用户名: 密码: 验证码:
不同衬底上分子的扫描隧道显微镜诱导发光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,微电子半导体器件在材料尺寸和性能上已经接近于极限,研究基于分子尺度的纳米器件已是历史所趋,并成为微纳技术的前沿发展领域。分子尺度上的光电集成器件是未来信息与能源技术的重要发展方向,其科学基础是纳米尺度上的光电相互作用以及光子态的调控与利用。对于单原子、单分子等量子单体的纳米光电子学研究催生了一系列相关的实验方法,其中融合高分辨扫描隧道显微镜(STM)和高灵敏光学检测于一体的扫描隧道显微镜诱导发光技术(STML)已经成为探测纳米尺度下电光性质的重要工具。它不仅可以对单个原子或者分子进行成像和操纵,而且其高度局域化的隧穿电子还可以用来激发隧道结中的量子结构,产生光子发射。这一种技术为我们提供了一种联系单分子电子学和单分子光电子学的实验手段,不仅能够获得隧穿电流的电学输运信息,而且利用非弹性过程所产生的光子信息,可以帮助我们了解隧道结中的各种电磁耦合与衰变信息,有助于我们探索分子在纳米环境中的光电行为,特别是纳米隧道结中分子与周围量子结构和环境之间的能量演化现象与机制。
     隧道结中分子发光是STM诱导发光的一个重要研究方向。单分子发光不仅能够对分子科学和分子器件的研发提供重要的基本信息,而且单分子光源作为一种潜在的单光子源,在量子信息技术领域具有迷人的应用前景。另外,以分子材料为基础的有机电子器件,例如:有机发光二极管和有机光伏电池,近十年来有迅速的发展,但是对器件中的分子-界面性质、载流子注入和传输过程、激子能量怎样传递和衰变、激发态和光学跃迁的本质以及等离激元的增强作用等仍然缺乏深刻的认识。研究表面上、隧道结中分子的电光特性将有助于我们认识分子-金属界面的光电特性,为器件参数优化提供科学依据。
     实现STM诱导分子发光的关键是要解决荧光淬灭与局域化激发的问题。荧光淬灭问题通常通过插入电子脱耦合层来解决,而针对不同的衬底,分子的脱耦合方案与效果也是不一样的。另一方面,关于局域化激发问题,STM探针大小在纳米尺度甚至单原子,为分子的局域化激发奠定了基础。但分子如何被激发,是否能被有效激发到激发态,并通过辐射衰变而发光,则是个亟待澄清的科学问题。而其中等离激元在分子激发中的作用问题一直是研究的重点。不同材料的衬底,其等离激元的特性是很不相同的。贵金属衬底表面存在很强的表面等离激元模式,而半金属石墨衬底和半导体硅衬底的等离激元模式在可见区内则是非常微弱的。因此,不管是从荧光淬灭角度,还是从分子激发的角度,衬底对于表面分子的STM诱导发光特性都有着重要的影响。研究不同衬底上分子的STM诱导发光现象,将有助于我们了解STM诱导分子发光的机制,使我们能更好地对光子态进行调控和利用。此外,基于硅基和石墨烯材料的研究正成为当今和未来信息技术的主流。因此,在纳米尺度上开展石墨衬底和半导体硅衬底表面的分子发光研究,将为未来纳米尺度上的分子光电集成研究提供有用的信息。
     本论文的主要工作集中在利用STM诱导发光技术,研究探索分子在纳腔隧道结中不同衬底表面(金属、HOPG和Si(100))的电致发光现象。这有助于揭示电子、光子、激子和等离激元在纳米尺度下的耦合和转换机制,为分子光电器件的研究提供可靠的科学依据。本论文主要分为以下五个部分:
     在第一章中,我们介绍了扫描隧道显微镜诱导发光的相关背景。首先介绍了等离激元的物理概念、特征以及应用领域;然后对STM基本原理和STM诱导发光技术做了简介;最后介绍了金属、半导体以及荧光分子的STM诱导发光研究历史和现状。
     在第二章中,我们描述了一种可靠的、重复性好的适合于进行STML实验的银针尖的制备方法。银针尖产生的光子信号强度比钨针尖要多一个数量级,因此被认为是最合适产生高强度等离激元模式的针尖,在等离激元增强荧光和探针增强拉曼光谱中有着广泛的应用。我们详细介绍了优质发光探针的制作过程,包括电化学刻蚀中电解质的选择、电路的控制、以及真空中针尖表面氧化层的清洗方法等。通过这种方法得到的针尖,不仅能够获得很好的原子分辨的STM扫描图像。更重要的是,由于金属银本身介电函数虚部较小导致较低的光学衰减,在STM诱导发光实验中允许我们在小的隧穿电流以及短的曝光时间下,进行非常有挑战性的彩色光子图实验。
     第三章,我们研究金属表面上分子的STM诱导发光现象。我们以Ag(111)和Au(111)表面吸附的PTCDA分子为研究对象,利用扫描隧道显微镜研究了分子与金属衬底相互作用对等离激元发光的调制影响。贵金属衬底表面存在很强的等离激元发光,通过对比不同衬底表面PTCDA分子的STM诱导发光光谱,分析了分子在隧道结中对等离激元发光的调制作用。我们提出,分子在隧道结中不仅仅起着间隔层的作用,衬底表面与分子之间相互作用导致表面电子态的变化对等离激元的调制同样有着重要的影响。此外,电子脱耦合作用不是产生分子荧光的充分条件,分子的电子结构和能级排列因素也是至关重要的。
     第四章,我们研究石墨(HOPG)表面TPP卟啉分子的STM诱导发光现象。我们利用HOPG作为衬底,对HOPG表面多层TPP分子膜的STM诱导发光特性进行了初步的研究。在干净的HOPG表面,由于等离激元模式在高能区域,因此在可见光范围内利用STM观察不到等离激元发光。石墨衬底避免了金属衬底等离激元对分子发光的影响问题,为我们提供了一个很好的研究STM诱导分子发光机制的体系。在HOPG表面五层TPP分子膜上,光致激发光谱发现,底层TPP分子已经很好地隔绝了顶层分子与衬底之间的相互作用,避免了非辐射偶极能量跃迁过程。同时我们利用STM高度局域化的隧穿电子激发HOPG表面多层TPP分子膜,并得到了来自于TPP分子的本征荧光。通过比较采用“亮”态和“暗”态探针激发分子时产生的不同发光特性、以及针尖表面等离激元模式对HOPG表面TPP分子发光频带的选择性调控作用的分析,我们认为这种发光机制来源于纳腔隧道结中探针表面等离激元对针尖下分子的近场激发,而不是直接碰撞激发或者OLED中的注入式电子和空穴直接复合发光。
     第五章,我们初步研究了H钝化Si(100)表面上STM诱导荧光分子发光现象,并首次实现了硅衬底上分子团簇的STM电致发光。硅是半导体,其本征的等离激元模式在高能区域,在我们关注的可见区很弱,因此可以认为衬底等离激元对分子没有多少影响。分子如果直接吸附在Si(100)表面,由于与表面悬挂键之间的相互作用,分子的本征性质会被破坏,而H钝化后的Si(100)衬底表面则阻隔了这种直接相互作用,而且作为厚度最薄的钝化层,H钝化层还起到了脱耦合层的作用。我们通过氢钝化技术得到了H-Si(100)-2×1重构表面,并详细研究了PTCDA、TPP、ZnTPP以及H2TBPP分子在这个重构表面上的电致发光现象。PTCDA、TPP以及ZnTPP分子和衬底之间可能仍然存在较强的相互作用,我们没有检测到分子的本征荧光。而H2TBPP卟啉由于分子周围八个叔丁基的作用,将中心的卟啉环抬高,在一定程度上增加了分子与衬底之间的脱耦合效果,使我们能检测到来自H2TBPP分子的HOMO-LUMO荧光。
The technological progress in the semiconductor industry has driven thecomponents of microelectronics down to the nanoscale in dimensions. Suchdownsizing trend imposes on us finding not only innovative fabrication technologiesbut also novel operational principles. Molecule-based nanodevices have become anactive forefront during the search for promising candidates of new electronic devicesbecause molecules are nanometer in size, highly functional, and can bemass-produced. One important research direction for future information and energytechnologies is nanoscale optoelectronic integration, whose scientific basis lies in thecontrol of the interaction between photons and electrons and the use of specificphotonic states for particular optoelectronic functions.
     The quest to investigate nanoscale quantum objects down to atomic andmolecular scale has promoted the development of a variety of experimentaltechniques for studying nanoscale optoelectronics. A scanning tunneling microscope(STM) can do more than atomic imaging and manipulation; its tunneling current canalso be used as a local source of excitation to produce light from the junction. Thistechnique, usually called STM induced luminescence (STML), can offer additionalinformation on local electromagnetic coupling associated with the decay of variousexcitations and has become an increasingly important tool for exploring theoptoelectronic behavior of single molecules in a nano-environment, in particularregarding the interaction of molecules with surroundings and the energy decaykinetics of excited states.
