用户名: 密码: 验证码:
液晶波前校正器的过驱动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶波前校正器是液晶自适应光学系统的核心器件,其响应速度慢是影响液晶系统工程化的关键问题。虽然通过设计合成高Δn低粘度的向列相液晶材料可以提高液晶波前校正器的响应速度,但是提升其响应速度的潜力越来越有限。本论文根据液晶动力学理论,研究了与驱动过程相关的液晶分子指向矢转动行为,看出驱动电压从高到低变换时,液晶分子指向矢的分布越接近平衡态转动速度越慢,严重的拖尾现象使响应速度大大降低,因此将过驱动方法应用于液晶波前校正器中。过驱动是指使用比正常驱动更大的电压差来驱动液晶分子使其快速到达目标位相。
     本论文以液晶弹性体理论为基础,推导了无扭曲液晶指向矢的平衡态方程及响应过程所满足的动力学方程;通过对不同驱动电压下的液晶分子回落响应曲线的分析,看出液晶波前校正器的响应时间由撤除最高驱动电压后回落2π位相的响应时间所决定。提高器件最高驱动电压可以缩短液晶波前校正器的响应时间,同时必须在完成2π位相回落的时刻施加对应剩余位相值的稳定电压;液晶器件的最高驱动电压由集成电路所能承受的电压决定,无法大幅增加,而鉴于电场作用于液晶分子的扭矩由电场强度与液晶Δ的乘积决定,因此可通过提高材料的Δ进一步减少液晶的响应时间。
     研究了成品液晶波前校正器过驱动的实现方法。本实验室所用液晶波前校正器,即使采用上述过驱动方法其响应时间也较长,为1.92ms,如果进一步缩短响应过程将导致部分像素的位相不到位,引起波前校正误差;但实际上大气湍流中的波前是在50Hz上下动态变化的,响应时间大于1ms的校正器都会由于时间延迟引起更大的误差,因此本研究尝试了过驱动条件下液晶波前校正器响应时间接近1ms的实验。由于所用液晶自适应光学系统中波前探测器数据读出时间为1.07ms,因此所设定的液晶波前校正器响应时间不能短于1.07ms,另外液晶波前校正器只能在驱动场交变帧周期(128.3us)整数倍时刻进行电压切换,因此液晶波前校正器的响应时间必须是128.3us的整数倍,因此选取1.155ms作为液晶波前校正器的响应时间。经仿真计算,液晶波前校正器的响应时间限定为1.155ms时液晶自适应光学系统的–3dB误差抑制带宽为35Hz,而当响应延迟时间增加至1.92ms时–3dB误差抑制带宽仅为26Hz,因此1.155ms是所用系统的液晶响应时间优化值。
     计算了1.155ms响应时引入的不到位误差。利用湍流模拟器产生格林伍德频率为30和50Hz、大气相干长度为2.4cm、7.2cm和10cm、口径为1.2米的湍流波前,采用上述液晶自适应光学系统对湍流波前进行实时校正;得出位相响应不到位误差不超过1.5×10-2λ(λ=785nm);1.2米望远镜的衍射极限分辨要求波前残差RMS值应小于0.07λ,看出由不到位引起的校正误差约为1/5衍射极限对应的误差,可认为对成像效果不产生影响。
     过驱动成功应用于与1.2米口径望远镜对接的液晶自适应光学系统,获得清晰的环境卫星、 Com双星等图片。对北极星的校正成像实验显示,未校正时星像亮度的半高宽为2.02角秒,不使用过驱动时校正后半高宽为0.46角秒,采用1.155ms的单帧过驱动校正后半高宽减至0.31角秒。
     在单帧过驱动的基础上进一步提出了单帧超调过驱动及多帧过驱动的方法。经分析,使用单帧超调过驱动及多帧过驱动可以进一步减少系统校正残差,提高系统的带宽。仿真结果表明多帧过驱动可将–3dB抑制带宽提高至37Hz。
     通过数学推导及仿真分析,研究了时间起伏误差、过驱动矩阵测量误差、位相-灰度级关系标定误差对过驱动过程的影响。提出进一步提高位相-灰度级标定精度的方法及过驱动矩阵测量精度的方法。
Liquid crystal wavefront corrector is the core device of liquid crystal adaptiveoptical system. Slow response is the key problem which prevents the liquid crystaladaptive optical systems from engineering. The design and synthesis of high Δn andlow viscosity nematic liquid crystal materials can improve the response of liquidcrystal wavefront corrector. However, the potential of the improvement of theresponse become more and more limited. Therefore, based on the liquid crystaldynamics theory, this thesis researched the liquid crystal hydrodynamic process ofdirector rotation behavior. When the driving voltage changes from the higher voltageto the lower voltage, the distribution of the director of the liquid crystal is closer andcloser to the equilibrium state, and the rotational speed is slower and slower. Thisserious tailing phenomenon cause the average speed of response greatly reduced.Overdriving is applying a higher voltage difference than the normal driven to drivethe liquid crystal molecules to reach the target phase faster.
