用户名: 密码: 验证码:
螺旋锥齿轮脉冲电化学及电化学机械光整加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮是实现相交轴传递的基础元件,由于具有重合度大、传动平稳、噪音小、承载能力高等优点,被广泛应用于汽车、飞机、机床及工程机械等领域。螺旋锥齿轮在汽车行业的应用尤为广泛,几乎所有汽车的传动系统都包含螺旋锥齿轮副。因此,螺旋锥齿轮的制造精度、质量直接影响到汽车传动系统的效率、噪声、运动精度和寿命。大量研究证实,提高齿轮表面质量可以有效改善齿轮各方面使用性能并可提高其使用寿命。对齿轮齿面进行光整加工是改善齿轮齿面质量、提高齿轮精度的有效途径。
     脉冲电化学光整加工(PECF)和电化学机械光整加工(ECMF)是近年来得到快速发展的两种非传统光整加工工艺,其突出优点是能以高效率光整加工任意硬度的金属零件表面,并可获得优良的表面形貌,目前已应用于多种零件表面的光整加工,将其应用于螺旋锥齿轮齿面光整加工对于提高锥齿轮质量具有重要意义。
     在螺旋锥齿轮加工原理方面,主要研究了螺旋锥齿轮的啮合原理和加工方法,给出了成形法加工螺旋锥齿轮大轮的调整计算公式,为脉冲电化学和电化学机械两种工艺在螺旋锥齿轮大轮齿面光整加工上的应用提供了理论依据。
     在脉冲电化学光整加工方面,从加工过程中工件阳极表面形貌的微观轮廓变化入手,研究了齿轮表面微观轮廓随加工参数的变化过程。以法拉第定律理论为基础,建立了脉冲电化学光整加工过程中工件阳极表面粗糙度和去除量随加工时间变化的理论模型,并通过实验验证了模型的正确性,解释了脉冲电化学光整加工的整平机理;在电化学机械光整加工方面,由于工件阳极表面发生电化学溶解会生成钝化膜,且钝化膜的特性是影响电化学机械光整加工质量的关键,因此,我们对钝化膜的厚度、电阻和成分做了研究,分析了钝化现象对于阳极整平过程的影响。
     在上述研究基础上,针对螺旋锥齿轮的结构特点,研究了脉冲电化学和电化学机械两种工艺在螺旋锥齿轮大轮齿面光整加工上的应用模式、关键技术及工艺特点。
     在螺旋锥齿轮脉冲电化学光整加工方面:通过对比脉冲电化学光整加工在螺旋锥齿轮大轮上应用的不同模式,确定比较合理的齿廓成形法加工方式。结合脉冲电化学光整加工原理,在现有Gleason No.16铣齿机床上建立了螺旋锥齿轮脉冲电化学光整加工的实验装置。重点研究了加工参数对螺旋锥齿轮齿面质量和齿轮精度的影响。实验结果表明,脉冲电化学光整加工不仅可以使锥齿轮表面粗糙度Rz从7.13μm降低到4.32μm,而且使锥齿轮凸面精度从原来的10级提高到8级,凹面精度从9级提高到7级。鉴于脉冲电化学光整加工过程的复杂性,将最小二乘支持向量机的方法引入脉冲电化学光整加工螺旋锥齿轮加工参数的优选。结果表明,所建立的模型具有较好的加工参数优选能力。
     在螺旋锥齿轮电化学机械光整加工方面:根据螺旋锥齿轮铣齿加工原理,在立式铣床ZX50F上建立了螺旋锥齿轮电化学机械光整加工实验装置。重点研究了阴极和阴极盘的设计、螺旋锥齿轮夹具设计和机床参数的调整。采用正交实验的方法分析了加工参数对齿轮表面质量和精度的影响。实验结果表明:在优选的工艺参数条件下,锥齿轮齿面粗糙度值可以从Ra 1.6μm降低到Ra 0.05μm,同时齿轮精度基本保持不变。
     将电化学机械光整加工引入螺旋锥齿轮齿面的光整加工中,可以替代螺旋锥齿轮齿面传统的磨削精加工。获得的齿轮表面均匀、光滑,具备较低的摩擦系数、较高的抗疲劳强度。提高螺旋锥齿轮产品的加工质量,对提高螺旋锥齿轮的使用寿命,降低啮合噪声,进而提高我国汽车、飞机、机床等设备传动系统的效率和使用寿命具有积极意义。
As a basic component in the driving of intersecting axes, spiral bevel gear (SBG) has been widely applied in the transmission system of automobiles, airplanes and many other machine tools since it has many advantages such as the big overlap ratio, the stability, lower noises and high loading capacity. The application of SBG in automobiles is particularly wide, and every transmission of automobile contains a pair of spiral bevel gear at least. The manufacturing accuracy and quality of SBG have direct influence on the efficiency, noise, precision and lifespan of the automobile transmission. A large number of studies show that the service performance has been improved and the lifespan has been increased by improving surface quality of gear. Finishing provides an effective method for improving gear surface quality and then improving gear accuracy.