     Molecular fluorescence from tunnel junctions is one of the important researchdirections in the STML field. Single molecular electroluminescence can not onlyprovide fundamental understanding to the interfacial optoelectronic properties oforganic devices, but also, as a potential single-photon source, offer promisingapplications to quantum information processing. The realization of STM inducedmolecular luminescence and particularly single-molecule electroluminescence onsurfaces depend on how effectively the luminescent core can be decoupled from thesubstrate to avoid fluorescence quenching and how well a localized excitation sourcecan be applied to individual molecules. Depending on the type of substrates, the approach to making a decoupling layer and the effect of electronic decoupling aredifferent. On the other hand, although the nanometer size of a STM tip apex providesa natural excitation source that can be highly localized onto a single molecule, itremains unclear how molecules can be effectively excited and then decay radiativelyback to the ground state. One heavily debated issue there is the role of nanocavityplasmons in the light emission process of molecules. It is well known that substrateswith different materials can have very different plasmonic fields. Noble metalsubstrates feature strong plasmonic fields in the visible range, while the semimetallicHOPG substrate and the semiconducting Si(100) substrate show negligible plasmonicfields in the same optical range. Therefore, substrates play an important role in thephenomena and nature of STM induced fluorescence, and the research carried out inthis work using different substrates can help to clarify the mechanism of STMinduced molecular fluorescence. In addition, the mainstream materials for the currentand future information technology are silicon and graphene, the STML research onthe HOPG and Si substrates may provide useful information to the future molecularoptoelectronic integration at the nanoscale.
     In this dissertation, we focus on STM induced luminescence from moleculesthat are deposited on different substrates (namely, metal, HOPG and Si(100)). Suchresearch will help to reveal the important information on the coupling andinterconversion mechanism among electrons, photons, excitons and plasmons insidethe nanoscale tunnel junction and can provide useful scientific basis for thedevelopment of nanoscale molecular optoelectronic devices. The dissertation iscomposed of the following five chapters.
     In chapter one, we present an overview of the history and status of STM inducedluminescence. After a brief introduction of the plasmon concept and its application,we proceed to describe the basic principle of STM and STM induced luminescence.The chapter was concluded with a relatively comprehensive introduction of the STMLresearch on metals, semiconductors, and fluorescent molecules.
     In chapter two, we describe a reliable fabrication procedure of silver tips forSTML experiments. The tip was first etched electrochemically to yield a sharp coneshape and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. Thequality of silver tips thus fabricated not only offers atomically resolved STM imaging,but more importantly, also allows us to perform challenging color photon mappingwith emission spectra taken at each pixel simultaneously during the STM scan and under relatively small tunnel currents and relative short exposure time.
     In chapter three, we investigate the STML of molecules on the metal substrates.The sample structure is composed of the perylene derivative (PTCDA) moleculesabsorbed on the surface of Ag(111) or Au(111). Noble metal substrates are known tofeature strong plasmonic fields. Through the comparison of the STML spectraacquired on different metal substrates, we are able to investigate the interactionbetween the molecule and the metal substrate and its modulation effect on thenanocavity plasmonic (NCP) emission from the STM junction. We believe that themolecules directly adsorbed on metal surfaces serve beyond as a geometric spacer, themolecule-substrate interaction could change the local density of final states and canthus modify the NCP emission through the variation of inelastic tunneling rates. Inaddition, the generation of molecular electroluminescence is found to depend on notonly the decoupling effect, but also the electronic structure and energy level alignmentof molecules at the interface.
