用户名: 密码: 验证码:
发动机叶片精密电解加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机作为飞机的心脏,其研制工作是一项系统工程,从某种程度上代表了一个国家科技的最高水平。近年来,我国航空航天事业取得了突飞猛进的发展,新一代飞机陆续研制,航空发动机的研制工作也获得了长足的进步,其中航空制造技术一直扮演了重要的角色。在发动机的各部件中,叶片是最为重要的零部件之一,由于其作用突出、位置特殊、叶型扭曲等特点,给制造带来了困难,多年来一直成为研究的重点。在众多的制造技术中,电解加工技术因其自身所具有的无工具损耗、不受金属材料本身力学性能的限制、加工效率高等特殊优点,正好与叶片制造中材料特殊、加工困难以及加工批量大等特点相吻合,使其成为了叶片制造的主要方法之一。然而随着发动机性能的不断提高,叶片的材料、形状也不断变化,出现了超薄、大扭角、低展弦比等特殊形状的叶片,同时制造的精度要求也不断提升,这些都给电解加工带来了新的挑战。如何提高叶片电解加工的加工精度和表面质量,缩短准备周期,增加自动化程度,以适应不断提高的叶片要求,就成为了电解加工的研究重点,也是本文的主要研究内容。
     本文依据目前叶片电解加工技术的研究现状,针对其中的若干关键技术和难点开展研究工作,以期进一步发掘电解加工的潜力,获得良好的结果,并对后续的研究起到促进作用。本文的主要研究内容包括了以下几个方面:
     1.提出了全方位计算机辅助叶片电解加工方法。区别于传统全方位的定义,不仅仅是指同时加工叶片的各个部位,而是将叶片电解加工中的叶片造型、流场设计、角度优化、阴极设计、加工试验及阴极修正等全过程纳入叶片电解加工全方位计算机辅助集成系统中,对各个重要环节进行计算机控制,以此提高电解加工的自动化程度,减少人为因素的影响,从而提高叶片的加工精度。
     2.设计了三头柔性进给叶片电解加工模式。克服传统叶片电解加工方法的进给角度固定,缘板易形成锥度及二次腐蚀等缺陷,采用阳极运动策略,通过阴极工具与阳极工件的速度比拟合出进给角度。讨论了加工精度和进给角度及毛坯装夹角度的相关性,根据叶片型面及缘板对加工精度的不同要求,给出了相应的角度优化准则,并得到了叶盆、叶背各自的最佳角度组合。
     3.提出了主动控制的双向进液电解液流动方式。根据传统侧流式存在的不足,提出了主动控制的电解液流动方式,通过建立二维不可压缩流场模型,利用有限元方法分析比较了该流动方式与传统侧流式的优缺点。由电解液流动特点及叶片不同部位对加工精度的要求,设计了缘板两侧进液,由叶尖出液的双向进液流动。针对尖角处可能存在的缺液现象,给出了增加导流块的解决办法。根据流场的质量、动量、能量守恒方程及布拉休斯公式求解不可压缩流场模型,从理论上分析了电解加工间隙的流场特性。由电解液流动方式的特点设计了与之相应的电解加工夹具,保证了新的流动方式得以实现。
     4.给出了叶片电解加工阴极修正方法及阴极修正的模糊控制策略。改变传统阴极通过人工修正,费时费力的现状,通过分析加工间隙与加工误差的关系,建立阴极修正模型,将加工误差以一定比例引入阴极修正环节,由改变相应的加工间隙值来重新构建阴极型面,达到阴极修正的目的。在此基础上,增加BP神经网络,通过已有试验数据对其进行训练,得到了相应的权值和阈值,由此建立加工误差与修正量之间的模糊控制策略,进一步减少修正的迭代次数,缩短阴极准备周期,提高复制精度。
     5.完善了三头柔性进给叶片电解加工系统。针对已有的三头进给叶片电解加工机床平台,搭建了其电解液循环系统和数控系统,利用虚拟仪器技术及其Labview开发平台,以及Flexmotion运动控制模块,编写了电解加工系统软件,实现了阴极对刀、运动控制、参数选择、数据采集等一系列功能,整个系统得以稳定有效地运行。
     6.在搭建的叶片电解加工系统平台上,进行了叶片电解加工的试验研究。针对三头柔性进给模式,开展了不同进给角度组合下的对比试验,试验表明采用优化得到的角度组合,可以有效的保证型面成型精度,并提高缘板的加工精度;针对主动控制的电解液流动方式,开展了与其他流动方式下叶片加工的对比试验,试验验证了主动控制流动方式的合理性,叶片表面粗糙度从Ra1.67μm降到Ra0.36μm,加工精度也有所提高;针对阴极设计存在的叶片加工复制误差问题,对阴极进行了修正,采用三次变间隙阴极修正法,使得型面精度提高到0.05mm。同时对模糊控制下的阴极修正问题进行了试验研究,结果显示该BP网络设计合理,运行稳定,通过该网络得到的阴极修正量与试验较为吻合。
     7.将全方位计算机辅助叶片电解加工方法应用于某新型航空发动机叶片的研制。针对该叶片加工精度要求高、型面超薄且特别扭曲等特点,采用了上述提到的各项技术,使叶片造型、模式选择、角度优化、速度控制、阴极设计、流场分布、叶片加工、阴极修正和型面检测等过程都和计算机技术紧密结合,最终达到了设计要求,型面精度稳定在0.05mm。
Aeroengines seem to be the hearts of aircrafts. From a certain angle, the development of aeroengine represents the whole science and technology strength for a country. Aerospace of China has gained great development and the research of aeroengine has made rapid progress in recent years. Aeronautical manufacturing technology plays an important role in aeroengine development. Blades are very important parts of aeroengine. They impart kinetic energy and redirect the flow to the next stage at the optimum angle. Because of the special characteristics of turbine blade and the hardness of manufacturing, the processing method of blade has been the key point of research in many years. Being a non-mechanical metal removal process, electrochemical machining (ECM) provides an economical and effective way for machining heat-resistant, high strength materials into complex shapes which are difficult to machine by conventional method, so it becomes the main method to process turbine blade. With the raise of aeroengine performance, the changement of the blade materials and profiles, and the improvement of machining accuracy, ECM has faced a higher challenge. The research emphases is to improve the surface quality and machining accuracy of blade in ECM, shorten the period of blade making, reduce the jamming and raise the automation level of blade processing which are the main research contents in this paper.
