用户名: 密码: 验证码:
聚苯胺/铂微电极的制备、表征及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺因其具有高的导电性、优秀的电致变色性能、良好的氧化还原可逆性和稳定性而被广泛关注,而其优良的性质与聚苯胺氧化还原机理密切相关。铂纳米粒子由于其优异的催化性能,广泛应用于有机小分子的电催化氧化。
     本论文围绕聚苯胺/铂微电极制备及应用,利用电化学、现场红外光谱电化学开展了聚苯胺电化学氧化还原机理、复合修饰电极制备、甲醛电化学氧化等研究,主要结果如下:
     1、聚苯胺电化学氧化还原机理
     在O.1M苯胺和1.0M高氯酸溶液中,电位范围为-0.4~0.8V,扫描速度为10mV/s,扫描15个循环的条件下,在玻碳电极上合成聚苯胺膜厚度为0.991μm。采用现场红外光谱电化学方法研究在1.0M高氯酸水和重水溶液中、电位范围为-0.4-0.8V、扫描速度为5mV/s条件下聚苯胺的氧化还原机理,结果表明首先聚苯胺中的仲氨氧化,生成氨基阳离子自由基;其次聚苯胺分子链末端的伯胺氧化,生成氨基阳离子自由基;然后聚苯胺分子链末端的羟基氧化,生成苯酚自由基;最后聚苯胺分子链中的仲胺进一步氧化,生成双极化的氨基阳离子。当电位高于0.71V时,双极化的聚苯胺失去质子转变完全为高度共轭的醌式结构。
     第一对氧化还原峰的反应为:
     同时,我们计算了聚苯胺结构中两种结构单元中性和带正电荷的红外光谱,结果发现当中性变为带正电荷后,N-H的红外吸收峰发生蓝移,并得到很大的增强,这与现场红外光谱结果一致。不同温度下现场红外光谱电化学实验结果表明,当温度有25℃降低到5℃时,聚苯胺上N-H带正电荷自由基红外峰位置从3875cm-1蓝移至4367crn-1。
     2、聚苯胺/铂微电极制备
     在聚苯胺胶束中沉积铂的聚苯胺/铂复合材料充分利用铂优良的催化特性和聚苯胺优良的导电性。扫描电镜和透射电镜结果表明,聚苯胺胶束直径为100-200nm;在聚苯胺胶束末端生成的铂粒子其直径为300-600nm;高分辨率透射电子显微镜相片表明铂的晶格间距在0.23nm,X射线衍射图在20的39.9°出现一新的衍射峰,这与卡片号为铂立方晶体(JCPDS No.4-802)的铂立方晶体(111)面的衍射峰晶面间距数据一致。红外光谱、拉曼光谱和荧光光谱测试结果均表明沉积了铂的聚苯胺中,醌型单元结构增加,而苯型单元结构减少。而在5m mol/L K3[Fe(CN)6]/K4[Fe(CN)6](1:1)溶液中聚苯胺/铂微电极的CV曲线的峰电位差(△Ep)为0.082V,其对应为可逆的一电子氧化还原过程。
     3、甲醛、甲醇的电催化氧化研究
     电催化氧化有机小分子在燃料电池技术领域被广泛关注,但作为模板分子的甲醛在碱性条件下的电催化氧化研究较少。首先采用现场光谱电化学技术,结合循环伏安和红外光谱等手段,研究甲醛在碱性条件下的电化学氧化过程。在水溶液中,当电位在-0.7V至0.2V之间时,有甲酸根的生成(对应甲酸根的OCO不对称和对称伸缩振动吸收峰分别在1588,1357cm-1,C-H的变形振动吸收峰在1380cm-1)和偕二醇阴离子的消失(对应偕二醇阴离子的H-O伸缩振动吸收峰在2765cm-1,C-O伸缩振动吸收峰在1034cm-1);在重水溶液中,有甲酸根(对应甲酸根的OCO不对称和对称伸缩振动吸收峰分别在1595,1357cm-1,C-H的变形振动吸收峰在1380cm-1)、水(对应水的H-O伸缩振动吸收峰在3427cm-1)的生成和偕二醇阴离子的消失(对应偕二醇阴离子的D-O伸缩振动吸收峰在2026cm-1,C-O伸缩振动吸收峰在1034cm-1)。结果表明,在碱性水溶液中,甲酸首先生成偕二醇阴离子,然后吸附在电极表面上,最后氧化为甲酸根离子和水;其反应机理为:
     (1)
     然后研究了甲醛和甲醇在聚苯胺/铂微电极上的电催化氧化性能。通过聚苯胺/铂微电极电催化氧化甲醛和甲醇实验数据的分析,表明聚苯胺/铂微电极对甲醛和甲醇具有良好的电催化氧化性能;通过计时电流曲线,可以看出聚苯胺/铂微电极对甲醛和甲醇的电催化氧化具有较好的稳定性;聚苯胺/铂微电极相对于玻碳电极和铂电极对抗坏血酸和多巴胺有更大的峰电流,表现出更好的电催化氧化性质,对抗坏血酸和多巴胺的检出限分别达到0.18mM和3.94μM,线性范围分别为0.25-3.0mM和10-200μM。结果表明该复合材料在化学、生物传感器和燃料电池等领域具有潜在应用价值。
Polyaniline has been widely studied due to its high conductivity, excellent electrochromic property, good redox reversibility and stability which have close relationship with the redox mechanisms of polyaniline. The nanosized Pt particles are widely used to electroanalytical oxidate small organic molecules according to the excellent catalytic performance.