     Pulse Electrochemical Finishing (PECF) and Electrochemical Mechanical Finishing (ECMF) are two kinds of nontraditional finishing process, which could finish the workpiece surface with any hardness efficiently and have been used as the finishing process of various parts. So, applying PECF and ECMF to SBG tooth surfaces is of great significance to the improvement of its quality.
     In PECF, the variation of workpiece surface micro-topography has been studied. Based on the Faraday's law, the theoretical models about the variation of the surface roughness and the removal thickness with the finishing time have been developed. The validity of developed models has been verified through experiments. The effects of processing parameters on surface profile have been investigated and the smoothing mechanism of PECF is explained. In ECMF, the characteristic of passive film formed on the workpiece surface by anodic dissolution is the key for workpiece surface smoothing in ECMF. The thickness, resistance and composition of the passive film have been determined through experiments in order to make a further analysis about the effects of passive state on the anodic smoothing.
     Based on the above discussion and according to the structure features of SBG, the applications of PECF and ECMF to the SBG are discussed.
     In the study of PECF's application to the SBG tooth surfaces finishing, different application schemes are compared. It has been found that PECF with a tooth profile shaped cathode is a preferable scheme. Combined with the principle of PECF, an experimental setup for the SBG tooth surfaces finishing has been established based on Gleason No.16 cutting machine. The experimental results show that the SBG tooth surface roughness Rz is reduced from 7.13μm to 4.32μm. According to Din3965, the precision of the SBG convex side is improved form 10 to 8, and the precision of the SBG concave side is improved from 9 to 7. Because the PECF is complicated and non-linear process, least square support vector machine (LSSVM), an intelligent model is adopted for optimizing the processing parameters. The results indicate that the model has reasonable accuracy.
     In the study of ECMF's application to the SBG tooth surface finishing, an experimental setup for the SBG tooth surfaces finishing has been established based on ZX50F vertical milling machine. The cathode design, the cutter head design, the gear fixture design and the parameters adjustment of vertical milling machine are especially studied. The experimental results show that the SBG tooth surface roughness Ra is reduced from 1.6μm to 0.05μm and the precision of the SBG is maintained.
     The conventional grinding methode can be insteaded by ECMF in tooth surfaces finishing of SBG. The tooth surfaces after ECMF are uniform and smooth, which has many advantages such as small friction coefficient, high contact rigidity and high fatigue resistance. ECMF can improve the lifespan and decrease the meshing noise of SBG pair. In order to improve the efficiency and lifespan of transmission system of automobiles, airplanes and many other machine tools, the quality of SBG products should be improved.
引文
[1]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业出版社,1989.
    [2]王声堂.汽车齿轮市场的发展趋势[J].汽车工艺与材料,2003,1:6-7.
    [3]乐美豪.中国齿轮制造也的发展预测[J].制造技术与机床,2003,5:11-13.