     According to the research actuality of blade ECM, the present study focused on the several key technologies and difficulties of blade ECM in order to improve the potential ability of ECM further and settle the foundation for the following study. The main research contents of this paper include:
     1. The idea of Digital Description to Full Process of blade ECM was presented. Different from the traditional definition of omnidirectional blade ECM which machined the several parts of blade simultaneously, the meaning of this idea is to make the full process of blade ECM under the computer control. All the links of blade ECM, such as blade modeling, designation of flow field and cathode, optimization of feeding angles, blade experiments and amendment of cathode, combined firmly with computer technology. The aim is improving the automation level of blade ECM and reducing the human disturbance.
     2. A flexible 3-Electrode feeding ECM method was investigated. The anode was moved during the process and the feeding angles of two cathodes were fitted by the velocities of cathodes and anode in order to overcome the defects of traditional blade ECM which includes fixed feeding angles, tapered platform and two time etching. The relationship of machining accuracy with the feeding angles and workship clamping angle was discussed. The optimization criterion of these angles was given according to the different accuracy requirements of profile and platform. The optimal angle combination was also got in this paper.
     3. A new electrolyte flow mode named“active distributary mode”was proposed. Since flow field is a critical factor to affect the ECM process stability and the accuracy of blade, a two-dimensional incompressible flow field model describing electrolyte flow in the interelectrode gap was developed. The flow mode was analyzed by finite element method and was contrast with the traditional lateral flow modes. Electrolyte flowed from the platform of blade and was divided into two parts to flow across the convex and concave parts of blade individually considering the characteristics of electrolyte flow and the different accuracy requirements of blade profile and platform. The performances of electrode corners starved of electrolyte were studied and diversion block was designed to solve the problem. According to the continuity equation, momentum equation, energy equation and the Blasius formula of flow field, the characteristics of electrolyte flow between the gap of cathode and anode were analyzed by using forth order Runge-Kutta method with varying step size. The relevant clamping fixture which makes the flow tunnels was also designed in this paper.
     4. The variable gap amendment method of cathode and the cathode modification model using BP neural network were proposed. The corrections data of cathode were variable based on the value of interelectrode gap and were used to the cathode design. The approximate formula of cathode corrections data which were calculated along the contours line was given and the experimental method of interpolation approximation was also adopted. The digital cathode modification model was developed using BP neural network on the basis of the method of the variable gap modification of cathode and its experimental data. The network was trained by the experimental data which is normalized, and then it was simulated. The simulation results showed that the model has a good prediction effects.