     This paper focuses on preparation and electrochemical performance of polyaniline/pt microelectrodes. The redox mechanism of polyaniline, preparation of composite modified electrode and the electrochemical oxidation mechanism of formaldehyde were carried out by electrochemical and in situ rapid-scan time-resolved IR spectroelectrochemistry methods. The main results are as following:
     1、The electrochemical oxidation mechanism of polyaniline
     The PANI films were grown electrochemically from solutions containing1.0M HC104and0.1M aniline by cycling the potential from-0.4to0.8V at a scan rate of lOmV/s. Polymer growth was terminated after15complete voltammetric cycles. The film thickness was estimated using the charge associated with proton doping of PANI. Based on our measurements the films are estimated to be approximately0.99μm thick. The redox mechamm of PANI was studied by in situ rapid-scan time-resolved IR spectroelectrochemistry (RS-TR-FTIRS) method. In the potential rang between-0.4to0.8V at a scan rate of5mV/s, there were four groups of redox peaks. The results illustrated that the first pair of redox peaks are according to oxidation of the secondary amines in the middle of molecular PANI chain, the second pair of redox peaks are according to oxidation of terminal primary amines, the third pair of redox peaks are according to oxidation of terminal hydroxyl groups, the forth pair of redox peaks are according to oxidation of the polaronic PANI to the bipolaronic PANI. The bipolaronic PANI completely turns to quinoid structure with highly conjugated by deprotonation, the steamed bun bands centered near3000cm-1disappeared when the potential was higher than0.71V.The reactions of the first group were those:
     Simultaneously, we calculated the two structural unit FTIR spectra of neutral molecule and cation molecule in PANI. The calculations show that the vN-H exhibit blue shift and greatly enhanced when the neutral molecules turned into positively charged molecules, which was in good agreement with in situ rapid-scan time-resolved IR spectroelectrochemistry experimental results. Experimental results at different temperatures indicated that the vN-H of radical cation exhibit blue shift from3875cm-1to4367cm-1and the peak intensity increases when the experimental temperature decreased from25℃to5℃.
     2、Preparation of polyaniline/pt microelectrodes
     Introduction Pt in PANI membranes of polyaniline/platinum composites have primarily focused on exploiting the catalytic activity of the metals and the high conductivity of the PANI. The Pt particles were electrodeposited on the0.99μm thick PANI films with Pt load values of453μg/cm2. The SEM and TEM image illustrated that the PANI film is composed of100-200nm diameter rods and Pt particle was about300-600nm in diameter on the end of PANI membranes. HRTEM investigation indicated that the lattice fringes with a spacing of0.23nm were clearly visible in these nanograins and the diffraction peaks of XRD patterns at the29of39.9°correspond to the (111) facet of the face-centered cubic structures of platinum crystal, which is in good agreement with the standard card of cubic Pt (JCPDS No.4-802). The Infrared spectroscopy, Raman spectra and fluorescence spectra indicated that the benzenoid groups decreased and the quinoid groups increased when the Pt particles were electrodeposited on the PANI films. The peak potential separation in a solution of5m mol/L K3[Fe(CN)6]/K4[Fe(CN)6](1:1),(ΔEp) of0.082V, was observed corresponding to a reversible electron transfer process.
     3、Studying on the electrocatalytic oxidation of formaldehyde and methanol
     The electrochemical oxidation of small organic molecules as a subject of long-term interest in development of fuel cell technology has been widely studied and continues to be of interest. However, few investigations investigated the electrochemical oxidation mechanism of formaldehyde as a model in alkaline solution. Firstly, the oxidation of formaldehyde in alkaline solution was studied by in situ rapid-scan time-resolved IR spectroelectrochemistry (RS-TR-FTIRS) method.In the potential rang between-0.7and0.2V, three bands at1588,1357cm-1(which could be assigned to the asymmetric and symmetric υoco of formate ions),1380cm-1(which could be assigned to the deformation vibration δC-H of formate ions) appeared and two bands at2765(which could be assigned to the υH-O of gem-diol anion),1034cm-1(which could be assigned to the υCO of gem-diol anion) decreased in aqueous solution. It was also conformed that four bands at1595,1357,1380,3427cm-1(which could be assigned to the υH-O of water) appeared and two bands at2026(which could be assigned t to the of gem-diol anion),1034cm-1decreased in heavy water solution. The results illustrated that formaldehyde formed gem-diol anion in alkaline solution and was absorbed on the electrode surface; then gem-diol anion was oxidized to formate ions and water; the mechanism is that:
     The overall reaction can be written as:
     Then the formaldehyde and methanol electrochemical oxidation on polyaniline/Pt microelectrodes were investigated. Electrochemical experiments show that polyaniline/platinurn microelectrodes have superior catalytic performance toward formaldehyde and methanol electrochemical oxidation. The chronoamperometric curves indicated high electrocatalytic stability catalyst for the formaldehyde and methanol oxidation. The polyaniline/Pt microelectrodes displayed excellent electrochemical catalytic activities with increasing of peak currents towards ascorbic acid (AA) and dopamine (DA) compared with bare GCE, Pt by differential pulse voltammetry (DPV). The limits of detection (S/N=3) for AA and DA were0.18mM and3.94μM, respectively. The linear ranges for AA and DA are0.25-3.0mM and10-200μM, respectively. Electrochemical experiments show that the polyaniline/platinum microelectrodes could be applied to chemical sensors, biosensors and fuel cells fields.