     In chapter four, we study the electroluminescence properties of TPP porphyrinmolecules adsorbed on the HOPG surface. HOPG is a semimetal that featuresnegligible plasmonic modes in the visible range. By the virtue of this property, we canpractically rule out the influence of surface plasmons from the substrate on themolecular electroluminescence, which enables us to gain insights into the mechanismof STM induced molecular fluorescence. Photoluminescence spectra from a samplewith 5 monolayers (MLs) of TPP molecules on HOPG show intrinsic molecularfluorescence and thus indicate that at least the top molecular layer is well decoupledfrom the substrate. Upon fabricating a good emitting tip, we performed the STMLexperiments on the same sample and detected similar molecule-specific emission.Through both the comparison of different STML features using“bright”and“dark”tips and the selected enhancement of molecule-specific emission bands, we are lead toconclude that the near-field excitation from the tip plasmons play a decisive role ingenerating molecular electroluminescence. The mechanism invoked in the organiclight emitting diodes, either the intrinsic electroluminescence via impact ionization orthe inject-type electron-hole recombination, is unlikely in the STM tunnel junction.
     In chapter five, we carry out preliminary study of the STML of molecules on thehydrogen-terminated Si(100)-2×1 surface and demonstrate for the first time theHOMO-LUMO radiative transition from porphyrin molecular clusters on the Sisubstrate. The plasmonic field strength of semiconducting Si substrates is also very weak in the visible range, whose effect on the molecules can thus be ignored. Ifmolecules are directly adsorbed on the Si(100) surface, the molecules tend to bemodified or even destroyed due to the strong bonding with the Si dangling bonds.However, the hydrogen-terminated Si(100)-2×1 surface can act as the (thinnest)decoupling layer and prevent the interaction between the molecules and the Si(100)surface. The STML properties of several molecules (PTCDA, TPP, ZnTPP andH2TBPP) on the H-Si(100)-2×1 reconstructed surface were examined. We failed todetect molecule-specific emission from the former three molecules (PTCDA, TPP andZnTPP), probably duo to either strong interaction of the molecules with the substrateor packing configurations. However, we succeeded in detecting the intrinsic Q-bandemission from the H2TBPP molecules, probably due to the better decoupling functionof the eight tertiary butyl groups decorating the perimeter of the H2TBPP core.
引文
1E. Abbe, Arch. Mikroskop. Anat. 7,413 (1873).
    2D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
    3E. Betzig, and R. J. Chichester, Science 262, 1422 (1993).
    4H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, Appl. Phys. Lett. 81, 5030 (2002).
    5K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, New. J. Phys. 8, 106 (2006).
    6M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
    7D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
    8M. G. Albrecht, and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977).
    9P. L. Stiles, J. A. Dieringer, N.C. Shah, and R. R. Van Duyne, Annu. Rev. Anal. Chem. 1, 601(2008).
    10R. M. St ckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
    11M.S. Anderson, Appl. Phys. Lett. 76, 3130 (2000).
    12N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Opt. Commun. 183, 333 (2000).
    13O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, Plasmonics 2, 15 (2007).
    14S. Kühn, U. H kanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
    15P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).
    16J. Steidtner, and B. Pettinger, Phys. Rev. Lett. 100, 236101 (2008).
    17R. D. Young, J. Ward, and F. Scire, Rev. Sci. Instrum. 43, 999 (1972).
    18G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 78 (1982).
    19J. K. Gimzewski, B. Reihl, J. H. Coombs, and R. R. Schlittler, Z. Phys. 72, 497 (1988).
    20J. K. Gimzewski, J. K. Sass, R. R. Schlittler, and J. Schott, Europhys. Lett. 8, 435 (1989).
    21R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M.Tschudy, Science 262, 1425 (1993).
    22W. Deng, D. Fujita, T. Ohgi, S. Yokoyama, K. Kamikado, and S. Mashiko, J. Chem.Phys. 1174995 (2002).
    23X. H. Qiu, G. V. Nazin, and W. Ho, Science 299, 542 (2003).
    24E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, Phys.Rev. Lett.95, 196102 (2005).
    25F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, Opt. Express 17, 2714 (2009).
    26Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura,S. Yokoyama, andS. Mashiko, Phys. Rev. Lett. 92, 086801 (2004).
    27X. L. Guo, Z .C. Dong, A. S. Trifonov, K. Miki, Y. Wakayama, D. Fujita, K. Kimura,S.Yokoyama, and S. Mashiko, Phys. Rev. B 70, 233204 (2004).
    28H. W. Liu, Y. Ie, T. Yoshinobu, Y. Aso, H. Iwasaki, and R. Nishitani, App. Phys. Lett.88,061901 (2006).
    29T. Uemura, M. Furumoto, T. Nakano, M. Akai-Kasaya, A. Saito, M. Aono,and Y. Kuwahara,Chem. Phys. Lett. 448, 232 (2007).
    30H. W. Liu, R. Nishitani, T. Z. Han, Y. Ie, Y. Aso, H. Iwasaki, Phys. Rev. B 79, 125415 (2009).
    31L. F. Yan, H. W. Liu, H. Iwasaki, Chem. Phys. Lett. 433, 312 (2007).
    32Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao,Y.Zhang, J. L. Yang, and J.G. Hou, Nat. Photonics 4, 50 (2010).
    33W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    34R.H. Ritchie, Surf. Sci. 34, 1 (1973).
    35W. L. Barnes, and J. Modern Opt. 45, 661 (1998).
    36E. Kretschmann, and H. Raether, Z. Naturforsch. 23, 2135 (1968).
    37A. Otto, Z. Phys. 216, 398 (1968).