     5. The blade ECM machining system was perfected. The electrolyte circulation system and CNC system were built based on the blade ECM machine tool. The software system of blade ECM was designed by using the virtual instrument technology and Labview development platform which including Flexmotion module.
     6. Some blade ECM experiments were carried out. The comparative tests of different feeding angle combinations were developed. The results showed that with the optimal angle combination the accuracy of blade profile could be kept and the accuracy of blade platform could be improved. The experimental investigations of flow field were carried out in order to evaluate the rationality of the flow mode. It revealed that the surface roughness could be improved to 0.36(Ra) with the new flow mode. On the contrary, the surface roughness of the blade profile with the traditional lateral flow mode was 1.67(Ra). The machining accuracy could also be enhanced. The experimental investigations by using the cathode amendment method were carried out. The results reveal that the accuracy of blade was enhanced to 0.05mm by using the method 3 times. Furthermore, the efficiency and automation level of cathode amendment could be improved by using the BP neural network cathode modification model.
     7. The idea of Digital Description to Full Process of blade ECM was applied in the development of a certain aeroengine blade. Because of the high requirement of machining accuracy and the special thin and distortion of blade profile, it was difficult to be made by ECM. The technologies and methods above mentioned were applied in the process. The whole making process, such as blade modeling, designation of flow field and cathode, control of making velocity, optimization of feeding angles, designation of flow field, blade experiments and amendment of cathode, was controlled by computer technology. The results revealed that the machining accuracy of blade profile could be improved to 0.05mm with the technologies and methods above mentioned.
引文
[1]《电解加工》编译组,电解加工,国防工业出版社, 1977.7.
    [2]朱荻,国外电解加工的研究进展,电加工与模具, 2000, (1), 11-16.
    [3] D. Zhu, H. Y. Xu, Improvement of electrochemical machining accuracy by using dual pole tool. Journal of Materials Processing Technology, 2002, 129 (1): 15-18.
    [4] K P Rajurkar, D Zhu, J A McGeough, et al. New Development in ECM. Annals of CIRP, Keynote Paper, 1999, 48(2): 569-579.
    [5]刘晋春,赵家齐,赵万生.特种加工.机械工业出版社,北京, 1999.
    [6]余承业,电解加工新技术.北京:国防工业出版社, 1995.
    [7]郭晓红,电解加工在生产实际中的应用,矿山机械, 2001, (7): 62-66.
    [8]朱荻.电解加工阴极型面计算机辅助设计基础研究.南京航空航天大学博士学位论文,南京, 1985.2.
    [9]王亦红.径向水平生产管电化学射孔及切割技术研究,南京航空航天大学博士学位论文,南京, 2000.
    [10]郭海生.数控展成电解加工整体叶轮的若干工程实用化问题研究,南京航空航天大学硕士学位论文,南京, 2000.1.
    [11]钱军.精密电解加工及大功率脉冲斩波器的研究,南京航空航天大学博士学位论文,南京, 1996.5.
    [12] Risko, Donald G, Davydov, et al. Manufacturing applications and productivity limitations of electrochemical machining. Manufacturing Science and Engineering, 1993, 64:701-711.
    [13] Wilson J F, Practice and theory of electrochemical machining. wile-interscience, NY, 1971.
    [14] N Tenigyohi. Current status in and future trends of ultra-precision machining and ultra-fine material processing. Annals of CIRP, 1983, (2): 573–582.
    [15] Zaytsev A, Agafonov I, Gimaev N, et al. Precise pulse electrochemical machining by bipolar current: Aspects of effective technological application. Journal of Materials Processing Technology, 2004, 149 (1-3): 419-425.
    [16] Rybalko A V, Dikusar A. Electrochemical Machining with Microsecond Pulses. Proceedings of the ISEM-11, 1995: 491-50.
    [17] Kock M, Kirchnerm V, Schuster R. Electrochemical Micromachining with Ultroshort Voltage Pluses—a Versatile Method with Lithographical Precision. Electrochemical Acta, 2003, 48 (20-22): 3213-3219.
    [18]王建业,冯倩,罗干英,高频、窄脉冲电流电解加工模具实验研究.电加工与模具, 1999, 4:17-20.
    [19]周毅均,李树新.脉冲电解加工工艺参数对粗糙度影响的研究.淮南工业学院学报, 2002, 22(1): 29-31.