    [4]孙凤池.汽车齿轮制造技术及研究方向[J].汽车工艺与材料,2007,3:1-3.
    [5]江甫炎.近代齿轮制造工艺[M].北京:航空工业出版社,1994.
    [6]徐为民,瞿铁.螺旋锥齿轮断齿失效分析[J].矿山机械,1992,3:27-29.
    [7]唐定国.迈向21世纪的我国齿轮工业和齿轮传动技术[J].机械传动,1996,S1:84-87.
    [8]周锦进,李洪友,王晓明.齿轮表面质量对其使用性能和寿命影响的研究[J].机械科学与技术,2004,(23)4:468-470.
    [9]李洪友,周锦进,庞桂兵等.表面质量对齿轮使用性能指标的影响[J].农业机械学报,2004,35(4):174-178.
    [10]杨世春,汪鸣铮,张银喜等.表面质量与光整技术[M].北京:机械工业出版社,2000.
    [11]Britton R D, Elcoate C D, Alanou M P, et al. Effect of surface finish on gear tooth friction [J]. Journal of Tribology-Transactions of the ASME,2000,122(1):354-360.
    [12]庞桂兵.脉冲电化学及电化学机械齿轮光整与修形加工技术研究[D].大连:大连理工大学,2005.
    [13]李洪友.齿轮的脉冲电化学光整加工技术基础研究[D].大连:大连理工大学,2003.
    [14]Wang B C, Zhu J H. Effect of electrochemical polishing time on surface topography of mild steel [J]. Journal of University of Science and Technology Beijing,2007, 114(3):236-239.
    [15]Nakatsuji T, Mori A, Shimotsuma Y. Pitting durability of electrolytically polished medium carbon steel gears [J]. Journal of Tribology-Transactions of the ASME,1995,38 (2):223-232.
    [16]Nakatsuji T, Mori A. Pitting durability of electrolytically polished medium carbon steel gears—succeeding report [J]. Journal of Tribology-Transactions of the ASME,1999,42 (2):393-400.
    [17]Tonshoff H K, Friemuth T, Marzenell C. Properties of honed gears during lifetime [J]. CIRP Annals-Manufacturing Technology,2000,49(1):431-434.
    [18]Krantz T L, Alanou M P, Evans H P, et al. Surface fatigue lives of case-carburized gears with an improved surface finish [J]. Journal of Tribology-Transactions of the ASME,2001,123:709-716.
    [19]季萍.汽车主减速器螺旋锥齿轮机械加工工艺[J].汽车工艺与材料.2009,2:53-55.
    [20]程文,谢耀东.先进的螺旋锥齿轮弧齿加工工艺的探讨[J].机械制造,2008,46(525):48-50.
    [21]孙进平.弧齿锥齿轮硬齿面加工的现状与发展[J].机械工艺师,1997,6:31-32.
    [22]凌文锋,王小椿,姜虹.螺旋锥齿轮珩磨轮的制造方法[J].机械工程学报,2007,43(9):138-144.
    [23]袁根福,祝锡晶.精密与特种加工技术[M].北京:北京大学出版社,2007.
    [24]续栋梁,李元宗,刘强等.磨料流加工对齿轮精度的分析及其降噪效果[J].电子工艺技术,1991,1:45-47.
    [25]李元宗.磨料流加工齿轮鼓形齿的方法:中国:CN91105373.5[P].1993.02.17.
    [26]Capello G, Bertoglio S, Dapiran A. A new approach by electrochemical finishing of hardened cylindrical gear tooth face [J]. CIRP Annals-Manufacturing Technology, 1979,28(1):103-107.
    [27]周锦进,李有年,徐中耀.电解加工“鼓形齿”“修缘齿”齿轮工艺的研究[J].组合机床,1980(8):31-40.
    [28]Nakatsuji T, Mori A. Tribological properties of electrolytically polished surfaces of carbon steel [J]. Tribology Transactions,1998,41(2):179-188.
    [29]陈企平.电解珩齿试验及其原理探讨[J].大连工学院学刊,1980,3:61-74.