    38M. Dragoman, and D. Dragoman, Progress in Quantum Electronics 32, 1 (2008).39王振林,Progress in Physics, 29, 287 (2009).
    40R. W. Rendell, D. J. Scalapino, and B. Mühlschlegel, Phys. Rev. Lett. 41, 1746 (1978).
    41R. W. Rendell, and D. J. Scalapino, Phys. Rev. B 24, 3276 (1981).
    42F. Rossel, M. Privetta, W. D. Schneider, Surface Science Reports, 65, 129 (2010).
    43J. Steidtner, and Bruno Pettinger, Phys. Rev. Lett. 100, 236101 (2008).
    44A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, Phys.Rev.B 24, 4906 (1981).
    45M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
    46E. Fort, and S. Grésillon, J. Phys. D 41, 013001 (2008).
    47P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607(2005).
    48P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photonics 1,438 (2009).
    49Q.H. Park, Contemp. Phys. 50, 407 (2009).
    50G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, and O. J. F. Martin, Phys. Rev. B 77,121101 (2008).
    51N. A. Issa, and R. Guckenberger, Opt. Express 15, 12131 (2007).
    52J. Azoulay, A. Débarre, A. Richard, and P. Tchénio, Europhys. Lett. 51, 374 (2000).
    53S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, Mol. Phys. 106, 893 (2008).
    54G. Binnig, and H. Rohrer, Helv. Phys. Acta. 55, 726 (1982).
    55G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).
    56G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
    57G. Binnig, and H. Rohrer, Rev. Mod. Phys. 56, 615 (1987).
    58J. K. Gimzewski, E. Stoll, and R. R. Schlittler, Surf. Sci. 181, 267 (1987).
    59H. Ohtani, R. J. Wilson, S. Chiang, and C. M. Mate, Phys. Rev. Lett. 60, 2398 (1988).
    60K. Gl ckler, C. Seidel, A. Soukopp, M. Sokolowski, E. Umbach, M. B hringer, R. Berndt, andW. D. Schneider, Surf. Sci. 405, 1 (1998).
    61X. H. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, Phys. Rev. B 70, 115418(2004).
    62J. I. Pascual, J. Gómez-Herrero, C. Rogero, A. M. Baró, D. Sánchez-Portal, E. Artacho, P.Ordejón, and J. M. Soler, Chem. Phys. Lett. 321, 78 (2000).
    63J. Repp, G. Meyer, S. M. Stojkovi¢, A. Gourdon, and C. Joachim, Phys. Rev. Lett. 94, 026803(2005).
    64G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    65D. W. Pohl, W. Denk, M. Lanz, Appl.Phys. Lett. 44, 651 (1984).
    66Y. Martin, H. K. Wichramashinghe, Appl. Phys. Lett. 50, 1455 (1987).
    67P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schltland,Phys. Rev. Lett. 92, 163903 (2004).
    68L. E. C. Vandeleemput, and H. Vankempen, Rep. Prog. Phys, 55,1165 (1992).
    69R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).
    70C. Zhang, B. Gao, L. G. Chen, Q. S. Meng, H. Yang, R. Zhang, X. Tao, H. Y. Gao, Y. Liao andZ. C. Dong, Rev. Sci. Instrum. 82, 083101 (2011).
    71D. L. Abraham, A. Veider, C. Sch nenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado,Appl. Phys. Lett. 56, 1564 (1990).
    72J. H. Coombs, J. K. Gimzewski, B. Reihl, J. K. Sass, R. R. Schlittler, and J. Microsci. 152 325(1988).
    73R. Berndt, R. R. Schlittler, and J. K. Gimzewski, J. Vac. Sci. Technol. B9 573 (1991).
    74S. Ushioda, Y. Uehara, and M. Kuwahara, Appl. Surf. Sci. 60, 448 (1992).
    75R. Arafune, K. Sakamoto, K. Meguro, M. Satoh, A. Arai, and S. Ushioda, Japan J. Appl.Phys.40, 5450 (2001).
    76M. Sakurai, C. Thirstrup, and M. Aono, Phys. Rev. Lett. 93, 046102 (2004).
    77N. J. Watkins, J. P. Long, Z. H. Kafafi, and A. J. M kinen, Rev. Sci. Instrum. 78, 053707(2007).
    78R. Berndt, R. Gaisch, W. D. Schneider, J. K. Gimzewski, B. Reihl, R. R. Schlittler, and M.Tschudy, Phys. Rev. Lett. 74, 102 (1995).
    79G. Hoffmann, T. Maroutian, and R. Berndt, Phys. Rev. Lett. 93, 076102 (2004).
    80Y. Uehara, T. Fujita, and S. Ushioda, Phys. Rev. Lett. 83, 2445 (1999).
    81A. Downes, M. E. Welland, Phys. Rev. Lett. 81, 1857 (1998).
    82M. Reinhardt, G. Schull, P. Ebert, and R. Berndt, Appl. Phys. Lett. 96, 152107 (2010).
    83G. Hoffmann, L. Libioulle, and R. Berndt, Phys. Rev. B65, 212107 (2002).
    84P. Johansson, and R. Monreal, P. Apell, Phys. Rev. B 42, 9210 (1990).
    85B. N. J. Persson, and A. Baratoff, Phys. Rev. Lett. 68, 3224 (1992).
    86J. Lambe, and S. L. McCarthy, Phys. Rev. Lett. 37, 923 (1976).
    87P. K. Hansma, and H. P. Broida, Appl. Phys. Lett. 32, 545 (1978).
    88R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).
    89R. Berndt, and J. K. Gimzewski, Phys. Rev. B 48, 4746 (1993).
    90V. Sivel, R. Coratger, F. Ajustron, and J. Beauvillain, Phys. Rev. B 50, 5628 (1994).
    91Y. Suzuki, H. Minoda, and N. Yamamoto, Surf. Sci. 438, 297 (1999).
    92R. Berndt, R. Gaisch, W. D. Schneider, J. K. Gimzewski, B. Reihl, R. R. Schlittler, and M.Tschudy, Phys. Rev. Lett. 71, 102 (1995).
    93G. Hoffmann, T. Maroutian, and R. Berndt, Phys. Rev. Lett. 93, 076102 (2004).