    [20] Kenney Jason A, Hwanga G S. Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses. Applied Physics Letters, 2004, 84(19): 3774~3776.
    [21]王建业.提高电解加工模具成型精度的新途径——高频、窄脉冲电流源电解加工(HSPECM).航空制造技术, 2002(12): 21-24.
    [22]陈济轮.机械—脉冲—混气电解加工技术.航天制造技术, 2001, (6 ): 9-12.
    [23]沈健,朱树敏,陈远龙.锻模电解加工新技术.电加工与模具1998, (1): 12-15.
    [24]沈健,陈心昭,朱树敏.振动进给与脉冲电流电解加工的工艺特性.农业机械学报. 2002, 33(3): 110-114.
    [25]王建业,冯倩,罗干英等.高频、窄脉冲电流电解加工模具试验研究.电加工与模具1999, (4): 17-20.
    [26]安军,周锦进,脉冲电化学光整加工的机理及影响因素.中国机械工程, 20002, 13(14): 1189-1192.
    [27] Wei B, Rajurkar K P. Identification of Interelectrode Gap Sizes in Pulse ECM. Journal of the ISEM-11,1995.
    [28] Bhattacharyya J, Munda M, Malapati. Advancement in electrochemical micro-machining. International Journal of Machine Tools and Manufacture, 2004, 44(15): 1577-1589.
    [29]孙雅洲,梁迎春,程凯.微米和中间尺度机械制造.机械工程学报, 2004, 40(5): 1-6.
    [30]苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社, 2002.
    [31]石庚辰,微机电系统技术.北京:国防工业出版社, 2002.
    [32]周兆英,王晓浩,叶雄英等.微型机电系统.中国机械工程, 2000, 11(1-2): 163-169.
    [33]王沫然,李志信.基于MEMS的微泵研究进展.传感器技术, 2002, 21(6): 59-61.
    [34] Deng K, Dewa A S, Ritter D C, et al. Characterization of gear pumps fabricated by LIGA. Microsystem Technologies, 1998(4): 163-167.
    [35] Volker Seidemann, Sebastian Butefisch, Stephanus Buttgenbach. Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sensors and Actuators, 2002, (97-98): 457-461.
    [36] W M Qu, Christian Wenzel, Gerald Gerlach. Fabrication of a 3D differential-capacitive acceleration sensor by UV-LIGA. Sensors and Actuators, 1999, (77): 14-20.
    [37] Qu W, Wenzel C, Drescher K. A vertically sensitive accelerometer and its realization by depth UV lithography supported electroplating. Microelectronics Journal, 2000, (31): 569-575.
    [38]石晶,于建群.基于MEMS技术的毛细管电泳芯片.中国生物工程杂志. 2003, 23(10): 89-92.
    [39]白兰,吴一辉,张平.基于MEMS的微流体混合器的研究与进展.哈尔滨工业大学学报,2004, 36(4): 543-545.
    [40]王科平,葛峻,秦明. MEMS静电执行光开关的设计与实验.电子器件, 2003, 26(3): 240-252.
    [41] J Mohr, A Last, U Wallrabe. Free Space Optical Components Based on LIGA Technology. 8th Microoptics Conference (MOC’01), Osaka, Japan, October 24-26, 2001.
    [42] Yannick Ansel, Frank Gindele, Jorg Scheurer, et al. Optical Waveguide device realized using two SU-8 Layer. 2002, IEEE: 123-124.
    [43] Watanabe Y, Edo M, Nakazawa H, et al. A new fabrication process of a planar coil using photosensitive polyimide and electroplating. Sensors and Actuators, 1996, (54): 733-738.
    [44] Thies A, Piotter V, Hausselt J H, et al. A new method for mass fabrication of metallic microstructures. Microsystem Technologies, 1998, (4): 110-112.
    [45]姚劲松,王志勤,王飞等.准LIGA工艺技术在加工微金属齿轮中的应用.光学精密工程, 1995, 3(2): 64-66.
    [46] Seok-Whan Chung, Jong-Woo Shin, Yong-Kweon Kim, et al. Design and fabrication of micromirror supported by electroplated nickel posts. Sensors and Actuators, 1996, (54): 464-467.
    [47] Cho H S, Hemker K J, Lian K, et al. Measured mechanical properties of LIGA Ni structures. Sensors and Actuators, 2003, (103): 59-63.
