用户名: 密码: 验证码:
微电解反应器特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电解反应器已应用于工业污水如含油污水,化工污水和生活污水等的处理过程。基于其应用过程中所存在的问题,需要解决如下几个问题:一是优化三维电极床体设计及各项操作参数,提高效率,降低处理费用;二是解决长期运行中发生的电极堵塞问题,保持三维电极持续高效正常运行。本研究通过测定该反应器溶液电导特性以及活性炭和石墨电极的电极电位,得到反应器的一些电特性。同时为进一步扩大其应用范围,考察对几种醇类和苯胺的电解效率,进行了微电解对石油焦化装置废水的中试研究。
     通过测定NaCl作为电解质时溶液电导率对反应器总电阻的影响时发现:(1)全活性炭时反应器不受溶液电导率的影响,仅有活性碳本身的电导率决定;(2)混合填料时,溶液电导率较小时,反应器的电阻随填料配比变化较大;(3)溶液电导率较高的时候,反应器的电阻随填料配比变化的不大,仅有溶液电导率决定。
     通过上述对单个微电极在电场中的感应电极电位的研究:(1)感应电极在电场中不同位置(距主极板距离不同)均能被极化获得感应电位;(2)活性炭电极感应电位较石墨电极感应电位小;(3)石墨电极电位是随着无机盐浓度的增加电位绝对值变大;(4)活性炭电极电位跟无机盐浓度的关系为随着无机盐浓度增加活性炭电极阳极和阴极电位绝对值都变小。
     通过考察乙醇、丙醇和正丁醇的微电解效率可以得出:(1)电压梯度和初始浓度对电解结果都有较大的影响。从电解效率来说,电压梯度越高去除率越高,初始浓度越高去除率越低。浓度较低时电压梯度对COD去除率的影响越大;(2)比较硫酸钠和氯化钠的影响,添加氯化钠时的效率高一些,这是因为前者为惰性电解质不直接参加电解反应,而后者有Cl~-能在电极表面形成Cl_2而参加氧化还原反应。从试验结果看,混合填料微电解反应器处理醇类废水时电解效率不是很高。
     苯胺电解试验得出如下结论:(1)微电解技术对降解苯胺在电压小于30伏时,能达到最佳处理效果;(2)pH对COD和苯胺处理率没有太大影响;(3)一般原水COD_(Cr)为500mg/l、苯胺浓度在200mg/l左右时,在90~120min之内能达到COD_(Cr)<100mg/l、苯胺浓度<5mg/l;(4)微电解反应器与平板电解槽(不加填料)电解效果有很大差别。这也说明微电解具有很好的处理效果。(5)微电解处理苯胺时,同时产生一些副产物。
     微电解对石油二厂焦化装置废水的中试研究结果表明:(1)通过现场中试
    