引文
[1]Chiang C K, Fincher C R, Park Y W, et al., Electrical Conductivity in Doped Poly-acetylene[J].Phys.Rev.Lett.,39(1977):1098-1101.
    [2]Jia Hua SHI, Xun SUN, Chun He YANG, et al., Electrochemical Synthesis of Polythiophene in an Ionic Liquid [J], Chinese Chemical Letters 2002(13): 306-307.
    [3]G ZOTTI, S. CATTARIN, N. COMISSO, Electrodeposition of Polythiophene, Polypybbole and Polyaniline by the cyclic potential sweep method [J], J. Electroanal. Chem.,235 (1987):259-273.
    [4]G. P. Evans, Advance Electrochemical Science and Engineering (Edited by H. Geriscber and C. W. Tobias) [M], Vol.1, p.1. VCH, New York (1990).
    [5]A. F. Diaz and J. Bargon, Handbook of Conducting Polymers (Edited by T. A. Skothem) [M], Vol.1, p.81. Marcel Dckker, New York (1986).
    [6]FJ Liu, L M Huang, T C Wen, et al., Effect of deposition sequence of platinum and ruthenium particles into nanofibrous network of polyaniline-poly(styrene sulfonic acid) on electrocatalytic oxidation of methanol, Synthetic Metals 158 (2008): 603-609.
    [7]J Wang, X Qi, F Meng, et al., Polyaniline Nanofibers:Inducing Action of Neodymium Oxide and Inhibiting Effect on Electrochemical Degradation and Modified Platinum Electrode Application to the Electrocatalytic Oxidation of Methanol, J. Phys. Chem. C 113(2009):1459-1465.
    [8]D W. Hatchett, R Wijeratne, J M. Kinyanjui, Reduction of PtCl62- and PtCl42- in polyaniline:Catalytic oxidationof methanol at morphologically different composites, J. Electroanal. Chem.593 (2006):203-210.
    [9]E. Boscheto, B.C. Batista, R.B. Lima, et al., A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol on platinum, Journal of Electroanalytical Chemistry 642 (2010):17-21
    [10]Z P Wang,M Shoji, H Ogata, Synthesis and characterization of platinum nanoparticles on carbon nanosheets with enhanced electrocatalytic activity toward methanol oxidation, Applied Surface Science 259 (2012):219-224.
    [11]YEN WEI, XUN TANG, YAN SUN, et al., A Study of the Mechanism of Aniline Polymerization [J], Journal of Polymer Science:Part A:Polymer Chemistry,27 (1989):2385-2396.
    [12]Yoon-Bo Shim, Mi-Sook Won, Su-Moon Park, Electrochemistry of Conductive Polymers Ⅷ:In Situ Spectroelectrochemical Studies of Polyaniline Growth Mechanisms[J], J. Electrochem. Soc,137 (1990):538-544.
    [13]刘晨,陈凤恩,张家鑫等,显微共焦拉曼光谱研究电化学合成聚苯胺膜[J],物理化学学报,19(2003):810-814.
    [14]C. Q. GUI, L. H. ONG, T. C. TAN, et al., Extent of Incorporation of hydrolysis products in polyaniline films deposited by cyclic potential sweep[J], Electrochimico Acta,1993(38):1395-1400.
    [15]David W. Hatchett, Mira Josowicz, Jiri Janata, Acid Doping of Polyaniline: Spectroscopic and Electrochemical Studies[J], J. Phys. Chem. B,103(1999): 10992-10998.
    [16]R. DE SURVILLE, M. JOZEFOWICZ, L. T. Yu, et al., ELECTROCHEMICAL CHAINS USING PROTOLYTIC ORGANIC SEMICONDUCTORS [J], Electrochimica Acta.13 (1968):1451-1458.
    [17]E. M. GENIES, M. LAPKOWSKI, POLYANILINE FILMS. ELECTROCHEMICAL REDOX MECHANISMS [J], Synthetic Metals,24 (1988):61-68.
    [18]Zoran MandiC, Ljerka DuiC, Franjo KovaCiEekb, The influence of counter-ions on nucleation and growth of electrochemically synthesized polyaniline film[J], Electrochimica Acta.42 (1997):1389-1402.
    [19]M. Ahsan Habib, Electrogravimetric Characterization of the Electrochromic Polyaniline Film Surface [J], Langmuir,4(1988):1302-1304.
    [20]E.M. GENIES, C. TSINTAVIS, Electrochemical behaviour, chronocoulometric and kinetic study of the redox mechanism of polyaniline deposits [J], J Elecrroanal. Chem.,200(1986):127-145.
    [21]张贵荣,张爱健,王欢等,电聚合苯胺过程的在线紫外-可见光谱[J],高分子学报,1(2008):41-47.
    [22]Lj. Duic, S. Grigic, The effect of polyaniline morphology on hydroquinone/quinone redox reaction[J], Electrochimica Acta 46 (2001):2795-2803.