    [48] Hirata T, Guenat O T, Akashi T, et al. A numerical simulation on a pneumatic air table realize by Micro-EDM. Journal of Microelectromechanical systems, 1999, 8(4): 523-528.
    [49] Chung C K, Lin C J, Chen C C, et al. Combination of thick resist and electroforming technologies for monolithic inkjet application. Microsystem Technologies, 2004, (10): 462-466.
    [50] Kuo C L, Huang J D, Liang H Y. Fabrication of 3D Metal Microstructures Using a Hybrid Process of Micro-EDM and Laser Assembly. International Journal of Advanced Manufacturing Technology, 2003, (21): 796-800.
    [51] Chung S J, Hein H, Hirata T, et al. A micro cycloid-gear system fabricated by multi-exposure LIGA technique. Microsystem Technologies, 2000, (6): 149-153.
    [52] Terry Garino, Alfredo Morales, Thomas Buchheit, et al. The Fabrication of Stainless Steel Parts for MEMS. SAND REPORT, 2002: 1-20.
    [53] Jan Peirs, Dominiek Reynaerts, Filip Verplaetsen, et al. A Microturbine Made by Micro-Electro-Discharge Machining. The 16th European Conference on Solid-State Transducers, September 15-18, 2002, Prague, Czech Republic: 790-793.
    [54] Kenichi Kataoka, Shingo Kawamura, Toshihiro Itoh. Electroplating Ni micro-cantilevers for low contact-force IC probing. Sensors and Actuators, 2003, (103): 116-121.
    [55] Frédéric Gillot, Pascal Mognol, Benoit Furet. Dimensional accuracy studies of copper shells used for electro-discharge machining electrodes made with rapid prototyping and the electroforming process. Journal of Materials Processing Technology, 2005, (159): 33-39.
    [56] Bohm J, Schubert A, Otto T, et al. Micro-metalforming with silicon silicon dies. Microsystem Technologies, 2001, (7): 191-196.
    [57] Kenney Jason A, Hwanga G S. Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution. Nanotechnology, 2005, 16(7):309~313.
    [58] Datta M, Landolt D. Fundamental aspects and applications of electrochemical microfabrication. Electrochimics Acta, 2000, (45): 2535-2558.
    [59] Rolf Schuster, Viola Kirchner, Philippe Allongue, et al. Electrochemical Micromachining. SCIENCE, 2000, 289(7): 98-101.
    [60] Schuster R, Kirchiner V, Allongue P, et al. Electrochemical micromachining. Science, 2000, 289(5476): 98-101.
    [61]朱荻,张朝阳,明平美等.微细电化学加工技术的研究与发展.第十一届全国特种加工年会论文集, 2005, 46-54.
    [62] Kim B H, Na C W, Lee Y S, et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid. CIRP Annals-Manufacturing Technology, 2005, 54(1): 191-194.
    [63] Chikamori, K. Possibilities of Electrochemical Micromachining, International Journal of the Japan Society for Precision Engineering, 1998, 32(1): 37-38.
    [64] R F?rster, A Schoth, W Menz. Micro-ECM for production of microsystems with a high aspect ratio. Microsystem Technologies, 2005, 11: 246-249.
    [65] Trimmer A L, Hudson J L, Kock M, et al. Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Applied Physics Letters, 2003, 82(19): 3327-3329.
    [66] Takashi Mineta. Electrochemical etching of a shape memory alloy using new electrolyte solutions. Journal of micromechanics and microengineering, 2004(14): 76-80.
    [67] Zinger O, Chauvy P F, Landolt D. Scale-Resolved Electrochemical Surface Structuring of Titanium for Biological Applications. Journal of The Electrochemical Society, 2003, 150(11): 495-503.
    [68] Ahmed M S, Duffield A. Deep hole drilling using ECM. SME Technical Paper (Series) MS, 1989: 809-816.
    [69] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining process. Transactions of the ASME, 1996, (118): 490-499.
    [70]施文轩,张明歧,殷旻等.电射流加工工艺研究和发展.电加工与模具, 2001, (1): 36-39.
    [71] Suda M, Nakajima K, Furuta K, et al. Electrochemical and Optical Processing of MicroStructures by Scaning Probe Microscopy (SPM). Proceedings of IEEE MEMS, 1996: 296-300.
    [72]汤儆,毛秉伟,田中群.电化学扫描探针显微镜在表面微/纳米加工的应用.微纳电子技术, 2003(7-8): 192-196.
