8988.
    [46] Bhargava R., Wang S.Q., Koenig J.L..Studying polymer-dispersed liquid crystal formation by FTIR spectroscopy. 2. Phase separation and ordering[J]. Macromolecules, 1999, 32:8989-8995.
    [47] Bhargava R., Wang S.Q., Koenig J.L..FTIR imaging studies of a new two-step process to produce polymer dispersed liquid crystals [J]. Macromolecules, 1999, 32:2748-2760.
    [48] Bunning T.J., Natarajan L.V., Tondiglia V.P., et al.Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation[C].SPIE, 2003, 5213:123-129.
    [49] White T.J., Natarajan L.V., Tondiglia V.P..Polymerization kinetics and monomer functionality effects in thiol-ene polymer dispersed liquid crystals[J].Macromolecules, 2007, 40:1112-1120.
    [50] White T.J., Natarajan L.V., Tondiglia V.P..Polymerization kinetics and monomer functionality effects in thiol-ene holographic polymer dispersed liquid crystals [J].Macromolecules, 2007, 40:1121-1127.
    [51] Lucchetta D.E., Criante L., Simoni F..Optical characterization of polymer dispersed liquid crystals for holographic recording[J].J. Appl. Phys., 2003, 93:9669-9674.
    [52] Justice R.S., Schaefer D.W., Vaia R.A..Interface morphology and phase separation in polymer-dispersed liquid crystal composites[J].Polymer, 2005, 46:4465-4473.
    [53] Crawford N.J., Dadmun M.D., Bunning T.J., et al.Time-resolved light scattering of the phase separation in polymer-dispersed liquid crystals formed by photo-polymerization induced phase separation[J].Polymer, 2006, 47:6311-6321.
    [54] Fontecchio A., Bowley C.C., Crawford G.P. . Improvement in holographically-formed polymer dispersed liquid crystal performance through acrylated monomer functionality studies[C].SPIE, 1999, 3800:36-44.
    [55] Pogue R.T., Natarajan L.V., Siwechi S.A., et al.Monomer functionality effects in the anisotropic phase separation of liquid crystals[J].Polymer, 2000, 41:733-741.
    [56] Park M.S., Kim B.K., Kim J.C..Reflective mode of HPDLC with various structure of polyurethane acrylates[J].Polymer,2003, 44:1595-1602.
    [57] Park M.S., Kim B.K..Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities[J]. Nanotechnology, 2006, 17:2012-2017.
    [58]刘永刚,马骥,宋静等.单体平均官能度对制备液晶/聚合物光栅的影响[J].液晶与显示, 2005,20:210-214.
    [59] Roper T.M., Kwee T., Lee T.Y., et al.Photopolymerization of pigmented thiol-ene systems[J].Polymer, 2004, 45:2921-2929.
    [60] Wofford J.M., Natarajan L.V., Tondiglia V.P., et al.Holographic polymer dispersed liquid crystal (HPDLC) transmission gratings formed by visible light initiated thiol-ene photopolymerization[C].SPIE, 2006, 6332:63320Q.
    [61] Ren H.W., Wu S.T..Tunable electronic lens using a gradient polymer network liquid crystal[J].Appl. Phys. Lett., 2003, 82:22-24.
    [62] Presnyakov V.V., Asatryan K.E., Galstian T.V., et al.Polymer-stabilized liquid crystal for tunable microlens applications[J].Opt. Express, 2002, 10:865-870.
    [63] Lee J.H., Lee S.J., Song J.B., et al.Fabrication of bifocal holographic lenses using holographic polymer dispersed liquid crystal film[C].SPIE,2003, 5216:237-246.
    [64] Liu Y.J., Sun X.W., Shum P., et al.Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal[J].Opt. Express, 2006, 14:5634-5639.
    [65] Ren H.W., Fan Y.H., Lin Y.H., et al.Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets[J].Opt. Comm., 2005, 247:101-106.
    [66] Fan Y.H., Ren H.W., Wu S.T..Switchable Fresnel lens using polymer-stabilized liquid crystals[J].Opt. Express, 2003, 11:3080-3086.
    [67] Wu S.T., Fuh A.Y..Electrical-frequency switchable multi-domain polymer dispersed liquid crystal Bragg mirror [J]. Jpn. J. Appl. Phys., 2006, 45:7011-7016.
    [68] Wu S.T., Fuh A.Y..Two-dimensional diffraction grating based on polymer dispersed liquid crystals [J]. Jpn. J. Appl. Phys., 2004, 43:7077-7082.