    94G. Schull, M. Becker, and R. Berndt, Phys. Rev. Lett. 101, 136801 (2008).
    95G. Hoffmann, J. Kliewer, and R. Berndt, Phys. Rev. Lett. 87, 176803 (2001).
    96G. V. Nazin, X. H. Qiu, and W. Ho, Phys. Rev. Lett. 90, 216110 (2003).
    97C. Chen, C. A. Bobisch, and W. Ho, Science 325, 981 (2009).
    98R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 71, 3493 (1993).
    99P. Fojtík, K. Perronet, I. Pelant, J. Chval, and F. Charra, Surf. Sci. 531, 113 (2003).
    100Y. Suzuki, H. Minoda, and N. Yamamoto, Surf. Sci. 438, 297 (1999).
    101P. Johansson, Phys. Rev. B 58, 10823 (1998).
    102J. Aizpurua, S. P. Apell, and R. Berndt, Phys. Rev. B 62, 2065 (2000).
    103K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, and S. Ushioda, Phys. Rev. B 65, 165405(2002).
    104K. Dickmann, F. Demming, and J. Jersch, Rev. Sci. Instrum. 67, 845 (1996).
    105M. Klein, and G. Schwitzgebel, Rev. Sci. Instrum. 68, 3099 (1997).
    106B. Ren, G. Picardi, and B. Pettinger, Rev. Sci. Instrum. 75, 837 (2004).
    107L. Libioulle, Y. Houbion, and J. M. Gilles, J. Vac. Sci. Technol. B 13, 1325 (1995).
    108X. L. Guo, Z. C. Dong, A. S. Trifonov, K. Miki, S. Mashiko, and T. Okamoto,Nanotechnology15, S402 (2004).
    109S. W. Wu, G. V. Nazin, and W. Ho, Phys. Rev. B 77, 205430 (2008).
    110D. L. Abraham, A. Veider, Ch. Schonenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado,Appl. Phys. Lett. 56, 1564 (1990).
    111R. Berndt and J. K. Gimzewski, Phys. Rev. B 45, 14095 (1992).
    112Ph. Dumas, M. Gu, C. Syrykh, J. K. Gimzewski, I. Makarenko, A. Halimaoui, adn F. Salvan,Europhys. Lett. 23, 197 (1993).
    113A. Downes, and M. E. Welland, Phys. Rev. Lett. 81, 1857 (1998).
    114C. Thirstrup, M. Sakurai, K. Stokbro, and M. Aono, Phys. Rev. Lett. 82, 1241 (1999).
    115M. Sakurai, C. Thirstrup, and M. Aono, Phys. Rev. Lett. 93, 046102 (2004).
    116M. Reinhardt, G. Schull, P. Ebert, and R. Berndt, Appl. Phys. Lett. 96, 152107 (2010).
    117K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, Surf. Sci.502,149 (2002).
    118X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, J. Chem. Phys. 130084706 (2009).
    119I. I. Smolyaninov, Surf. Sci. 364, 79 (1996).
    120H. Yanagi, H. Mukai, and M. Nair, Thin Solid Films 499, 123 (2006).
    121D. Fujita, T. Ohgi, W. L. Deng, H. Nejo, T. Okamoto, S. Yokoyama, K. Kamikado, and S.Mashiko, Surf. Sci. 454, 1021 (2000).
    122Z. C. Dong, A. Kar, Z. Q. Zou, T. Ohgi, P. Dorozhkin, D. Fujita, S. Yokoyama,T. Terui, T.Yamada, T. Kamikado, M. N. Zhou, S. Mashiko, and T. Okamoto, Japan J.Appl. Phys., Part 141, 4898 (2002).
    123Z. C. Dong, A. S. Trifonov, X. L. Guo, K. Amemiya, S. Yokoyama, T. Kamikado,T. Yamada,S. Mashiko, and T. Okamoto, Surf. Sci. 532, 237 (2003).
    124Z. C. Dong, A. Kar, R. Dorozhkin, K. Amemiya, T. Uchihashi, S. Yokoyama,T. Kamikado, S.Mashiko, and T. Okamoto, Thin Solid Films 438, 262 (2003).
    125X. L. Guo, Z. C. Dong, A. S. Trifonov, S. Yokoyama, S. Mashiko, and T. Okamoto, JapanJ.Appl. Phys., Part 1 42, 6937 (2003).
    126M. Daffertshofer, H. Port, and H. C. Wolf, Chem. Phys. 200, 225 (1995).
    127W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, Phys. Rev.B 69,155431 (2004).
    128M. Schneider, E. Umbach, A. Langner, M. Sokolowski, and J. Lumin. 110, 275 (2004).
    129E. Flaxer, O. Sneh, and O. Cheshnovsky, Science 262, 2012 (1993).
    130H. W. Liu, R. Nishitani, Y. Ie, T. Yoshinobu, Y. Aso, and H. Iwasaki, Jpn. J. Appl. Phys.44,L566 (2005).
    131H. W. Liu, Y. Ie, R. Nishitani, Y. Aso, and H. Iwasaki, Phys. Rev. B 75, 115429 (2007).
    132X. L. Guo, Z. C. Dong, A. S. Trifonov, S. Yokoyama, S. Mashiko, and T. Okamoto,Appl.Phys. Lett. 84, 969 (2004).
    133X. L. Guo, Z. C. Dong, A. S. Trifonov, K. Miki, K. Kimura, and S. Mashiko, Appl. Surf.Sci.241, 28 (2005).
    134Y. Uehara, and S. Ushioda, Appl. Phys. Lett. 86, 181905 (2005).
    135C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, Phys. Rev. Lett. 105, 217402 (2010).
    136X. L. Guo, Z. C. Dong, A. S. Trifonov, K. Miki, K. Kimura, and S. Mashiko, Appl. Surf.Sci.241, 28 (2005).
    137X. L. Guo, Z. C. Dong, A. S. Trifonov, K. Miki, K. Kimura, and S. Mashiko, Appl. Surf.Sci.252, 1187 (2005).