    [23]Lei Zheng, Yang Xu, Dong Jin, et al., Polyaniline-Intercalated Molybdenum Oxide Nanocomposites:Simultaneous Synthesis and their Enhanced Application for Supercapacitor[J], Chem. Asian J.,6(2011):1505-1514。
    [24]ZHAO PING, H. NEUGEBAuERt, A. NECKEL, FTIR ATR spectroelectrochemical investigations of polyaniline with perrhenate as A new doping system, Electrochimica Acta,1996(41):767-772.
    [25]Helmut Neugebauer 1, N. Serdar Sariciftci z, Hans Kuzmany, In-Situ FTIR Spectro-Electrochemistry of Polyaniline, Mikrochim. Acta,1988(Ⅰ):265-268.
    [26]Gordana ciric-Marjanovic, Miroslava T rchova, Jaroslav Stejskal, The chemical oxidative polymerization of aniline in water:Raman s pectroscopy, J. Raman Spectrosc.2008(39):1375-1387.
    [27]Andrea Kellenberger, Evgenia Dmitrieva, Lothar Dunsch, The stabilization of charged states at phenazine-like units in polyanilineunder p-doping:an in situ ATR-FTIR spectroelectrochemical study, Phys. Chem. Chem. Phys.,13 (2011):3411-3420.
    [28]K.F. Fernandes, C.S. Lima, H. Pinho, et al., Immobilization of horseradish peroxidase onto polyaniline polymers[J], Process Biochemistry 38 (2003): 1379-1384.
    [29]Haiqing Liu, Jun Kameoka, David A. Czaplewski, et al., Polymeric Nanowire Chemical Sensor[J], NANO LETTERS,4(2004):671-675.
    [30]Fangyi Cheng, Wei Tang, Chunsheng Li, et al., Conducting Poly(aniline) Nanotubes and Nanofibers:Controlled Synthesis and Application in Lithium/Poly(aniline) Rechargeable Batteries[J], Chem. Eur. J.,12(2006):3082-3088.
    [31]TantaSpataru, Mihai Anastasescu, Nicolae Spataru, et al., Influence of cobalt oxide substrate on the resistance to fouling during methanol oxidation of platinum particles[J], Electrochemistry Communications 29 (2013):1-3.
    [32]E. Boscheto, B.C. Batista, R.B. Lima, et al., A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol on platinum[J], Journal of Electroanalytical Chemistry 642 (2010): 17-21.
    [33]Zhipeng Wanga, Mao Shoji, Hironori Ogata, Synthesis and characterization of platinum nanoparticles on carbon nanosheets with enhanced electrocatalytic activity toward methanol oxidation[J], Applied Surface Science,259 (2012):219-224.
    [34]D.W. Hatchett, M. Josowicz, J. Janata, Electrochemical Formation of Au Clusters in Polyaniline[J], Chem. Mater.11 (1999):2989-2994.
    [35]A.J. Smith, M. Josowicz, J.M. Kinyanjui, et al., Chemical and Electrochemical Synthesis of Polyaniline/Gold Composites [J], J.Electrochem. Soc.151 (2004): 113-120.
    [36]J Wang, X Qi, F Meng, et al., Polyaniline Nanofibers:Inducing Action of Neodymium Oxide and Inhibiting Effect on Electrochemical Degradation and Modified Platinum Electrode Application to the Electrocatalytic Oxidation of Methanol[J], J. Phys. Chem. C 113(2009):1459-1465.
    [37]C. Coutanceau, M.J. Croissant, T. Napporn, C. Lamy, Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film[J], Electrochimica Acta 46 (2000):579-588.
    [38]Feng-Jiin Liu, Li-Ming Huang, Ten-Chin Wen, et al., Effect of deposition sequence of platinum and ruthenium particles into nanofibrous network of polyaniline-poly(styrene sulfonic acid) on electrocatalytic oxidation of methanol[J], Synthetic Metals 158 (2008):603-609.
    [39]M J Croissant, T. Napporn, J M. Legger, C. Lamy, Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes[J], Electrochim. Acta.43 (1998):2447-2457.
    [40]E.C. Venancio, W.T. Napporn, A.J. Motheo, Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices[J], Electrochim. Acta.47(2002): 1495-1501.
    [41]M. Gholamian, A.Q. Contractor, Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix:Influence of long-range order and metal-polymer interaction[J], J. Electroanal. Chem.289 (1990):69-83.
    [42]Chi-Chang Hu,Eve Chen, Jeng-Yan Lin, Capacitive and textural characteristics of polyaniline-platinum composite films [J], Electrochimica Acta 47 (2002): 2741-2749.
    [43]Yu Wang, Junhua Huang, Chunguang Zhang, et al., Determination of Hydrogen Peroxide in Rainwater by Using a Polyaniline Film and Platinum Particles Co-Modified Carbon Fiber Microelectrode[J], Electroanalysis,11(1998):776-778.
    [44]H. LABORDE, J.M. LINGER, C. LAMY, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1: Platinum in polyaniline[J], JOURNAL OF APPLIED ELECTROCHEMISTRY, 24 (1994):219-226.
    [45]D W. Hatchett, R Wijeratne, J M. Kinyanjui, Reduction of PtCl62-and PtCl42- in polyaniline:Catalytic oxidationof methanol at morphologically different composites[J], J. Electroanal. Chem.593 (2006):203-210.
    [46]L H. Mascaroa, D Goncalves, L O. Bulhoes, Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium[J], Thin Solid Films 461 (2004):243-249.