     Based on the elastic theory of liquid crystal, this thesis derived the equilibriumequation and the hydrodynamic equation of the liquid crystal devices under theelectric field without distortion. The effect of the cell gap and voltage on the phaseresponse process is researched. Through the optimization of cell gap, the responsedelay of liquid crystal wavefront corrector can be reduced. By increasing Δ, theresponse delay can be shortened under the overdriving condition.
     This thesis studied the driving scheme of the commercial liquid crystalwavefront corrector and the optimization of various parameters systematically. Bythe analysis of the time domain error and simulation, according to the relevantparameters of the system,1.155ms was choosed as the optimal response delay. Thefast overdriving matrix data processing and transition are realized using GPU. Thetime needed is about30us which makes this method can be directly applied tocommercial liquid crystal wavefront corrector. The single frame overdriving isapplied to the open-loop Liquid crystal adaptive optics system. The bandwidth testand the outfield experiment showed that the system performance is significantlyimproved. The–3dB bandwidth is improved from27Hz to35Hz. on the basis of thesingle frame overdriving, the single frame overshoot overdriving and multi-frameoverdriving is proposed, which can further reduce the residual wavefront correctionerror.
     Through mathematical derivation, the mathematical relationship between theinput and the output of the residual error was obtained. The precised calibrationscheme was proposed to improve the phase level to gray level map precision further.The improved method of overdriving matrix measurement is put forward. The effectof temperature on the overdriving was studied.
引文
[1]宋菲君, S. Jutamulia.近代光学信息处理[M].北京:北京大学出版社,1998.
    [2]赵达尊,张怀玉.空间光调制器[M].北京:北京理工大学出版社,1999.
    [3]陈家璧,苏显渝,朱伟利.光学信息技术原理及应用[M].高等教育出版社,2002.
    [4] M. A. Vorontsov. High-resolution adaptive phase distortion compensation using adiffractive-feedback system: experimental results [J]. JOSA A,1999,16(10):2567-2573
    [5] Q. Q. Mu, Z. L. Cao, C. Li, et al. Accommodation-based liquid crystal adaptiveoptics system for large ocular aberration correction [J]. Opt Lett,2008,33(24):2898-2900
    [6] J. Rha, R. S. Jonnal, K. E. Thorn, et al. Adaptive optics flood-illumination camerafor high speed retinal imaging [J]. Opt Express,2006,14(10):4552-4569
    [7] T. Shirai, K. Takeno, H. Arimoto, et al. Adaptive optics with aliquid-crystal-on-silicon spatial light modulator and its behavior in retinal imaging [J].Japanese Journal of Applied Physics,2009,48(7):0213
    [8] P. M. Prieto, E. J. Fernandez, S. Manzanera, et al. Adaptive optics with aprogrammable phase modulator: applications in the human eye [J]. Opt Express,2004,12(17):4059-4071
    [9] E. J. Fernandez, I. Iglesias, P. Artal. Closed-loop adaptive optics in the human eye[J]. Opt Lett,2001,26(10):746-748
    [10] H. Hofer, L. Chen, G. Y. Yoon, et al. Improvement in retinal image quality withdynamic correction of the eye's aberrations [J]. Opt Express,2001,8(11):631-643
    [11] K. Takeno, T. Shirai. In vivo retinal imaging using liquid crystal adaptive opticswith different color illumination [J]. BiOS,201075502H-75502H-75505
    [12] T. Shirai. Liquid-crystal adaptive optics based on feedback interferometry forhigh-resolution retinal imaging [J]. Appl Optics,2002,41(19):4013-4023
    [13] R. J. Zawadzki, S. Laut, M. Zhao, et al. Retinal imaging with adaptive opticshigh speed and high resolution optical coherence tomography [J]. Invest Ophth VisSci,2005,46
    [14] D. X. Hammer, R. D. Ferguson, N. V. Iftimia, et al. Tracking adaptive opticsscanning laser ophthalmoscope (TAOSLO)[J]. Invest Ophth Vis Sci,2005,46
    [15] L. N. Thibos, A. Bradley. Use of liquid-crystal adaptive-optics to alter therefractive state of the eye [J]. Optometry Vision Sci,1997,74(7):581-587
    [16] G. Y. Yoon, D. R. Williams. Visual performance after correcting themonochromatic and chromatic aberrations of the eye [J]. J Opt Soc Am A,2002,19(2):266-275
    [17]凌宁,张雨东,饶学军, et al.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004,24(9):1153-1158
    [18] S. Serati, J. Stockley. Phased array of phased arrays for free space opticalcommunications [J]. Aerospace Conference,2003. Proceedings.2003IEEE,2003,41809-1816
    [19] A. Belmonte, A. Rodríguez, F. Dios, et al. Performance evaluation of an adaptiveoptics free-space laser communications system from simulation of beam propagation[J]. Optics/Photonics in Security and Defence,2006639905-639905-639912