    138H. W. Liu, R. Nishitani, Y. Ie, K. Sudoh, M. Nowicki, T. Yoshinobu, Y. Aso, and H. Iwasaki,Ultramicroscopy 106, 785 (2006).
    139H. W. Liu, Y. Ie, R. Nishitani, T. Z. Han, Y. Aso, and H. Iwasaki, Thin Solid Films 516, 2727(2008).
    140R. Nishitani, H. W. Liu, and H. Iwasaki, J. Vac. Sci. Technol. B 27, 993 (2009).
    141T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, Surf. InterfaceAnal. 40,1050 (2008).
    142A. Kabakchiev, K, Kuhnke, T. Lutz, and K. Kern, Chem. Phys. Chem 11, 3412 (2010).
    1M. Klein, and G. Schwitzgebel, Rev. Sci. Instrum. 68, 3099 (1997).
    2A. J. Melmed, J. Vac. Sci. Technol. 9, 601 (1991).
    3K. Dickmann, F. Demming, and J. Jersch, Rev. Sci. Instrum. 67, 845 (1996).
    4A. J. Nam, A. Teren, T. A. Lusby, and A. J. Melmed, J. Vac. Sci. Technol. 13, 1556 (1995).
    5S. Murphy, S. F. Ceballos, G. Mariotto, N. Berdunov, K. Jordan, I. V. Shvets, and Y. M.Mukovskii, Microscopy Research and Technique, 66, 85 (2005).
    6Y. Uehara, T. Fujita, M. Iwami, and S. Ushioda, Rev. Sci. Instrum. 72, 2097 (2001).
    7A. A. Gorbunov, B. Wolf, and J. Edelmann, Rev. Sci. Instrum. 64, 2393 (1993)
    8K. Dickmann, F. Demming, and J. Jersch, Rev. Sci. Instrum. 67, 845 (1996).
    9M. Iwami, Y. Uehara, and S. Ushioda, Rev. Sci. Instrum. 69, 4010 (1998).
    10B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, SingleMol. 3, 285 (2002).
    11W. H. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, J. Phys. Chem. C 111, 1733 (2007).
    12J. Stadler, T. Schmid, and R. Zenobi, Nano Lett. 10, 4514 (2010).
    13J. P. Ibe, P. P. Bey, S. L. Brandow, R. A. Brizzolara, N. A. Burnham, D. P. Dilella, K. P. Lee,C. R. K. Marrian, and R. J. Colton, J. Vac. Sci. Technol. A 8, 3570 (1990).
    14陈成钧.1996.扫描隧道显微学引论.中国轻工业出版社,278-279.
    15Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y.Zhang, J. L. Yang, and J. G. Hou, Nat. Photonics 4, 50 (2010).
    16S. Kawata, Y. Inouye, and P. Verma, Nat. Photonics 3, 388 (2009).
    17R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).
    18R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 71, 3493 (1993).
    19K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, and S. Ushioda, Phys. Rev. B 65, 165405(2002).
    20P. Johansson, R. Monreal, and P. Apell, Phys. Rev. B 42, 9210 (1990).
    21J. Aizpurua, S. P. Apell, and R. Berndt, Phys. Rev. B 62, 2065 (2000).
    22P. Johansson, Phys. Rev. B 58, 10823 (1998).
    23Y. Suzuki, H. Minoda, and N. Yamamoto, Surf. Sci. 438, 297 (1999).
    24R. Berndt and J. K. Gimzewski, Phys. Rev. B 48, 4746 (1993).
    25V. Sivel, R. Coratger, F. Ajustron, and J. Beauvillain, Phys. Rev. B 50, 5628 (1994).
    26J. Aizpurua, G. Hoffmann, S. P. Apell, and R. Berndt, Phys. Rev. Lett. 89, 156803 (2002).
    27G. Hoffmann, T. Maroutian, and R. Berndt, Phys. Rev. Lett. 93, 076102 (2004).
    1R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M.Tschudy, Science, 262, 1425 (1993).
    2G. Hoffmann, L. Libioulle, and R. Berndt, Physical Review B, 65, 212107 (2002).
    3Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, and T. Okamoto, Physical Review B, 79,07546 (2009).
    4G. E. Poirrier, Physical Review Letters, 86, 83 (2001).
    5Z. C. Dong, A. Kar, P. Dorozhkin, K. Amemiya, T. Uchihashi, S. Yokoyama, T. Kamikado, S.Mashiko, and T. Okamoto, Thin solid Films, 438, 262 (2003).
    6Z. C. Dong, A. S. Trifonov, X. L. Guo, K. Amemiya, S. Yokoyama, T. Kamikado, T. Yamada, S.Mashiko, and T. Okamoto, Surface Science, 532, (237) 2003.
    7X. L. Guo, Z. C. Dong, A. S. Trifonov, S. Mashiko, and T. Okamoto, Physical Review B, 68,113403 (2003).
    8S. R. Forrest, Chem. Rev, 97, 1793 (1997).
    9C. Ludwig, J. Gompf, W. Glatz, J. Petersen, W. Eisenmenger, M. Mobus, and N. Karl, Z. Phys. B86, 397 (1992).
    10C. Kendrick, and A. Kahn, J. Crystal Growth 181, (181) 1997.
    11Y. Hirose, S. R. Forrest, and A. Kahn, Phys. Rev. B 52, 14040 (1995).
    12C. Seidel, C. Awater, X. D. Liu, R. Ellerbrake, and H. Fuchs, Surf. Sci. 371, 123 (1997).
    13K. Glocker, C. Seidel, A. Soukopp, M. Sokolowski, E. Umbach, M. Bohringer, R. Berndt, and W.D. Schneider, Surf. Sci. 405, 1 (1998).
    14M. Bohringer, W. D. Schneider, R. Berndt, K. Glocker, M. Sokolowski, and E. Umbach, Phys.Rev. B 57, 4081 (1998).
    15P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger, S. R. Forrest, Phys. Rev. B 56, 3046 (1997).
    16T. Schmitzhubsch, T. Fritz. F. Sellam, R. Staub, and K. Leo, Phys. Rev. B 55, 7972 (1997).