    [69] Zheng Z., Song J., Liu Y., et al.Single-step exposure for two-dimensional electrically-tunable diffraction grating based on polymer dispersed liquid crystal[J]. Liq. Cryst., 2008, 35:489-499.
    [70]马骥,刘永刚,于涛等.全息法制备二维电调谐聚合物/液晶光栅[J].液晶与显示,2005,20:115-118.
    [71] Liu Y.J., Sun X.W..Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element [J].Appl. Phys. Lett., 2006,89:171101-1-171101-3.
    [72] Gorkhali S.P., Qi J., Crawford G.P..Electrically switchable mesoscale Penrose quasicrystal structure[J].Appl. Phys. Lett.,2 005, 86:011110-1-011110-3.
    [73] Sun X.H., Tao X.M., Ye T.J., et al.Optics design and fabrication of 3D electrically switchable hexagonal photonic crystal[J].Appl. Phys. B: Lasers and Optics, 2007, 87:65-69.
    [74] Sun X.H., Tao X.M., Ye T.J., et al.2D and 3D electrically switchable hexagonal photonic crystal in the ultraviolet range[J].Appl. Phys. B: Lasers and Optics, 2007, 87:267-271.
    [75] Shoji S., Kawata S..Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin[J].Appl. Phys. Lett.,2000, 76:2668-2670.
    [76] Cao W.Y., Munoz A., Palffy-Muhoray P., et al.Lasing in a three-dimensional photonic crystal of the liquid crystal blue phaseⅡ[J].Nature materials, 2002, 1:111-113.
    [77] Jakubiak R., Bunning T.J., Vaia R.A., et al . Electrically switchable one-dimensional polymetric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials[J].Adv. Mater., 2003, 15:241-244.
    [78] Lucchetta D.E., Criante L., Francescangeli O., et al.Light amplification by dye-doped holographic polymer dispersed liquid crystals[J].Appl. Phys. Lett.,2004, 84:4893-4895.
    [79] Liu Y.J., Sun X.W., Shum P..Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings[J].Appl. Phys. Lett.,2006, 88:061107-1-061107-3.
    [80] Hsiao Vincent K.S., Lu C., He G.S., et al.High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures[J].Opt. Express, 2005, 13:3787-3794.
    [81] Xin Z., Cai J. Shen G., et al.A dynamic gain equalizer based on holographic polymer dispersed liquid crystal gratings[J].Opt. Comm., 2006, 268:79-83.
    [82] Shi J. Hsiao Vincent K.S., Walker T.R..Humidity sensing based on nanoporous polymeric photonic crystals [J].Sensor Actuat B: Chem., 2007, 129:391-396.
    [83] Sanchez C., Escuti M.J., Heesch C., et al.An efficient illumination system for liquid crystal displays in incorporating an anisotropic hologram[J].Appl. Phys. Lett.,2005, 87:094101-1-094101-3.
    [84] Date M., Takeuchi Y. Kato K..A memory-type holographic polymer dispersed liquid crystal (HPDLC) reflective display device[J].J. Phys. D: Appl. Phys., 1998, 31:2225-2230.
    [85] C.V.Shank,J.E.Bjorkholm,H.Kogelnik[J].Appl. Phys. Lett., 1971,18:395.
    [86] H. Kogelnik, C.V.Shank,“Couple-wave theory of distributed feedback lasers[J].Appl. Phys. Lett., 1972,43:2327.
    [87] J.E.Bjorkholm,C.V.Shank.Appl. Phys. Lett. [J]. 1972.20,3065.
    [88] J.E.Bjorkholm,C.V.Shank, IEEE J.Quantun Electronics, 1972,QE-8,833.
    [89] R.L.Fork,K.R.German,E.A.Chandross,Appl. Phys. Lett. [J]. 1972,20,139.
    [90] Y.Aoyagi,T.Aoyagi,K.Toyoda,S.Namba,Appl. Phys. Lett. [J]. 1975,27,687.
    [91] Bor Z., Müller A. Pico-second distributed feedback dye laser[J]. IEEE Journal of Quantum Electronics,1986,22(8) :1524-1533.
    [91]Bor Z., Müller A,RaczB.UV and blue picosecond pulse generation by a nitrogenr-laser-pumped distributed feedback dye laser[J].Opt.Commun., 1982,40(4) :294-296
    [93] Bor Z. Intrapulse thermally induced wavelength shift in a distributed feedback dye laser[J]. Appl Phys,1979,19:39-41.