    [20] P. F. McManamon, T. A. Dorschner, D. L. Corkum, et al. Optical phased arraytechnology [J]. Proceedings of the IEEE,1996,84(2):268-298
    [21] S. Serati, J. Stockley. Advanced liquid crystal on silicon optical phased arrays [J].Aerospace Conference Proceedings,2002. IEEE,2002,33-1395-1393-1402vol.1393
    [22] S. Serati, H. Masterson, A. Linnenberger. Beam combining using a phased arrayof phased arrays (PAPA)[J]. Aerospace Conference,2004. Proceedings.2004IEEE,2004,3
    [23] W. Hossack, E. Theofanidou, J. Crain, et al. High-speed holographic opticaltweezers using a ferroelectric liquid crystal microdisplay [J]. Opt. Express,2003,11(17):2053-2059
    [24] M. Yamauchi, T. Eiju. Optimization of twisted nematic liquid crystal panels forspatial light phase modulation [J]. Opt Commun,1995,115(1–2):19-25
    [25] T.-L. Kelly, J. Munch. Wavelength dependence of twisted nematic liquid crystalphase modulators [J]. Opt Commun,1998,156(4–6):252-258
    [26] F. Stabo-Eeg, K. Gastinger, O. D. Hunderi, et al. Determination of the phase-andpolarization-changing properties of reflective spatial light modulators in one set-up [J].European Symposium on Optics and Photonics for Defence and Security,2004174-182
    [27] V. Arrizón. Complex modulation with a twisted-nematic liquid-crystal spatiallight modulator: double-pixel approach [J]. Opt Lett,2003,28(15):1359-1361
    [28] R. Dou, M. A. Vorontsov, V. P. Sivokon, et al. Iterative technique forhigh-resolution phase distortion compensation in adaptive interferometers [J]. OpticalEngineering,1997,36(12):3327-3335
    [29] E. Hack, P. N. Gundu, P. Rastogi. Adaptive correction to the speckle correlationfringes by using a twisted-nematic liquid-crystal display [J]. Appl Optics,2005,44(14):2772-2781
    [30] S. Zhan, Z. Run-Chang, Z. He-Yuan, et al. Beam Shaping by Using the LiquidCrystal Panel of a Commercial Display Device [J]. Chinese Physics Letters,2005,22(7):1656
    [31] H. T. Dai, K. S. Xu, Y. J. Liu, et al. Characteristics of LCoS Phase-only spatiallight modulator and its applications [J]. Opt Commun,2004,238(4-6):269-276
    [32] T.-L. Kelly, J. Munch. Phase-aberration correction with dual liquid-crystal spatiallight modulators [J]. Appl Optics,1998,37(22):5184-5189
    [33] V. Durán, J. Lancis, E. Tajahuerce, et al. Phase-only modulation with a twistednematic liquid crystal display by means of equi-azimuth polarization states [J]. OptExpress,2006,14(12):5607-5616
    [34] N. Konforti, E. Marom, S. T. Wu. Phase-only modulation with twisted nematicliquid-crystal spatial light modulators [J]. Opt. Lett.,1988,13(3):251-253
    [35] S. T. Wu. Phase Retardation Dependent Optical-Response Time ofParallel-Aligned Liquid-Crystals [J]. Journal of applied physics,1986,60(5):1836-1838
    [36] J. Otón, P. Ambs, M. S. Millán, et al. Multipoint phase calibration for improvedcompensation of inherent wavefront distortion in parallel aligned liquid crystal onsilicon displays [J]. Appl Optics,2007,46(23):5667-5679
    [37] Y. Liu, Z. Cao, D. Li, et al. Correction for large aberration with phase-onlyliquid-crystal wavefront corrector [J]. Optical Engineering,2006,45(12):128001-128001-128005
    [38] L. Hu, L. Xuan, Y. Liu, et al. Phase-only liquid crystal spatial light modulator forwavefront correction with high precision [J]. Opt. Express,2004,12(26):6403-6409
    [39] A. V. Kuzmenko, P. V. Yezhov. Iterative algorithms for off-axis double-phasecomputer-generated holograms implemented with phase-only spatial light modulators[J]. Appl. Opt.,2007,46(30):7392-7400
    [40] S. Serati, J. Stockley. Advances in liquid crystal based devices for wavefrontcontrol and beamsteering [J].200558940K-58940K
    [41] Y.-H. Lin, M. Mahajan, D. Taber, et al. Compact4cm aperture transmissiveliquid crystal optical phased array for free-space optical communications [J]. Optics&Photonics2005,200558920C-58920C-58910
    [42] C. J. Henderson, B. Robertson, D. G. Leyva, et al. Control of a free-spaceadaptive optical interconnect using a liquid-crystal spatial light modulator for beamsteering [J]. Optical Engineering,2005,44(7):075401-075401-075408
    [43] G. D. Love. Wave-front correction and production of Zernike modes with aliquid-crystal spatial light modulator [J]. Appl Optics,1997,36(7):1517-1520
    [44] R. Sutherland, L. Natarajan, V. Tondiglia, et al. Bragg gratings in an acrylatepolymer consisting of periodic polymer-dispersed liquid-crystal planes [J]. Chemistryof materials,1993,5(10):1533-1538
    [45] R. Tyson. Principles of adaptive optics [M]. CRC PressI Llc,2010.