    17M. Eremtchenko, J. A. Schaefer, and F. S. Tautz, Nature 225, 602 (2003).
    18Y. Zou, L. Kilian, A. Scholl, Th. Schmide, R. Fink, and E. Umbach, Surf. Sci. 600, 1240 (2006).
    19E. Umbach, K. Glockler, and M. Sokolowski, Surf. Sci. 402, 20 (1998).
    20I. Chizhov, A. Kahn, and G. Scoles, J. Crystal Growth 208, 449 (2000).
    21M. Mobus, N. Karl, and T. Kobayashi, J. Sryst. Crowth 116, 495 (1992).
    22D. R. T. Zahn, G. N. Gavrila, and S. G. Salvan, Chem. Rev. 107, 1161 (2007).
    23F. S. Tautz. S. Sloboshanin, V. Shklover, R. Scholz, M. Sokolowski, J. A. Schaefer, and E.Umbach, Appl. Surf. Sci. 166, 363 (2000).
    24F. S. Tautz, Progress in Surface Science 82, 479 (2007).
    25E. V. Tsiper, Z. G. Soos, W. Gao, and A. Kahn, Chemical Physics Letters 360, 47 (2002).
    26A. Kraft. R. Temirov, S. K. M. Henze, S. Soubatch, M. Rohlfing, and F. S. Tzutz, Phys. Rev. B74, 041402 (2006).
    27Y. Zou, L. Kilian, A. Scholl, Th. Schmidt, R. Fink, and E. Umbach, Surf. Sci. 600, 1240 (2006).
    28M. Rohlfing, R. Temirov, and F. S. Tautz, Phys. Rev. B 76, 115421 (2007).
    29W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, adn E. Umbach, Phys. Rev. B 69,155431 (2004).
    30D. Ino, T. Yamada, and M. Kawai, J. Chem. Phys. 129, 014701 (2008).
    31M. Eremtchenko, D. Bauer, J. A. Schaefer, and F. S. Tautz, New Journal of Physics 6, 4 (2004).
    32T. Soubiron, F. Vaurette, J. P. Nys, B. Grandidier, X. Wallart, and D. Stievenard, Surf. Sci. 581,178 (2005).
    33N. Nicoara, O. Paz, J. M. Soler, A. M. Baro, J. Mendez, and J. M. Gomez-Rodriguez, in press.
    34A. Hoshino, S. Isoda, H. Kurata, and T. Kobayashi, J. Appl. Phys. 76, 4113 (1994).
    35N. Nicoara, E. Roman, J. M. Gomez-Rodriguez, J. A. Martin-Gago, and J. Mendez, OrganicElectronics 7, 287 (2006).
    36S. D. Kevan, and R. H. Gaylord, Phys. Rev. B 36, 5809 (1987).
    37X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, and J. Aizpurua, J. Chem. Phys. 130, 084706(2009).
    38S. Suto, T. Lkehara, A. Koike, W. Uchida, and T. Goto, Solid. State. Commun. 73, 331 (1990).
    39C. Thirstrup, M. Sakurai, K. Stokbro, and M. Aono, Phys. Rev. Lett. 82, 1241 (1999).
    40G. Hoffmann, J. Kliewer, and R. Berndt, Phys. Rev. Lett. 87, 176803 (2001).
    41G. Hoffmann, T. Maroutian, and R. berndt, Phys. Rev. Lett. 93, 076102 (2004).
    42Y. Suzuki, H. Minoda, and N. Yamamoto, Surf. Sci. 438, 297 (1999).
    43V. Sivel. R. Coratger, F. Ajustron, and J. Beauvillain, Phys. Rev. B. 50, 5628 (1994).
    44R. Berndt, and J. K. Gimzewski, Phys. Rev. B 48, 4746 (1993).
    45C. Chen, C. A. Bobisch, and W. Ho, Science 325, 981 (2009).
    46Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang,J. L. Yang, and J. G. Hou, Nature Photonics, 4, 50 (2010).
    47C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, Phys. Rev. Lett. 105, 217402 (2010).
    1X. H. Qiu, G. V. Nazin, and W. Ho, Science 299, 542 (2003).
    2S. W. Wu, G. V. Nazin, and W. Ho, Phys. Rev. B 77, 205430 (2008).
    3C. Chen, P. Chu, C. A. Bobisch, D. L. Mills, and W. Ho, Phys. Rev. Lett. 105, 217402 (2010).
    4E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, Phys.Rev. Lett.95, 196102 (2005).
    5F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, Opt. Express 17, 2714 (2009).
    6A. Kabakchiev, K, Kuhnke, T. Lutz, and K. Kern, Chem. Phys. Chem 11, 3412 (2010).
    7B. J. Eves, F. Festy, K. Svensson, and R. E. Palmer, Appl. Phys. Lett. 77, 4223 (2000).
    8C. M. Grimaud, L. Siller, M. Andersson, and R. E. Palmer, Phys. Rev. B 59, 9874 (1999).
    9Y. Uehara, and S. Ushioda, Appl. Phys. Lett. 86, 181902 (2005).
    10H. W. Liu, Y. Le, T. Yoshinobu, Y. Aso, and H. Iwasaki, Appl. Phys. Lett. 88, 061901 (2006).
    11T. Uemura, S. Yamaguchi, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, Surf. Sci.600, L15 (2006).
    12A. Fujiki, Y. Miyake, Y. Oshikane, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, NanoscaleResearch Letters 6, 2011.
    13Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao,Y.Zhang, J. L. Yang, and J.G. Hou, Nat. Photonics 4, 50 (2010).
    14G. Hoffmann, L. Libioulle, and R. Berndt, Phys. Rev. B65, 212107 (2002).
    15M. Daffertshofer, H. Port, and H. C. Wolf, Chem. Phys. 200, 225 (1995).
    16W. Gebauer, A. Langner, M. Schneider, M. Sokolowski, and E. Umbach, Phys. Rev.B 69,155431 (2004).
    17M. Schneider, E. Umbach, A. Langner, M. Sokolowski, and J. Lumin. 110, 275 (2004).