    [73] Kolb D M, Ullmann R, Will T. Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microsope. Science, 1997, 275(5303): 1097-1099.
    [74] Kolb D M, Ullmann R, Ziegler J C. Electrochemical nanostructuring.Electrochim. Acta , 1998, 43(19-20): 2751-2760.
    [75]徐惠宇,朱荻.微细群缝的精密电解加工研究.中国机械工程, 2004, 15(21): 1912-1915.
    [76]王昆,朱荻,张朝阳.微细电解线切割加工的基础研究.中国机械工程2007, 18(7): 833-837.
    [77]王昆,朱荻,张朝阳.微细电解线切割加工控制系统.机械科学与技术, 2007, 26(7): 845-849.
    [78]王昆,朱荻,王明环.微米尺度线电极的电化学腐蚀法制备.机械科学与技术, 2007, 25(9): 1073-1075.
    [79] Li Yong, Zheng Yunfei, Yang Guang, et al. Localized electrochemical micromachining with gap control.Sensors and Actuators, 2003, 108(1-3): 144-148.
    [80]李小海,王振龙,赵万生.高频窄脉冲电流微细电解加工.机械工程学报, 2006, 42(1): 162-167.
    [81] Kozak J, Rajurekar K P, Puszaj A, Suclptured Surface Finishing by NC-ECM with Ballend Electrode. Advances in Technology of the Machines and Equipment, 1998, 22(1):129-135.
    [82]胡平旺、朱永伟、徐家文,整体叶轮数控展成电解加工分析.中国机械工程, 2002,13(5) : 364-366.
    [83] Kozak J, D?browski L, ?ubkowski K,et al. CAE-ECM System for Electrochemical Technology of Parts and Tools. Journal of Materials Processing Technology, 2000, 107(1-3): 293-299.
    [84] Domanowski P, Kozak J. Direct and Inverse Problems of Shaping by Electrochemical Generating Machining. Journal of MaterialsProcessing Teconolgy, 2000, 107(1-3): 300-306.
    [85] Sun J J, Huang H G, Tian Z Q, et al. Three-dimensional micromachining for microsystems by confined etchant layer technique. Electrochimica Acta. 2001, 47(1-2): 95-101.
    [86] Kozak J, Rajurkar K P, Ruszaj A, et al. Sculptured Surface Finishing by NC-Electrochemical Machining with Ball-End Electrode (ECM-CNC). Advances in Technology of the Machines and Equipment, 1998, 22(1): 51-74.
    [87]陈光.整体叶盘在国外航空发动机中的应用.航空发动机, 1991, 1: 1-6.
    [88]王建业,林苏文.叶片电解加工技术的新发展.航空工艺技术, 1998, 6: 17-20.
    [89]朱永伟,徐家文,胡平旺.数控展成电解加工整体叶轮的研究与应用.航空学报, 2001, 22(4): 376-378.
    [90]干为民,徐家文,刘延禄.数控展成电解磨削整体叶轮叶片型面的研究.中国机械工程, 2003, 14(1): 24-26.
    [91] A K De Silva, J McGeough. Electrodischarge-Electrochemical Process for Roughing and Finishing Dies and Moulds. Proceedings of the ISEM-12, 1998: 397-406.
    [92] V Fascio, R Wüthrich, H Bleuler. Spark assisted chemical engraving in the light of electrochemistry. Electrochimica Acta, 2004, 49: 3997-4003.
    [93] Liu X M, Li H Y, Fang J C, et al. Study on the technique of pulse electrochemical mechanical finishing. Key Engineering Materials, 2006, 304-305: 393-7.
    [94] Guan J L, Fan J W, Ma C M, et al. The application of ELID grinding technology on externalprecision mirror surface. Key Engineering Materials, 2001, 202-203: 419-422.
    [95] Rajurkar K P, Zhu D. Improvement of Electrochemical Machining Accuracy by Using Orbital Electrode Movement. Annals of the CIRP - Manufacturing Technology, 1999, 48(1): 139-142.
    [96] Hewidy M S, Ebeid S J, Rajurkar K P, et al. Electrochemical machining under orbital motion conditions. Journal of Materials Processing Technology, 2001, 109(3): 339-346.
    [97] Ricciardi G., Cantello M., Mariotti F, et al, Micromachining with Excimer Laser. Annals of the CIRP, 1998, 47(1): 145-148.
    [98] Imai Y, Cliftion D, McGeough J A. Some Ultrasonic Effects in machining Materials Encountered in the Offshore Industry. Proc. 30th MTDR Conference, MacMillan Press, London, 1993: 119-124.