    [47]Parsons R., Vandernoot T., The oxidation of small organic molecules:A survey of recent fuel cell related research[J], J. Electroanal. Chem.,257 (1988):9-45.
    [48]Jarvi, T. D.; Stuve, E. M. In Electrocatalysis[M]; Lipkowski, J., Ross, P. N., Ed.; Wiley-VCH:New York,1998; pp 75-153.
    [49]Iwasita, T., Electrocatalysis of methanol oxidation [J], Electrochim. Acta 2002(47):3663-3674.
    [50]Herrero E, Chrzanowski W, Wieckowski A. Dual path mechanism in methanol electrooxidation on a Pt electrode[J], J Phys Chem,99 (1995):10423-10424.
    [51]Xia H., Iwasita T.; Ge F., Vielstich W, Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum[J], Electrochim. Acta.41 (1996):711-718.
    [52]Wang H, Loffler T, Baltruschat H, Formation of intermediates during methanol oxidation:A quantitative DEMS study [J], J. Appl. Electrochem. 2001(31):759-765.
    [53]Yan Xia Chen, Atsushi Miki, Shen Ye, et al., Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode[J], J. AM. CHEM. SOC.125(2003): 3680-3681.
    [54]Hongsen W, Christoph W, Helmut B, et al., Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts:a DEMS study of product formation[J], Journal of Electroanalytical Chemistry 509 (2001):163-169.
    [55]Tadesse Zerihun, P Griindler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, Journal of Electroanalytical Chemistry 441 (1998):57-63
    [56]E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al., New mechanistic aspects of methanol oxidation[J], Journal of Electroanalytical Chemistry 571 (2004): 273-282
    [57]Zhi-You Zhou, Na Tian, You-Jiang Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry:study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode[J], Journal of Electroanalytical Chemistry 573 (2004):111-119.
    [58]P. Olivi, L.O.S. Bulhoes, J.M. Leger, et al., The electrooxidation of formaldehyde on Pt(100) and Pt(110) electrodes in perchloric acid solutions[J], Electrochim. Acta 41 (1996):927-931.
    [59]P. Olivi, L.O.S. Bulhoes, J.M. Leger, et al., New results in the electro-oxidation of formaldehyde on a platinum electrode in an acid medium [J],J. Electroanal. Chem.370 (1994):241-245.
    [60]Villullas HM, Mattos-Costa FI, Nascente PAP, et al., Anodic oxidation of formaldehyde on Pt-modified SnO2 thin film electrodes prepared by a sol-gel method [J], Electrochimica Acta,49 (2004):3909-3916
    [61]Strbac S, Avramov Ivic M, Oxidation of formaldehyde and ethanol on Au(111) and Au(111) modified by spontaneously deposited Ru in sulfuric acid solution [J], Electrochim Acta,54(2009):5408-5412
    [62]Ciszewski A, Milczarek G, Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode[J],J Electroanal Chem 469(1999):18-26
    [63]Lima RB, Massafera MP, Batista EA, et al., Catalysis of formaldehyde oxidation by electrodeposits of PtRu [J], J Electroanal Chem 603(2007):142-148
    [64]Safavi A, Maleki N, Farjami F, et al., Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode [J], J Electroanal Chem 626(2009):75-79
    [65]Meichao Li, Wuyang Wang, Chunan Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem.661 (2011):317-321.
    [66]V. Selvaraj, A.NirmalaGrace, M.Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes[J], Journal of Colloid and Interface Science 333 (2009):254-262
    [67]Reza Ojani, Jahan-Bakhsh Raoof,Saeid Safshekan, Electrocatalytic oxidation of formaldehyde on nickel modified ionic liquid carbon paste electrode as a simple and efficient electrode[J], J Appl Electrochem 42 (2012):81-87
    [68]M.C. Santos, L.O.S. Bulhoes, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media[J], Electrochimica Acta 49 (2004): 1893-1901
    [1]D W Hatchett, M Josowicz, J Janata, Acid Doping of Polyaniline:Spectroscopic and Electrochemical Studies, J. Phys. Chem. B 103(1999):10992-10998.
    [2]H Q Liu, J Kameoka, D A Czaplewski, et al., Polymeric Nanowire Chemical Sensor, Nano Lett.,4(2004):671-675.
    [3]M A Habib, Electrogravimetric Characterization of the Electrochromic Polyaniline Film Surface, Langmuir,4(1988):1302-1304.
    [4]Y WEI, X TANG, Y SUN, A Study of the Mechanism of Aniline Polymerization, Journal of Polymer Science:Part A:Polymer Chemistry,27(1989):2385-2396.
    [5]E M GENIES, M LAPKOWSKI, POLYANILINE FILMS. ELECTROCHEMICAL REDOX MECHANISMS, Synthetic Metals,24 (1988):61-68.
    [6]R DE SURVILLE, M JOZEFOWICZ, L T Yu, et al., Eletrochemical chains using protolytic organic semiconductors, Electrochimica Acta,13(1968): 1451-1458.
    [7]L J Duic, S. Grigic, The effect of polyaniline morphology on hydroquinone/ quinone redox reaction, Electrochim. Acta.,46 (2001):2795-2803.