    18R. Berndt, J. K. Gimzewski, and P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).
    19X. L. Zhang, L. G. Chen, P. Lv, H. Y. Gao, S. J. Wei, Z. C. Dong, and J. G. Hou,App. Phys. Lett.92, 223118 (2008).
    20Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura,S. Yokoyama, andS. Mashiko, Phys. Rev. Lett. 92, 086801 (2004).
    21A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, Phys.Rev.B 24, 4906 (1981).
    22M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
    23E. Fort, and S. Grésillon, J. Phys. D 41, 013001 (2008).
    1X. H. Qiu, G. V. Nazin, and W. Ho, Science, 299, 542 (2003).
    2Z. C. Dong, X. L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, andS. Mashiko, Physical Review Letters, 92, 086801 (2004).
    3E. Cavar, M. C. Blum, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, PhysicalReview Letters, 95, 196102 (2005).
    4F. Rossel, M. Pivetta, F. Patthey, and W. D. Schneider, Optics Express, 17, 2714 (2009).
    5Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang,J. L. Yang, and J. G. Hou, Nature Photonics, 4, 50 (2010).
    6P. Schmidt and R. Berndt, Phys. Rev. Lett. 99, 246103 (2007).
    7R. E. Schlier, and H. E. Farnsworth, J. Chem. Phys. 30, 917 (1959).
    8J. D. Levine, Surf. Sci. 34, 90 (1973).
    9T. D. Poppendieck, T. C. Ngoc, and M. B. Webb, Surf. Sci. 75, 287 (1978).
    10D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979).
    11M. Aono, Y. Hou, C. Oshima, and Y. Ishizawa, Phys. Rev. Lett. 49, 567 (1982).
    12E. Artacho, and F. Yndurain, Phys. Rev. Lett. 62, 2491 (1989).
    13S. P. Tang, A. J. Freeman, and B. Delley, Phys. Rev. B, 45, 1776 (1992).
    14N. Roberts, and R. J. Needs, Surf. Sci. 236, 112 (1990).
    15R. A. Wolkow, Phys. Rev. Lett. 68, 2636 (1992).
    16R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett. 55, 1303 (1985).
    17K. Hata, S. Yoshida, and H. Shigekawa, Phys. Rev. Lett. 89, 286104 (2002).
    18M. Okamoto, and T. Yokoyama, Phys. Rev. B, 62, 12927 (2000).
    19K. Sagisaka, D. Fujita, and G. Kido, Phys. Rev. Lett. 91, 146103 (2003).
    20H. Ibach, and J. E. Rowe, Surf. Sci. 43, 481 (1974).
    21T. Sakurai, and H. D. Hagstrom, Phys. Rev. B,14, 1593 (1976).
    22Y. J. Chabal, and K. Ragavachari, Phys. Rev. Lett. 54, 1055 (1985).
    23J. J. Boland, Phys. Rev. Lett. 65, 3325 (1990).
    24K. Oura, J. Yamane, K. Umezawa, M. Naitoh, F. Shoji, and T. Hanawa, Phys. Rev. B,41, 1200(1990).
    25S. J. White, and D. P. Woodruff, Surf. Sci. 63, 254 (1977).
    26J. A. Schaefer, F. Stucki, J. A. Anderson, G. J. Lapeyre, and W. Gopel, Surf. Sci. 140, 207(1984).
    27J. J. Boland, Surf. Sci. 261, 17 (1992).
    28C. C. Cheng, and J. T. Yatesjr, Phys. Rev. B,43, 4041 (1991).
    29D. T. Jiang, G. W. Anderson, K. Griffiths, T. K. Sham, and P. P. Norton, Phys. Rev. B,48, 4952(1993).
    30X. P. Qin, P. R. Norton, Phys. Rev. B,53, 11100 (1996).
    31L. Andersohn, and U. Koehler, Surf. Sci. 284, 77 (1993).
    32J. A. Martin, D. E. Savage, W. Moritz, and M. G. Lagally, Phys. Rev. Lett. 56, 1936 (1986).
    33K. Kato, T. Ide, S. Miura, A. Tamuram and T. Ichinokawa, Surf. Sci. 194, L87.
    34B. S. Schwartzentruber, Y. W. Mo, M. B. Webb, and M. G. Lagally, J. Vac. Sci. Technol. A. 7,2901 (1989).
    35T. Mitsui, and K. Takayanagi, Phys. Rev. B, 24, 16251 (2000).
    36J. J. Boland, Adv. Phys. 42, 129 (1993).
    37J. J. Boland, Phys. Rev. Lett. 67, 1539 (1991).
    38A. J. Mayne, D. Riedel, G. Comtet, G. Dujardin, Progress in Surface Science, 81, 1 (2006).
    39Y. Suwa, M. Fujimori, S. Heike, Y. Terada, Y. Yoshimoto, K. Akagi, O. Sugino, and T.Hashizume, Phys. Rev. B, 74, 205308 (2006).
    40J. S. Baskin, H. Z. Yu, and A. H. Zewail, J. Phys. Chem. A, 106 9837 (2002).
    41H. Z. Yu, J. S. Baskin, and A. H. Zewail, J. Phys. Chem. A, 106 9845 (2002).
    42R. J. Hamers, S. K. Coulter, M. D. Ellison, J. S. Hovis, D. F. Padowitz, M. P. Schwartz, C. M.Greenlief, and J. N. R. Jr, Acc. Chem. Res. 33, 617 (2000).
    43T. Soubiron, F. Vaurette, J. P. Nys, B. Grandidier, X. Wallart, and D. Stievenard, Surf. Sci. 581,178 (2005).
    44A. Bellec, F. Ample, D. Riedel, G. Dujardin, and C. Joachim, Nano Letters, 9, 144 (2009).
    45J. Repp and G. Meyer, Phys. Rev. Lett. 94, 026803 (2005).
    46F. Vaurette, J. P. Nys, B. Grandidier, C. Priester, and D. Stievenard, Phys. Rev. B 75,235435(2007).
    47Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang,J. L. Yang, and J. G. Hou, Nature Photonics, 4, 50 (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700