    [46]张逸新,迟泽英.光波在大气中的传播与成像[M].北京:国防工业出版社,1997.
    [47] H. W. Babcock. The possibility of compensating astronomical seeing [J].Publications of the Astronomical Society of the Pacific,1953,65(386):229-236
    [48] A. Vasil'ev, A. Zhindulis, I. Kompanets, et al. Optically controlled transparency inthe form of a ferroelectric ceramic–photoconductor structure [J]. Soviet Journal ofQuantum Electronics,1979,9(6):757
    [49] A. Vasil'ev, I. Kompanets, A. Parfenov. Progress in the development andapplications of optically controlled liquid crystal spatial light modulators (review)[J].Soviet Journal of Quantum Electronics,1983,13(6):689
    [50] A. Vasil'ev, A. Naumov, V. Shmal'gauzen. Wavefront correction by liquid-crystaldevices [J]. Quantum Electronics,1986,16(4):471-474
    [51] Q. Q. Mu, Z. L. Cao, L. F. Hu, et al. Adaptive optics imaging system based on ahigh-resolution liquid crystal on silicon device [J]. Opt Express,2006,14(18):8013-8018
    [52] J. Gourlay, G. D. Love, P. M. Birch, et al. A real-time closed-loop liquid crystaladaptive optics system: First results [J]. Opt Commun,1997,137(1-3):17-21
    [53] A. Vasil'Ev, M. Vorontsov, A. Koryabin, et al. Computer-controlled wavefrontcorrector [J]. Quantum Electronics,1989,19(3):395-398
    [54] R. Dou, M. K. Giles. Closed-loop adaptive-optics system with a liquid-crystaltelevision as a phase retarder [J]. Opt Lett,1995,20(14):1583-1585
    [55] M. Langlois, C. Saunter, C. Dunlop, et al. Multiconjugate adaptive optics:laboratory experience [J]. Opt. Express,2004,12(8):1689-1699
    [56] P. M. Birch, J. Gourlay, G. D. Love, et al. Real-time optical aberration correctionwith a ferroelectric liquid-crystal spatial light modulator [J]. Appl Optics,1998,37(11):2164-2169
    [57] M. A. A. Neil, M. J. Booth, T. Wilson. Closed-loop aberration correction by useof a modal Zernike wave-front sensor [J]. Opt Lett,2000,25(15):1083-1085
    [58] S. R. Restaino, D. Dayton, S. Browne, et al. On the use of dual frequencynematic material for adaptive optics systems: first results of a closed-loop experiment.[J]. Opt Express,2000,6(1):2-6
    [59] D. C. Dayton, J. D. Gonglewski, S. L. Browne, et al. MEMS adaptive optics:field demonstration [J]. International Symposium on Remote Sensing,2003186-195
    [60] T. Shirai. Restoration of a blurred retinal image with liquid-crystal adaptiveoptics based on feedback interferometry [J].19th Congress of the InternationalCommission for Optics: Optics for the Quality of Life,2003192-193
    [61] A. A. S. Awwal, B. J. Bauman, D. T. Gavel, et al. Characterization and operationof a liquid crystal adaptive optics phoropter [J]. Optical Science and Technology,SPIE's48th Annual Meeting,2003104-122
    [62] Q. Mu, Z. Cao, D. Li, et al. Liquid crystal based adaptive optics system tocompensate both low and high order aberrations in a model eye [J]. Opt. Express,2007,15(4):1946-1953
    [63] F. Vargas-Martin, P. M. Prieto, P. Artal. Correction of the aberrations in thehuman eye with a liquid-crystal spatial light modulator: limits to performance [J].JOSA A,1998,15(9):2552-2562
    [64] H. Huang, T. Inoue, T. Hara. Adaptive aberration compensation system using ahigh-resolution liquid crystal on silicon spatial light phase modulator [J]. InternationalConference of Optical Instrument and Technology,200871560F-71560F-71510
    [65] D. Dayton, S. Sandven, J. Gonglewski, et al. Adaptive optics using a liquidcrystal phase modulator in conjunction with a Shack-Hartmann wave front sensor andzonal control algorithm [J]. Opt Express,1997,1(11):338-346
    [66] D. Bonaccini, G. Brusa, S. Esposito, et al. Adaptive optics wavefront correctorusing addressable liquid-crystal retarders II [J]. San Diego-DL tentative,1992133-143