    [30]王晓明.脉冲电化学及其复合光整加工机理和表面特性的研究[D].大连:大连理工大学,2002.
    [31]周锦进,翟小兵,庞桂兵等.脉冲电化学光整加工实验研究[J].大连理工大学学报,2003,43(3):311-314.
    [32]周锦进,王晓明,庞桂兵.非传统光整加工技术研究[J].大连理工大学学报,2003,43(1):51-56.
    [33]Kozak J, Rajurkar K P, Ross R F. Computer simulation of pulse electrochemical machining (PECM)[J]. Journal of Materials Processing Technology,1991,28:149-157.
    [34]Kozak J, Rajurkar K P, Wei B. Modelling and analysis of pulse electrochemical machining (PECM)[J]. Journal of Engineering for Industry,1994,116:316-323.
    [35]Rajurkar K P, Wei B, Kozak J. Modelling and monitoring interelectrode gap in pulse electrochemical machining [J]. Annals of CIRP,1995,44(1):177-180.
    [36]Rajurkar K P, Zhu D, Wei B. Minimization of machining allowance in electrochemical machining [J]. Annals of CIRP,1998,47(1):165-168.
    [37]余承业,刘正埙,黄因慧等.脉冲电流电解加工流场特性的研究[J].电加工,1984,4:1-6.
    [38]Yu C Y, Huang Y H, Liu Z X. The investigation of the flow characteristics of the gap in the pulse electrochemical machining [J]. CIRP Annals-Manufacturing Technology,1982,31 (1):119-123.
    [39]Masuzawa T, Sakai S. Quick finishing of WEDM Products by ECM Using a mate-electrode [J]. CIRP Annals-Manufacturing Technology,1987,26(1):123-126.
    [40]Masuzawa T, Kimura M. Electrochemical surface finishing of tungsten carbide alloy [J], CIRP Annals-Manufacturing Technology,1991,40:199-202.
    [41]Masuzawa T, Kou C L M, Fujino A. Combined electrical machining process for micronozzle fabrication [J]. CIRP Annals-Manufacturing Technology,1994,43: 189-192.
    [42]De Silva A K, Mc Geough J A. Proceedings of the 12th International Symposium for Electromachining [C]. VDI-Verlag Dtlsseldorf,1998.
    [43]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001.
    [44]Rosset E, Datta M, Landolt D. Pulse polishing of die steels in neutral solution [J]. Plating and Surface Finishing,1985,7:60-64.
    [45]C. de Regt,侯中一译.制造高精度零部件的电化学加工[J].电加工,1989,1:41-47.
    [46]Zybura-Skrabalak M, Ruszaj A. The influence of electrode surface geometrical structure on electrochemical smoothing process [J]. Journal of Materials Processing Technology,2000,107:288-292.
    [47]Sun J J, Taylor E J, Srinivasan R. MREF-ECM process for hard passive materials surface finishing [J]. Journal of Materials Processing Technology,2001,108: 356-368.
    [48]Wei B, kozak J, Rajurkar K P. Pulse electrochemical machining of Ti-6A1-4V alloy [J], Transactions of NAMRI/SME,1994,22:141-147.
    [49]Mahdavinejad R, Hatami M. On the application of electrochemical machining for inner surface polishing of gun barrel chamber [J]. Journal of Materials Processing Technology,2008,202:307-315.
    [50]Ramasawmy H, Stout K, Blunt L. Effect of secondary processing on EDM surfaces [J]. Surface Engineering,2000,16(6):501-505.
    [51]Ramasawmy H, Blunt L.3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces [J]. International Journal of Machine Tools & Manufacture,2002,42:567-574.
    [52]Pa P S. Design of thread surface finish using ultrasonic-aid in electrochemical leveling [J]. International Journal of Advanced Manufacturing Technology,2008,36: 1113-1123.
    [53]Pa P S. Design of effective plate-shape electrode in ultrasonic electrochemical finishing [J]. International Journal of Advanced Manufacturing Technology,2007,34: 70-78.