    [99]周伦法,陶增元.推重比—10级发动机综述,沈阳航空工业学院学报.2003, 20(1):17-19.
    [100]郭文有.航空发动机叶片机械加工工艺.国防工业出版社, 1994.7.
    [101]孔祥鑫,徐可君.航空发动机叶片的腐蚀与防护.航空科学技术.1997, (2): 24-26.
    [102]赵万生,詹涵菁,王刚.涡轮叶盘加工技术.航空精密制造技术. 2000, (5): 1-5.
    [103] M. R. Bache. Processing titanium alloys for optimum fatigue performance. International Journal of Fatigue, 1999, 21: 105-111.
    [104]殷克勤.我国航空涡轮高温材料及工艺进展,材料工程. 1997(9): 3-6.
    [105] Tae-Soon Lim, Chea-Moon Lee, Seok-Won Kim, Deug-Woo Lee. Evaluation of cutter orientations in 5-axis high speed milling of turbine blade. Journal of Materials Processing Technology, 2002, 130-131: 401-406.
    [106] M Mavromihales, J Mason, W Weston. A case of reverse engineering for the manufacture of wide chord fan blades (WCFB) used in Rolls Royce aero engines. Journal of Materials Processing Technology, 2003, 134(3): 279-286.
    [107]张翼鸣.法国SNECMA公司叶片加工技术.航空工艺技术, 1998, (2): 22-24.
    [108]金荣,陈尔昌,陈日曜.国外叶片锻造技术概况.航空工艺技术, 1994, (4): 8-9.
    [109] Toshimitsu Tetsui, Kentaro Shindo, Satoru Kobayashi and Masao Takeyama. Strengthening a high-strength TiAl alloy by hot-forging. Intermetallics, 2003, 11(4): 299-306.
    [110]云乃彰,薛重德.方坯叶片电解成形规律的探讨.航空工艺技术, 1997,(2): 7-9.
    [111]薛重德,云乃彰.超薄扭曲叶片精密电解加工.航空精密制造技术, 1996, 32(4): 17-20.
    [112]田继安.涡轮转子喷嘴叶栅环带冠叶片电火花加工.航天制造技术, 2003, (2): 14-18.
    [113]赵万生,王刚,史旭明.扭叶片整体叶轮电火花加工成形电极设计,航空精密制造技术, 1998, 34(5): 14-16.
    [114] D Eskin, H Kalman. Problems of optimal particle acceleration on straight linear blades ofcentrifugal rotor-impact mills, Powder Technology. 2002, 123(1): 75-82.
    [115] Tae-Soon Lim, Chea-Moon Lee, Seok-Won Kim, et al. Evaluation of cutter orientations in 5-axis high speed milling of turbine blade. Journal of Materials Processing Technology. 2002, 130(20): 401-406
    [116] Xiong-Wei Liu. Five-axis NC cylindrical milling of sculptured surfaces. Computer-Aided Design. 1995, 27(12): 887-894
    [117]刘军.航空发动机研制中的叶片加工工艺探讨. 2000, (3): 66-69
    [118]吕子涛,王锡山,王岩禄.水轮机叶片数控加工及其高效刀具的开发与应用.大电机技术, 2005, (5): 51-56.
    [119]孙明仁,张大名.钛合金风扇叶片的铣削技术.红旗技术, 1997, 71(3): 10-13.
    [120]程远.某机低压压气机动叶加工工艺.红旗技术, 2002, (1): 24-28.
    [121]翟武艺,黄健宁.透平压缩机叶片精锻.锻压技术, 2000, 5: 16-18.
    [122]王建业,徐家文编著.电解加工原理及应用,北京:国防工业出版社, 2001.1.
    [123]南京航空航天大学特种加工教研室,电解加工原理及工艺, 1976.9.
    [124]徐家文,王建业,田继安等.电解加工在航空制造中的应用及发展.航空制造技术, 2002(4): 27-30.
    [125] R.R. Company. U.K., Finishes blades in one operation. Machinery and production engineering, 1985, 7: 44-48.
    [126] Andreas Albrecht, Manufacturing Technology for Turbine Blades. Diesel & Gas Turbine Worldwide, 1995.
    [127]李志永,朱荻,孙春华等.发动机叶片电解加工阴极设计有限元数值解法研究.中国机械工程, 2004, 15(13): 1151-1154.