    [67] V. A. Dorezyuk, A. F. Naumov, V. I. Shmalgauzen. Control of Liquid-CrystalCorrectors in Adaptive Optical-Systems [J]. Zh Tekh Fiz+,1989,59(12):35-41
    [68] Z. L. Cao, Q. Q. Mu, L. F. Hu, et al. Correction of horizontal turbulence withnematic liquid crystal wavefront corrector [J]. Opt Express,2008,16(10):7006-7013
    [69] A. Kudryashov, J. Gonglewski, S. Browne, et al. Liquid crystal phase modulatorfor adaptive optics. Temporal performance characterization [J]. Opt Commun,1997,141(5):247-253
    [70] Z. L. Cao, Q. Q. Mu, L. F. Hu, et al. Preliminary use of nematic liquid crystaladaptive optics with a2.16-meter reflecting telescope [J]. Opt Express,2009,17(4):2530-2537
    [71] N. Miyamura. Test results of optimal phase diversity selection using aLCOS-SLM for remote sensing adaptive optics [J]. SPIE Photonics Europe,2010772308-772308-772308
    [72] E. J. Fernández, P. M. Prieto, P. Artal. Wave-aberration control with a liquidcrystal on silicon (LCOS) spatial phase modulator [J]. Opt Express,2009,17(13):11013-11025
    [73] G. Durand. Optical Applications of Liquid Crystals [M]. Polymers, LiquidCrystals, and Low-Dimensional Solids. Springer,1985
    [74] G. D. Love, J. S. Fender, S. R. Restaino. Adaptive wavefront shaping with liquidcrystals [J]. Optics and Photonics News,1995,6(10):16-21
    [75] http://www.eso.org/projects/vlt/
    [76] A. Moorwood. Instrumentation at the ESO VLT [J]. Astronomical Telescopes andInstrumentation,2006626904-626904-626912
    [77] R. Pallavicini, B. Delabre, L. Pasquini, et al. The AVES adaptive opticsspectrograph for the VLT: status report [J]. Astronomical Telescopes andInstrumentation,2003715-726
    [78] G. Mathys, R. Gilmozzi, N. Hurtado, et al. Paranal science operations: runningthe four8m unit telescopes of ESO's VLT [J]. Astronomical Telescopes andInstrumentation,200225-34
    [79] M. Cayrel, R. A. Paquin, T. B. Parsonage, et al. Use of beryllium for the VLTsecondary mirror [J]. SPIE's1996International Symposium on Optical Science,Engineering, and Instrumentation,199686-98
    [80] P. Schipani, M. Brescia, M. Capaccioli, et al. The VST telescopeoptomechatronic control system [J]. International Symposium on OptomechatronicTechnologies,200767190D-67190D-67198
    [81] http://www.gmto.org/
    [82] M. Johns. The Giant Magellan Telescope (GMT)[J]. Astronomical Telescopesand Instrumentation,2006626729-626729-626715
    [83] H. Martin, J. Angel, J. Burge, et al. Design and manufacture of8.4m primarymirror segments and supports for the GMT [J]. Proc. of SPIE Vol,2006,627362730E-62731
    [84] J. Burge, L. Kot, H. Martin, et al. Design and analysis for interferometricmeasurements of the GMT primary mirror segments [J]. Astronomical Telescopes andInstrumentation,200662730M-62730M-62712
    [85] M. Johns, J. R. P. Angel, S. Shectman, et al. Status of the Giant MagellanTelescope (GMT) project [J]. Proc. SPIE,20045489441
    [86] J. R. P. Angel, J. S. Lawrence, J. W. Storey. Concept for a second Giant MagellanTelescope(GMT) in Antarctica [J]. Proceedings of SPIE,2003,538276-84
    [87] M. Lloyd-Hart, R. Angel, N. M. Milton, et al. Design of the adaptive opticssystems for GMT [J]. Astronomical Telescopes and Instrumentation,200662720E-62720E-62712
    [88] S. Gunnels, W. Davison, B. Cuerden, et al. The Giant Magellan Telescope (GMT)Structure [J]. Proc. of SPIE Vol,2004,5495169
    [89] D. G. MacMynowski, P. M. Thompson, M. J. Sirota. Analysis of TMT primarymirror control-structure interaction [J]. Astronomical Telescopes and Instrumentation:Synergies Between Ground and Space,2008701715-701715-701712