    [54]Hocheng H, Pa P S. Electropolishing and electrobrightening of holes using different feeding electrodes [J]. Journal of Materials Processing Technology,1999,89-90: 440-446.
    [55]王建业.电解加工技术的新发展—高频窄脉冲电流电解加工[J].电加工,1998,2:37-41.
    [56]朱树敏,沈光祖.锻模脉冲电流电解加工[J].电加工与模具,1990,1:15-17.
    [57]沈健,牛志强,张海岩等.微秒级脉冲电流电化学抛光的工艺规律研究[J].电加工与模具,2001,6:49-51.
    [58]李晓伟,吴蒙华,王彤等.微秒级脉冲电流电化学加工研究[J].电加工,1996,4:11-14.
    [59]阿达依·谢尔亚孜旦.螺旋锥齿轮电化学光整加工技术基础研究[D].大连:大连理工大学,2007.
    [60]万亚兰,李福援.电解机械光整加工机理及其数学模型[J].机械科学与技术,1998,3:285-287.
    [61]Lee S J, Lee Y M, Du M F. The polishing mechanism of electrochemical mechanical polishing technology [J]. Journal of Materials Processing Technology,2003,140: 280-286.
    [62]木本康雄,垣野羲昭,小昌一志.电解复合镜面加工の基础研究[J].Memoirs of the Osaka Institute of Technology,Senese A,1985,29(2):25-29.
    [63]木本康雄,垣野羲昭,中川真二.高精度电解复合の镜面加工[J].精密工学会志,1988,54(2):13-18.
    [64]#12
    [65]#12
    [66]清宫统一.电解砥粒研磨法によゐ镜面加工[J].应用机械工学,1987,2:102-108.
    [67]#12
    [68]TehRani F A, Atkinson J. Overcut in pulsed electrochemical grinding [J]. Journal of Engineering Manufacture,2000,214(4):259-269.
    [69]Pa P S. Synchronous finishing processes using a combinationof grinding and electrochemical smoothing on end-turning surfaces [J]. International Journal of Advanced Manufacturing Technology,2009,40:277-285.
    [70]张文峰,赵家齐.流动磨料电解研磨复合加工工艺[J].机械工艺师1997,4:20-21.
    [71]张文峰,赵家齐.流动磨料电解研磨复合工艺的研究[J].精密制造与自动化,1994,3:56-58.
    [72]奚绍申,陈烨,蔡洪涛等.用转盘式电极对圆柱形表面进行镜面抛光[J].电加工,1991,5:9-12.
    [73]周锦进,杨连文,徐中耀等.电化学机械光整加工[J].电加工与模具,1992,5:19-23.
    [74]周锦进,范若松.冷轧机工作辊电化学机械加工新工艺[J].电加工与模具,1985,3:1-3.
    [75]李邦忠.基于电化学机械复合机理的大面积薄板和粗糙表面镜面光整加工技术研究[D].大连:大连理工大学,2004.
    [76]周锦进.聚氯乙稀釜内壁镜面加工新工艺:中国,85102757[P].1986,07,30.
    [77]杨连文,周锦进.电化学机械加工在化工容器制造中的应用[J].化工机械,1996,2:46-47.
    [78]周锦进.电研磨工艺的研究[J].大连工学院学刊,1962,3:185-198.
    [79]周锦进等.模具特种光整加工技术.国家级成果,项目标号:892844
    [80]陶彬.轴承滚道电化学机械凸度成型与光整加工技术基础研究[D].大连:大连理工大学,2008.
    [81]Brusilovski Z. Adjustment and readjustment of electrochemical machines and control of the process parameters in machining shaped surfaces[J]. Journal of Materials Processing Technology,2008,196:311-320.
    [82]阿达依·谢尔亚孜旦,周进锦,庞桂兵等.电化学光整加工在螺旋锥齿轮中的应用研究[J].机械科学与技术.2010,29(1):76-80.