    [8]CQGUI, L HONG, TC TAN, et al., EXTENT OF INCORPORATION OF HYDROLYSIS PRODUCTS IN POLYANILINE FILMS DEPOSITED BY CYCLIC POTENTIAL SWEEP, Electrochimico Acta,38(1993): 1395-1400.
    [9]Gordana ciric-Marjanovic, Miroslava T rchova, Jaroslav Stejskal, The chemical oxidative polymerization of aniline in water:Raman s pectroscopy, J. Raman Spectrosc.39 (2008):1375-1387.
    [10]Andrea Kellenberger, Evgenia Dmitrieva, Lothar Dunsch, The stabilization of charged states at phenazine-like units in polyanilineunder p-doping:an in situ ATR-FTIR spectroelectrochemical study, Phys. Chem. Chem. Phys.,13 (2011):3411-3420.
    [11]Y B Shim, M S Won, S M Park, Electrochemistry of Conductive Polymers Ⅷ:In Situ Spectroelectrochemical Studies of Polyoniline Growth Mechanisms, J.Electrochem.Soc.,137(1990):538-544.
    [12]D. W. Hatchett, R. Wijeratne, J.M. Kinyanjui, Reduction of PtCl62- and PtCl42-in polyaniline:Catalytic oxidationof methanol at morphologically different composites, Journal of Electroanalytical Chemistry 593 (2006):203-210.
    [13]S Hyodo, M Kishi, H Fukushima, et al., Redox Reactions of Amidato-Bridgedcis-Diammineplatinum (III) Dinuclear Complexes with Phenol, Eur. J. Inorg. Chem. (2012):5571-5577.
    [14]C Zhang, D Donadio, G Galli, First-Principle Analysis of the IR Stretching Band of Liquid Water, J. Phys. Chem. Lett. (2010):1398-1402.
    [15]Y Marechal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, Journal of Molecular Structure 1004 (2011):146-155.
    [16]P R Solomon, R M Carangelo, FTIR analaysis of coal.l. Techniques and determination of hydroxyl concentrations, FUEL,61(1982):663-669.
    [17]Y Ti, D J Chen, Temperature Dependence of Hydrogen Bond in Fe-OCAP/Polyurethane Blends, J. APPL. POLYM. SCI. (2013):2265-2271.
    [18]L Cruzeiro, H Freedman, The temperature dependent amide I band of crystalline acetanilide, Physics Letters A 377 (2013):1593-1596.
    [1]D.W. Hatchett, M. Josowicz, J. Janata, Acid Doping of Polyaniline: Spectroscopic and Electrochemical Studies, J. Phys. Chem. B 103 (1999):10992-10998.
    [2]J. Joo, E.J. Oh, G. Min, A.G. MacDiarmid, et al., Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes, Synthetic Met.69 (1995):251-254.
    [3]M.E. Jozefowicz, A.J. Epstein, X. Tang, Protonic acid doping of two classes of the emeraldine form of polyaniline, Synthetic Met.46 (1992):337-340.
    [4]B.J. Polk, K. Potje-Kamloth, M. Josowicz, et al., Role of Protonic and Charge Transfer Doping in Solid-State Polyaniline. J. Phys. Chem.B 106 (2002): 11457-11462.
    [5]S.W.Ng, K.G. Neoh, J.T.Sampanthar, E.T.Kang, K.L.Tan, Conversion of Polyaniline from Insulating to Conducting State in Aqueous Viologen Solutions, J.Phys. Chem. B 105(2001):5618-5625.
    [6]D W. Hatchett, R Wijeratne, J M. Kinyanjui, Reduction of PtCl62- and PtCl42-in polyaniline:Catalytic oxidationof methanol at morphologically different composites, J. Electroanal. Chem.593 (2006):203-210.
    [7]L H. Mascaroa, D Goncalves, L O. Bulhoes, Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium, Thin Solid Films 461 (2004):243-249.
    [8]H. LABORDE, J.M. LINGER, C. LAMY, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1: Platinum in polyaniline, JOURNAL OF APPLIED ELECTROCHEMISTRY 24(1994):219-226.
    [9]C H Chi,E Chen, Y L Jeng, Capacitive and textural characteristics of polyaniline-platinum composite films, Electrochimica Acta,47 (2002): 2741-2749.
    [10]C. Coutanceau, M.J. Croissant, T. Napporn, C. Lamy, Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film, Electrochimica Acta 46 (2000):579-588.
    [11]J Wang, X Qi, F Meng, et al., Polyaniline Nanofibers:Inducing Action of Neodymium Oxide and Inhibiting Effect on Electrochemical Degradation and Modified Platinum Electrode Application to the Electrocatalytic Oxidation of Methanol, J. Phys. Chem. C 113(2009):1459-1465.
    [12]D.W. Hatchett, M. Josowicz, J. Janata, Electrochemical Formation of Au Clusters in Polyaniline, Chem. Mater.11 (1999):2989-2994.
    [13]A.J. Smith, M. Josowicz, J.M. Kinyanjui, et al., Chemical and Electrochemical Synthesis of Polyaniline/Gold Composites, J.Electrochem. Soc.151 (2004): D113-D120.
    [14]H. Laborde, J. M. Legger, C. Lamy, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1:Platinum in polyaniline-Springer Search, J. Appl. Electrochem.24 (1994):219-226.
    [15]M J Croissant, T. Napporn, J M. Legger, C. Lamy, Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline electrodes, Electrochim. Acta.43 (1998):2447-2457.