    [90] R. G. Dekany, J. E. Nelson, B. J. Bauman. Design considerations for CELTadaptive optics [J]. Astronomical Telescopes and Instrumentation,2000212-225
    [91] P. Dierickx, B. Delabre, L. Noethe. OWL optical design, active optics, and errorbudget [J]. Astronomical Telescopes and Instrumentation,2000203-209
    [92] M. S. Whorton, G. Z. Angeli. Modern control for the secondary mirror of a GiantSegmented Mirror Telescope [J]. Astronomical Telescopes and Instrumentation,2003140-150
    [93] A. Ardeberg, T. Andersen. EURO50: A EUROPEAN50MADAPTIVE OPTICSEXTREMELY LARGE TELESCOPE [M]. The Many Scales in the Universe.Springer Netherlands,2006
    [94] http://www.eso.org/sci/facilities/eelt/owl/OWL_design.html
    [95] R. F. Adaptive optics in astronomy [M]. Cambridge university press,1999.
    [96] http://www.adaptiveoptics.org/News_1207_2.html
    [97] M. H. Anderson. Liquid crystals lower the cost of adaptive optics [J]. LaserFocus World,1999,35(12):73-+
    [98] L. F. Hu, L. Xuan, Z. L. Cao, et al. A liquid crystal atmospheric turbulencesimulator [J]. Opt Express,2006,14(25):11911-11918
    [99] M. R. Brooks, M. E. Goda. Atmospheric simulation using a liquid crystalwavefront controlling device [J]. Mirror,2004,1D2
    [100] L. Hu, L. Xuan, D. Li, et al. Wavefront correction based on a reflective liquidcrystal wavefront sensor [J]. J Opt a-Pure Appl Op,2009,11(1):
    [101] N. Tabiryan, S. Nersisyan. Large-angle beam steering using all-optical liquidcrystal spatial light modulators [J]. Applied physics letters,2004,84(25):5145-5147
    [102] Z. Cao, L. Xuan, L. Hu, et al. Investigation of optical testing with a phase-onlyliquid crystal spatial light modulator [J]. Opt Express,2005,13(4):1059-1065
    [103] T. K. Ewing, W. R. Folks. Liquid crystal on silicon infrared scene projectors [J].Defense and Security,200536-45
    [104] S. Krueger, G. K. Wernicke, H. Gruber, et al. Liquid crystal display as dynamicdiffractive element [J]. Photonics West2001-Electronic Imaging,200184-91
    [105] L. Scolari, T. Alkeskjold, J. Riishede, et al. Continuously tunable devices basedon electrical control of dual-frequency liquid crystal filled photonic bandgap fibers [J].Opt Express,2005,13(19):7483-7496
    [106] G. D. Love, S. R. Restaino, R. C. Carreras, et al. Polarization insensitive127-segment liquid crystal wavefront corrector [J]. OSA summer topical meeting onadaptive optics,1996288-290
    [107] G. D. Love. Liquid-Crystal Phase Modulator for Unpolarized Light [J]. ApplOptics,1993,32(13):2222-2223
    [108] Q. Mu, Z. Cao, Z. Peng, et al. Performance simulation of an adaptive opticssystem with liquid crystal corrector under closed-loop and open-loop control [J]. OptCommun,2010,283(10):2017-2019
    [109] Q. Mu, Z. Cao, D. Li, et al. Open-loop correction of horizontal turbulence:system design and result [J]. Appl Optics,2008,47(23):4297-4301
    [110] C. Liu, L. Hu, Q. Mu, et al. Open-loop control of liquid-crystal spatial lightmodulators for vertical atmospheric turbulence wavefront correction [J]. Appl Optics,2011,50(1):82-89
    [111] C. Li, M. Xia, D. Li, et al. High-resolution retinal imaging through open-loopadaptive optics [J]. J Biomed Opt,2010,15(4):046009-046009-046006
    [112] C. Li, M. Xia, Q. Mu, et al. High-precision open-loop adaptive optics systembased on LC-SLM [J]. Opt. Express,2009,17(13):10774-10781
    [113] X. Wang, B. Wang, J. Pouch, et al. Liquid crystal on silicon (LCOS) wavefrontcorrector and beam steerer [J]. Optical Science and Technology, SPIE's48th AnnualMeeting,2003139-146
    [114] S.-T. Wu, D.-K. Yang. Reflective liquid crystal displays [M]. Wiley New York,2001.