    [83]李兆文,王勇,陈正洪.螺旋锥齿轮技术的研究现状[J].工具技术.2007,41(10):3-6.
    [84]吴序堂.齿轮啮合原理[M].北京:机械工业出版社,1982.
    [85]WILDHABER E.Spiral bevel gear:US,1748813[P].1924-1-25. http://www. google. com. hk/patents?hl=zh-CN & lr=&vid=USPAT1748813&id=KoJWAAAAEBAJ &oi=fnd&dq=spiral+bevele+gear&printsec=abstract#v=onepage&q&f=false.
    [86]李小清.螺旋锥齿轮数控加工与误差修正技术[D].武汉:华中科技大学,2004.
    [87]天津齿轮机床研究所,西安交通大学.格里森锥齿轮技术资料译文集第一分册锥齿轮啮合及加工原理[M].北京:机械工业出版社,1986.
    [88]郑昌启.局部共轭的“密切抛物面”原理及其在弧齿锥齿轮切齿计算中的应用研究[J].重庆大学学报(自然科学版),1978,3:1-42.
    [89]郑昌启.弧齿锥齿轮和准双曲面锥齿轮一啮合原理、轮坯设计、加工调整和齿面分析计算原理[M].北京:机械工业出版社,1988.
    [90]高业田,曾韬.等距共轭曲面原理及其应用[J].机械工程学报,1983,19(3):51-60.
    [91]董学朱.齿轮啮合理论基础[M].北京:机械工业出版社,1989.
    [92]《电解加工》编译组编译.电解加工[M].北京:国防工业出版社,1977.
    [93]Rajurkar K P, Kozak J, Wei B, et al. Study of pulse electrochemical machining characteristics [J]. Annals of CIRP,1993,42(1):231-234.
    [94]Landolt D. Fundamental aspects of electropolishing [J]. Electrochimica Acta,1987,32(1):1-11.
    [95]机械科学研究院.GB/T 3505-2000产品几何技术规范表面结构轮廓法表面结构的术语、定义及参数[S].国家质检总局(SBTS),2000.
    [96]徐家文,云乃彰,王建业等.电化学加工技术一原理·工艺及应用[M].北京:国防工业出版社,2008.
    [97]朱树敏,陈远龙.电化学加工技术[M].北京:化学工业出版社,2006.
    [98]张永祥.对电解加工产物中六价铬处理的探讨[J].合肥工业大学学报,1980,1:121-126.
    [99]徐文骥,周锦进.复合轨迹电解磨料加工实验研究[J].电加工,1993,4:16-18.
    [100]徐文骥.复合轨迹电解磨料镜面加工工艺研究[D].大连:大连理工大学,1992.
    [101]翟小兵.脉冲电化学光整加工技术及应用研究[D].大连:大连理工大学,2004.
    [102]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [103]Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer,1995.
    [104]Suykens J A K, Gestel T V, Brabanter J D, et al. Least Squares Support Vector Machines [M]. Singapore:World Scientific,2002.
    [105]Suykens J A K, Vandewalle J, Moor B D. Optimal control by least squares support vector machines [J]. Neural Networks,2001,14(1):23-35.
    [106]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9(3):293-300.
    [107]Tao B, Xu W J, Pang G B, et al. The 4th International Conference on Natural Computation [C]. IEEE Computer Society,2008.
    [108]吴德会.基于最小二乘支持向量机的铣削加工表面粗糙度预测模型[J].中国机械工程,2007,18(7):838-841.
    [109]朱家元,杨云,张恒喜等.基于优化最小二乘支持向量机的小样本预测研究[J].航空学报,2004,25(6):565-568.
    [110]Beamish R J, Fournier D A. A method for comparing the precision of a set of age determinations [J]. Canadian Journal of Fisheries and Aquatic Sciences,1981,38: 982-983.
    [111]刘浩然,刘志峰,陈良玉.在普通数控铣床上加工螺旋锥齿轮[J].机电一体化,2003,6:71-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700