    [16]E.C. Venancio, W.T. Napporn, A.J. Motheo, Electro-oxidation of glycerol on platinum dispersed in polyaniline matrices, Electro chim. Acta.47(2002): 1495-1501.
    [17]M. Gholamian, A.Q. Contractor, Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix:Influence of long-range order and metal-polymer interaction, J. Electroanal. Chem.289 (1990):69-83.
    [18]古宁宇,董绍俊,超微电极的新进展,大学化学,16(2001):26-31.
    [19]R.C. Weast (Ed.), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL,1982.
    [20]D. W. Hatchett, R. Wijeratne, J.M. Kinyanjui, Reduction of PtCl62- and PtCl42-in polyaniline:Catalytic oxidationof methanol at morphologically different composites, Journal of Electroanalytical Chemistry 593 (2006):203-210.
    [21]F Gloaguen, J M. Leger, C. Lamy, Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates, J. Appl. Electrochem.27 (1997):1052-1060.
    [22]Y B Shim, M S Won, S M Park, Electrochemistry of Conductive Polymers VIII: In Situ Spectroelectrochemical Studies of Polyaniline Growth Mechanisms, J. Electrochem. Soc.,137(1990):538-544.
    [23]M. Cochet, G. Louarn, S. Quillard, et al., Theoretical and experimental vibrational studyof emeraldine in salt form. Part II, J. Raman Spectrosc.31 (2000): 1041-1049.
    [24]T. Lindfors, C. Kvarnstrom, A. Ivaska, Raman and UV-vis spectroscopic study of polyaniline membranes containing a bulky cationic additive J. Electroanal. Chem.,518(2002):131-138.
    [1]E. Boscheto, B.C. Batista, R.B. Lima, et al., A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol on platinum, Journal of Electroanalytical Chemistry.,642 (2010): 17-21
    [2]Z P Wang,M Shoji, H Ogata, Synthesis and characterization of platinum nanoparticles on carbon nanosheets with enhanced electrocatalytic activity toward methanol oxidation, Applied Surface Science.,259 (2012):219-224.
    [3]D.W. Hatchett, M. Josowicz, J. Janata, Electrochemical Formation of Au Clusters in Polyaniline, Chem. Mater.,11 (1999):2989-2994.
    [4]A.J. Smith, M. Josowicz, J.M. Kinyanjui, et al., Chemical and Electrochemical Synthesis of Polyaniline/Gold Composites, J.Electrochem. Soc.,151 (2004): D113-D120.
    [5]MG Jing, L H Jiang, B L Yi, et al., Comparative study of methanol adsorption and electro-oxidation on carbon-supported platinum in acidic and alkaline electrolytes, Journal of Electroanalytical Chemistry,688 (2013):172-179.
    [6]T Spataru, M Anastasescu, N Spataru, et al., Influence of cobalt oxide substrate on the resistance to fouling during methanol oxidation of platinum particles, Electrochemistry Communications,29 (2013):1-3.
    [7]M C Li, W Y Wang, C Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, Journal of Electroanalytical Chemistry,661 (2011):317-321.
    [8]H S Wanga, C Wingender, H Baltruschat, et al., Methanol oxidation on Pt, PtRu, and colloidal Pt electrocatalysts:a DEMS study of product formation, Journal of Electroanalytical Chemistry,509 (2001):163-169.
    [9]T Zerihun, P. Griindler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, Journal of Electroanalytical Chemistry,441 (1998):57-63.
    [10]Y. E. Seidel,Z Jusys,R. W. Lindstrcm, et al., Oscillatory behaviour in alvanostatic Formaldehyde Oxidation on Nanostructured Pt/Glassy Carbon Model Electrodes, ChemPhysChem,11(2010):1405-1415.
    [11]Tadesse Zerihun, P. Grundler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, J. Electroanal. Chem., 441 (1998):57-63.
    [12]R. Parsons, T. VanderNoot,The oxidation of small organic molecules:A survey of recent fuel cell related research, J. Electroanal. Chem.,257 (1988):9-45.
    [13]Markovic. N.M., Ross.J.P.N, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep.,45 (2002):117-229.
    [14]Iwasita T, Electrocatalysis of methanol oxidation, Electrochim. Acta., 47(2002):3663-3674.
    [15]Yan Xia Chen, Atsushi Miki, Shen Ye, et al., Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode, J. Am. Chem. Soc.,125 (2003): 3680-3681.
    [16]E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al.,New mechanistic aspects of methanol oxidation, J. Electroanal. Chem.,571(2004):273-282.
    [17]王喆,朱赞赞,力虎林.铂粒子修饰单壁碳纳米管/聚苯胺复合膜对甲醛的电催化氧化,化学学报,2007,65(12):1149-1154.
    [18]周忠亮,郭秀锐,鲁理平.DNA-纳米金修饰玻碳电极用于水中甲醛的测定,分析测试学报,2009,28(6):697-700.
    [19]钱功明,杨昌柱,方柏.新型聚邻苯二酚/铂复合膜修饰电极对甲醛电化学氧化,分析科学学报,2009,25(3):341-343.
    [20]Meichao Li, Wuyang Wang, Chunan Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem.,661(2011):317-321.
    [21]M.C.Santos, O.S.Bulhoes, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochimica Acta., 49(2004):1893-1901.