    [115] H. Wang, T. X. Wu, X. Zhu, et al. Correlations between liquid crystal directorreorientation and optical response time of a homeotropic cell [J]. Journal of appliedphysics,2004,95(10):5502-5508
    [116] Z. L. Cao, L. Xuan, L. F. Hu, et al. Effects of the space-bandwidth product onthe liquid-crystal kinoform [J]. Opt Express,2005,13(14):5186-5191
    [117] S. T. Wu, A. M. Lackner, U. Efron. Optimal Operation Temperature ofLiquid-Crystal Modulators [J]. Appl Optics,1987,26(16):3441-3445
    [118] N. A. Clark, S. T. Lagerwall. Submicrosecond Bistable Electro-Optic Switchingin Liquid-Crystals [J]. Applied physics letters,1980,36(11):899-901
    [119]李建军.网络稳定铁电液晶中“V”字型电光特性的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2000
    [120]乌日娜.铁电液晶的排列特性研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005
    [121] A. K. Kirby, G. D. Love. Fast, large and controllable phase modulation usingdual frequency liquid crystals [J]. Opt Express,2004,12(7):1470-1475
    [122] S. A. Jewell, T. Taphouse, J. R. Sambles. Rapid switching in a dual-frequencyhybrid aligned nematic liquid crystal cell [J]. Applied physics letters,2005,87(2):021106-021106-021103
    [123] X. Nie, T. X. Wu, Y.-Q. Lu, et al. Dual-Frequency Addressed Infrared LiquidCrystal Phase Modulators with Submillisecond Response Time [J]. MolecularCrystals and Liquid Crystals,2006,454(1):123/[525]-133/[535]
    [124] A. Naoumov. Dynamic Dual-Frequency Control of Nematic Liquid Crystals inAdaptive Optics Systems [J].1997
    [125] E. Acosta, M. Towler, M. Tillin. Route towards optimization of the responsetimes of a pi-cell liquid-crystal mode [J]. Journal of applied physics,2005,97(9):093106-093106-093108
    [126] F. S. Yeung, Y. Li, H.-S. Kwok. Pi-cell liquid crystal displays at arbitrary pretiltangles [J]. Applied physics letters,2006,88(4):041108-041108-041103
    [127] C. Y. Huang, R. X. Fung, Y. G. Lin, et al. Fast switching of polymer-stabilizedliquid crystal pi cells [J]. Applied physics letters,2007,90(17):171918-171918-171913
    [128] R. Hikmet. Electrically induced light scattering from anisotropic gels [J].Journal of applied physics,1990,68(9):4406-4412
    [129] Y.-q. Lu, F. Du, Y.-H. Lin, et al. Variable optical attenuator based on polymerstabilized twisted nematic liquid crystal [J]. Opt. Express,2004,12(7):1221-1227
    [130] F. Du, Y.-q. Lu, H.-w. Ren, et al. Polymer-stabilized cholesteric liquid crystalfor polarization-independent variable optical attenuator [J]. Japanese Journal ofApplied Physics,2004,43(no.10):7083-7086
    [131] F. Du, S. Gauza, S.-T. Wu. Influence of curing temperature and highbirefringence on the properties of polymer-stabilized liquid crystals [J]. Opt. Express,2003,11(22):2891-2896
    [132] J. L. West, G. Zhang, A. Glushchenko. Stressed Liquid Crystals for ElectricallyControlled Fast Shift of Phase Retardation [J]. SID Symposium Digest of TechnicalPapers,2003,341469-1471
    [133] Y.-H. Fan, Y.-H. Lin, H. Ren, et al. Fast-response and scattering-free polymernetwork liquid crystals for infrared light modulators [J]. Applied physics letters,2004,84(8):1233-1235
    [134] G. D. Love, A. K. Kirby, R. A. Ramsey. Sub-millisecond, high stroke phasemodulation using polymer network liquid crystals [J]. Opt. Express,2010,18(7):7384-7389
    [135] J. Sun, H. Xianyu, Y. Chen, et al. Submillisecond-response polymer networkliquid crystal phase modulators at1.06-μm wavelength [J]. Applied physics letters,2011,99(2):021106-021106-021103
    [136] H. Nakamura, K. Sekiya. Overdrive Method for Reducing Response Times ofLiquid Crystal Displays [J]. SID Symposium Digest of Technical Papers,2001,32(1):1256-1259
    [137] S. Gauza, X. Zhu, W. Piecek, et al. Fast switching liquid crystals forcolor-sequential LCDs [J]. Journal of Display Technology,2007,3(3):250-252
    [138] T. J. Parks, Liquid crystal display with integrated frame buffer [P], GooglePatents,1995.