    [94] J.Jasny,Rev.Sci.Instrum, 1986,57,1303.
    [95] A.Yariv, IEEE J.Quantun Electronics, 1973,QE-9,919.
    [96] S.R.Chinn,Opt.Commun., 976,19,208.
    [97] F.K.Kneubuhl,E.Affolter,J.Optics, 1980,11,449.
    [98] E.Affolter, F.K.Kneubuhl, IEEE J.Quantun Electronics, 1981,QE-17,1115.
    [99] Y. J. Liu, X. W. Sun, H. I. Elm, W. Ji. Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets[J].Appl. Phys. Lett.,2006,89:01111.
    [100] Jakubiak R, Brown D.P, Natarajan L V,et al. Influence of morphology on the lasing behavior of Pyrromethene 597 in a holographic polymer dispersed liquid crystal reflection grating[J]. SPIE, 2006,6322:63220A.
    [101] L. Z. Cai, X. L. Yang, Y. R. Wang. All fourteen Bravais lattices can be formed by interference of four noncoplanar beams[J].Optics Letters, 2002, 27: 900-902.
    [102]S.P. Gorkhali, J. Qi, G. P. Crawford. Electrically switchable mesoscale Penrose quasicrystal structure[J]. Applied Physics Letters, 2005,86.
    [103] S.P. Gorkhali, G. P. Crawford, J. Qi. Electrically switchable two-dimensional penrose quasi-crystal[J].Molecular Crystals and Liquid Crystals, 2005,433: 297-308.
    [104] V. Berger,O. Gauthier-Lafaye,E. Costard.Photonic band gaps and holography[J]. J.Appl.Phys.,1997, 82: 60-64.
    [105] Jakubiak R, Tondiglia V P, Natarajan L V, Sutherland R L, Lloyd P, Bunning T J, Vaia R . Dynamic lasing from all-organic two-dimensional photonic crystals[J].A Adv. Mater.,2005,17: 2807.
    [106] Luo D, Sun X W, Dai H T, Liu Y J ,Yang H Z, Ji W. Appl. Phys. Lett., 2009, 95:151115.
    [107] Jakubiak R, Tondiglia V P, Natarajan L V, Lloyd P, Sutherland R L , Vaia R A, Bunning T J . Lasing of Pyrromethene 597 in 2-D holographic polymer dispersed liquid crystals: influence of columnar conformation [J].SPIE, 2009, 7232:72320.
    [108]郑致刚.液晶/聚合物相分离光栅及主动光学器件的制备研究[D].中科院研究生院博士学位论文,2009.
    [109]Adam K. Fontecchio, Christopher C. Bowley, Haiji Yuan, Gregory P. Crawford. Effect of monomer functionality on performance of holographically formed polymer dispersed liquid crystals[J].Molecular Crystals and Liquid Crystals, 2000, 352:399-406.
    [110] Jung J.A., Kim B.K.. Opt. Comm., 2005, 247, 125-132.
    [111]宣丽,乌日娜,鲁兴海.液晶与液晶的取向度[J].物理教学, 2005,27: 5.
    [112]宣丽,乌日娜,彭增辉,于涛,张力,阮圣平.红外二向色性法测量取向膜表面液晶界面层的取向度[J].液晶与显示,2002,17,416.
    [113]F.P.Schafer et al. Phys.Lett.,1976, 24A: 280. [114」M.Bass, et al. Dye Lasers, in Lasers[M]. NewYork: MarcelDekker,1971.
    [115]J.B.Birks. Phot physics of automatic molecules[M] London: Wiley Interscience,1970.
    [116] Bhargava R., Wang S.Q., Koenig J.L.. Macromolecules, 1999, 32: 8989.
    [117] Bhargava R., Wang S.Q., Koenig J.L.. Macromolecules, 1999, 32: 2748.
    [118]张斌,刘言军,徐克璹.全息聚合物弥散液晶器件电光特性的研究[J].物理学报,2004, 53(06):1850.
    [119]张斌,刘言军,贾瑜,徐克璹.全息聚合物弥散液晶材料衍射特性的优化[J].物理学报,2003 ,52 :91.
    [120]张澍声,林雨佳.激光染料[J].染料工业,1981, 1:3.
    [121]尹秀玉.激光染料—若单明6G[J].激光,1982, 12:7.
    [122]邵子文,岳传华,马美丽.高效新激光染料DCM的实验研究[J].应用激光,1982, 1 :53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700