    [22]V.Selvaraj, Nirmala Grace, M.Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloid Interface Sci.,333(2009):254-262.
    [23]M. L. AVRAMOV-IVIC, N. A. ANASTASIJEVIC AND R. R. ADZIC, A study of oxidation of formaldehyde on Au (332) by rotating disc-ring method, Electrochimica Acta.,35(1990):725-729
    [24]Zhiyou Zhou, Na Tian, Youjiang Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry:study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode, J. Electroanal. Chem., 573(2004):111-119.
    [25]FJ Liu, L M Huang, T C Wen, et al., Effect of deposition sequence of platinum and ruthenium particles into nanofibrous network of polyaniline-poly(styrene sulfonic acid) on electrocatalytic oxidation of methanol, Synthetic Metals,158 (2008):603-609.
    [26]J Wang, X Qi, F Meng, et al., Polyaniline Nanofibers:Inducing Action of Neodymium Oxide and Inhibiting Effect on Electrochemical Degradation and Modified Platinum Electrode Application to the Electrocatalytic Oxidation of Methanol, J. Phys. Chem. C,113(2009):1459-1465.
    [27]D W. Hatchett, R Wijeratne, J M. Kinyanjui, Reduction of PtCl62-and PtCl42-in polyaniline:Catalytic oxidationof methanol at morphologically different composites, J. Electroanal. Chem.,593 (2006):203-210.
    [28]L H. Mascaroa, D Goncalves, L O. Bulhoes, Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium, Thin Solid Films,461 (2004):243-249.
    [29]H. LABORDE, J.M. LINGER, C. LAMY, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1: Platinum in polyaniline, JOURNAL OF APPLIED ELECTROCHEMISTRY, 24 (1994):219-226.
    [30]C H Chi,E Chen, Y L Jeng, Capacitive and textural characteristics of polyaniline-platinum composite films, Electrochimica Acta.,47 (2002): 2741-2749.
    [31]C. Coutanceau, M.J. Croissant, T. Napporn, C. Lamy, Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film, Electrochimica Acta,46 (2000):579-588.
    [32]M. Gholamian, A.Q. Contractor, Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix:Influence of long-range order and metal-polymer interaction, J. Electroanal. Chem.,289 (1990):69-83.
    [33]A. Johnstone, G. W. Gross, D. G Weiss, et al., Microelectrode arrays:A physiologically based neurotoxicity testing platform for the 21st century, NeuroToxicology,31 (2010):331-350.
    [34]J Chen, C S Cha, Detection of dopamine in the presence of a large excess of ascorbic acid by using the powder microelectrode technique, J. Electroanal. Chem., 463 (1999):93-99.
    [35]F Davis, S. J. Higson, Arrays of microelectrodes:technologies for environmental investigations, Environ. Sci.:Processes Impacts,15(2013):1477-1489.
    [36]G Herzoga, V Beni, Stripping voltammetry at micro-interface arrays:A review, Analytica Chimica Acta,769 (2013):10-21.
    [37]D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones:XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes, J. electroannl. Chem.,46 (1973):323-342.
    [38]C. Zhang, D. Donadio, G. Galli, First-principle analysis of the IR stretching band of liquid water, J. Phys. Chem. Lett.,9 (2010) 1398-1402.
    [39]Y. Marechal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, Journal of Molecular Structure,1004 (2011):146-155.
    [1]Xin Zhang, Sha Yu, Wenya He, et al., Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid, Biosensors and Bioelectronics,55 (2014):446-451.
    [2]Umesh Chandra, B.E. Kumara Swamy, Ongera Gilbert, et al., Voltammetric resolution of dopamine in the presence of ascorbic acid and uric acid at poly (calmagite) film coated carbon paste electrode, Electrochimica Acta,55 (2010): 7166-7174.
    [3]Lei Zhang, Lilin Wang, Poly(2-am ino-5-(4-pyrid inyl)-1,3,4-thiadiazole) film modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite, J Solid State Electrochem,17 (2013):691-700.
    [4]Tian-Qi Xu, Qian-Li Zhang, Jie-Ning Zheng, et al., Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced grapheme oxide, Electrochimica Acta,115 (2014): 109-115.
    [5]Sara Chumillas, Marta C. Figueiredo, Victor Climent, et al., Study of dopamine reactivity on platinum single crystal electrode surfaces, Electrochimica Acta, 109 (2013):577-586.
    [6]Lu Yang, Dong Liu, Jianshe Huang, et al., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced grapheme oxide modified electrode, Sensors and Actuators B,193 (2014):166-172.
    [7]M. Taei& M. Jamshidi, Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(Adizol Black B)-modif ied glassy carbon electrode, J Solid State Electrochem,18 (2014): 673-683.
    [8]Xin Zhang, Yang Cao, Sha Yu, et al., An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles, Biosensors and Bioelectronics,44 (2013):183-190.
    [9]Xue Wang, Min Wu, Wanrong Tang, et al., Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode, Journal of Electroanalytical Chemistry,695 (2013):10-16.
    [10]Mohammad Mazloum-Ardakani, Mahboobe Abolhasani, Bibi-Fatemeh Mirjalili, et al.,Electrocatalysis of dopamine in the presence of uric acid and folic acid on modified carbon nanotube paste electrode, Chinese Journal of Catalysis,35 (2014):201-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700