    [139] T. Kunimori, N. Kariya, S. Hiraga, et al., Liquid crystal panel drive device [P],Google Patents,2003.
    [140] G. PASQUALINI, L. ALBANI, METHOD AND CIRCUIT FOR DRIVING ALIQUID CRYSTAL DISPLAY [P], WO Patent2,004,013,835,2004.
    [141] H. Nakamura. A model of image display in the optimized overdrive method formotion picture quality improvements in liquid crystal devices [J]. Japanese Journal ofApplied Physics,2001,406435
    [142] S. Hong, B. Berkeley, S. S. Kim. Motion image enhancement of LCDs [J].Image Processing,2005. ICIP2005. IEEE International Conference on,2005,2II-17-20
    [143] W. Song, X. Li, Y. Zhang, et al. Motion‐blur characterization on liquid‐crystal displays [J]. Journal of the Society for Information Display,2008,16(5):587-593
    [144] J. I. Baek, K. H. Kim, J. C. Kim, et al. P‐173: Fast Turn‐Off Switching of aLiquid Crystal Cell by Optically Hidden Relaxation [J]. SID Symposium Digest ofTechnical Papers,2008,39(1):1846-1849
    [145] X. Nie, H. Xianyu, R. Lu, et al. Pretilt angle effects on liquid crystal responsetime [J]. Journal of Display Technology,2007,3(3):280-283
    [146] K.-M. Chen, S. Gauza, H. Xianyu, et al. Submillisecond gray-level responsetime of a polymer-stabilized blue-phase liquid crystal [J]. Journal of displaytechnology,2010,6(2):49-51
    [147] S. T. Wu, C. S. Wu. Small angle relaxation of highly deformed nematic liquidcrystals [J]. Applied physics letters,1988,53(19):1794-1796
    [148] S. T. Wu, C. S. Wu. High‐speed liquid‐crystal modulators using transientnematic effect [J]. Journal of applied physics,1989,65(2):527-532
    [149] S. T. Wu. Nematic liquid crystal modulator with response time less than100μsat room temperature [J]. Applied physics letters,1990,57(10):986-988
    [150] J. Ericksen. Continuum theory of liquid crystals of nematic type [J]. MolecularCrystals and Liquid Crystals,1969,7(1):153-164
    [151] F. C. Frank. I. Liquid crystals. On the theory of liquid crystals [J]. Discussionsof the Faraday Society,1958,2519-28
    [152] M. J. Stephen, J. P. Straley. Physics of liquid crystals [J]. Reviews of ModernPhysics,1974,46(4):617
    [153]张志东,邵喜斌.电控双折射盒中指向矢分布的计算[J].液晶与显示,1997,12(2):91-99
    [154]王谦,余飞鸿,郭海成.外电场作用下液晶指向矢分布差分迭代求解及液晶盒视角电光特性研究[J].光子学报,2001,30(3):311-316
    [155]凌志华,蒋敏,黄锡珉, et al.向列相液晶盒中液晶指向矢的分布及其显示特性的计算机模拟[J].液晶与显示,1993,1003
    [156] W. QIAN, H. SAI-LING.液晶指向矢分布的模拟和比较研究[J].物理学报,2001,50(5):926-932
    [157] Z. H. Peng, Y. G. Liu, L. S. Yao, et al. Improvement of the switching frequencyof a liquid-crystal spatial light modulator with optimal cell gap [J]. Opt Lett,2011,36(18):3608-3610
    [158]孔宁宁,李抄,夏明亮, et al. Mask相位法校准液晶空间光调制器的相位调制特性[J].光学学报,2011,31(3):1-8
    [159]李大禹,胡立发,穆全全, et al. CUDA架构下的液晶自适应波面数值解析[J].光学精密工程,2010,18(004):848-854
    [160]李大禹,胡立发,穆全全, et al.基于GPU的液晶自适应光学波前重构计算[J].光子学报,2008,37(8):1643-1647
    [161] Z. L. Cao, Q. Q. Mu, L. F. Hu, et al. Improve the loop frequency of liquidcrystal adaptive optics by concurrent control technique [J]. Opt Commun,2010,283(6):946-950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700