    [128]李志永.发动机叶片电解加工阴极设计与制造系统的关键技术研究.南京航空航天大学博士论文, 2005.
    [129]李志永,朱荻,王蕾.电解加工发动机叶片阴极进给方向的优化.航空学报, 2003, 24(6): 563-567.
    [130]王蕾,朱荻.采用BP神经网络的叶片电解加工精度预测.机械科学与技术, 2006, 25(7): 777-780.
    [131]李志永.基于电解液非线性特性的叶片电解加工阴极设计.机械设计与制造, 2007, (1): 67-69.
    [132]李志永,朱荻.基于间隙电导率模型的叶片电解加工阴极设计.华南理工大学学报, 2005, 33(3): 73-77.
    [133]李志永.基于间隙实际电场分布的叶片电解加工阴极设计.华南理工大学学报, 2007, 35(3):33-37.
    [134]李志永,朱荻.基于叶片电解加工电场和流场特性的阴极设计及工艺试验研究.中国机械工程, 2006, 17(14): 1463-1467.
    [135]王蕾,朱荻,李志永.采用非线性电解液的叶片电解加工阴极设计.机械科学与技术, 2006, 15(21): 1912-1915.
    [136]王蕾,朱荻.基于有限元数值方法的电解加工工件型面的预测.中国机械工程, 2006, 17(9): 927-930.
    [137] Wang Lei, Zhu Di, Shape evolution and prediction of three dimensional workpieces in electrochemical machining. Transactions of Nonferrous Metals Society of China, 2005, 15(3): 241-246.
    [138]王蕾,朱荻.航空发动机叶片的电解加工阴极设计.第十一届全国特种加工年会论文集, 2005, 248-252.
    [139]孙春华,朱荻,李志永等.电解加工阴极设计CAD/ CAE /CAM系统的开发.机械科学与技术, 2004, 23(6): 684-686.
    [140]钱军,朱荻,刘正埙.人工神经网络在电解加工阴极设计中的应用研究.南京航空航天大学学报, 1997, 29(5): 554-558.
    [141]王蕾.发动机叶片高精度电解加工阴极设计系统及试验研究.南京航空航天大学博士论文. 2006, 12.
    [142]史先传,朱荻,李志永.三轴进给的叶片电解加工.华南理工大学学报, 2004, 32(7): 70-73.
    [143]史先传,朱荻.可重构电解加工机床研究.电加工与模具, 2003, (6): 54-59
    [144]康敏,徐家文,严德荣.整体叶轮叶片型面的展成电解精加工阴极设计.新技术新工艺, 2004, (9): 30-31.
    [145]徐家文,朱永伟,胡平旺等.整体叶轮的数控电解加工及其在航天制造中的应用前景.宇航材料工艺, 2003, (1): 13-17.
    [146]徐家文,朱永伟,胡平旺等.数控电解加工整体叶轮的关键技术.宇航材料工艺, 2003, (2): 48-52.
    [147]郭紫贵,云乃彰,张磊.带冠整体叶轮阴极运动轨迹的设计计算.电加工与模具, 2004, (3): 33-35.
    [148]鲁玉峰,吴蓉昆.航空叶片精密电解加工数字化集成系统. 2003年全国特种加工学术会议文集, 120-122.
    [149]郭紫贵,云乃彰,张磊.带冠整体叶轮加工现状及新方法探索.中国制造业信息化, 2004, 33(6): 102-104.
    [150] 7344 Hardware user manual, Part Number 322504A-01, 1999.7.
    [151]张友生,李雄.软件开发模型综述.计算机工程与应用, 2006, (3): 109-115.
    [152]李伟,吕述望.基于经验数据的软件可靠性模型研究..计算机工程与设计, 2006, 27(9): 1604-1606.
    [153]杨乐平,李海涛,赵勇等. LabVIEW高级程序设计.北京:清华大学出版社, 2003.
    [154]谢彦,王丙星,袁丽威等.基于Labview的共振增强双光子电离-飞行时间质谱数据采集系统.计算机与应用化学, 2003, 20(5):571-573.
    [155]张英主编.工程流体力学.北京:中国水力水电出版社, 2002.
    [156]朱剑英.智能系统非经典数学方法.华中科技大学出版社.2001.
    [157] Carrol S M, Dickinson W. Construction of neural nets using random transform. Proc IJCNN, 1989, (1): 607-611.
    [158] Cybenko G. Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989, 2(4): 303-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700