     微屯解反应器特性及广川研究
    的枪验,催化曝气一敛电解工艺对该石油炼厂高浓度废水的脱硫率达叨%以上、
    COD75%以1:,其伙川叶靠性得到if实。研究认为本工艺对水质的适应范围较
    人,停留时间短,操作简便,是石油炼厂及其他行业废水的源头治理的合适技
    术:(2催化曝气和微电解单元技术从小试扩大到中试过程所涉及的多相流、电
    化学原理和放大效应,通过现场装置性能的实验测试方法得到了检验和探讨。
    小试所得工艺参数在中试中基本得到保持,中试的去除效率有所提高。两项单
    元技术的设计和运行技术基本完备,为扩大应用提供了重要基础。
The Micro-electrolysis reactor is already applied in the treatment process of industrial wastewater including the oil wastewater, chemical engineering wastewater and domestic wastewater. According to its problem existing in applied process, it requires to resolve following a few problems: first, optimizing the design of three-dimensional electrode bed and various operation parameters, and improving efficiency, lowering the expenses; second, resolving the electrode jam for running over a long period of time, keeping persistent efficiently of three-dimensional electrode normal function. At the same time, for further extending its application, the reactor's electrolysis efficiency on the several alcohols and aniline is investigated, and pilot scale study on the dense effluent from delayed coking plant of petroleum refinery.
    By measuring the electric conductivity's influence on the reactor total electric resistance with the NaCl: (1) When the stuff is all activated carbon, the reactor is not influenced by aqua conductivity, conductivity of activated carbon determines the reactor resistance;(2) Under mixed stuff condition, the reactor resistance changes more along with stuff rate when aqua conductivity is low; (3) When solution conductivity is high, the reactor resistance changes less along with stuff rate, solution conductivity determines the reactor resistance.
    After researches respond potential of single activated carbon and graphite electrode, it is concluded that (1) Electrode in the electric field can be obtained the respond potential from the different position (different distance from main electrode);(2) The potential of activated carbon electrode is lower than graphite electrode;(3) The absolute value of graphite electrode potential increases with inorganic salt concentration;(4) The absolute value of activated carbon electrode potential decreases with inorganic salt concentration.
    From the electrolysis efficiency of alcohol, propyl alcohol and butyl alcohol can be said that (1) Voltage grads and original concentration have strong bigger influence on the removal rate. The electrolysis efficiency is high when voltage grad is high and original concentration is low. voltage grads has great effects on COD removal with low concentration; (2) The electrolysis efficiency is higher with the sodium chloride than with the sodium sulfate, it is likely because the latter is inert electrolyte, and Cl can be formed Cb in electrode surface and joins the reaction. It can be concluded that electrolysis efficiency of alcohols with the mixed stuff micro-electrolysis rector is
    
    
    
    not good.
    The aniline electrolysis experiments draw the conclusion that: (1) Micro-electrolysis reaches best results under 30V when it treats aniline;(2) pH does not strong effect for both COD and aniline removal efficiency;(3) It could reach COD<100mg/l, aniline<5mg/l in the 90~120min;(4) The electrolysis results of mixed stuff reactor are higher than that reactor with no stuff;(5) Some more toxic polychlorinated aromatic substances than aniline are produced during electrolysis.
    A lM3/Hr on-site pilot-plant study of catalytic aeration-micro electrolysis process was conducted to treat the dense effluent from delayed coking plant of petroleum refinery:(1) The pilot process has shown its favorable efficiency and applicability, total removal of S2' and CODcr were over 90 and 75 % respectively. The technologic integrality of process, including equipment design and facility operation, has been prepared for the source control in petroleum refinery and other industry;(2) The performance and factors of two work-units, catalytic aeration and micro electrolysis, are examined, and multiphase fluid, electro-chemistry principle and the scale-up effect between pilot-plant-scale and bench-scale are proved and discussed.
引文
[1] Nicolet, L., Rott, U. Recirculation of powdered activated carbon for the adsorption of dyes in municipal wastewater treatment plant, Water Science and Technology, Voi:40, 1999, 191-198
    [2] El-Geundi, Mohammad S. Adsorbents for industrial pollution control Adsorption Science and Technology Vol:15, 1997, 777-788
    [3] 王宝庆,陈亚雄,宁平,活性炭水处理技术应用,云南环境科学, 2000, 19 (3) : 46-49
    [4] Daifullah, A.A.M., Girgis, B.S. Removal of some substituted phenols by activated carbon obtained from agricultural waste Water Research Vol: 32, Apr 1998, 1169-1177
    [5] Srivastava, S.K., Tyagi, Renu Competitive adsorption of substituted phenols by activated carbon developed from the fertilizer waste slurry, Water Research Vol: 29, Feb 1995 483-488
    [6] Daifullah, A. A. M., Girgis, B. S. Removal of some substituted phenols by activated carbon obtained from agricultural waste, Water Research Volume: 32, April 1998, 1169-1177
    [7] Tai, Hua-Shan; Jou, Chih-Ju G. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol, Chemosphere Volume: 38, May 1999, 2667-2680
    [8] Karimi-Jashni, Ayoub, Narbaitz, Roberto M. Impact of pH on the adsorption and desorption kinetics of 2-nitrophenol on activated carbons, Water Research Volume: 31, December 1997, pp. 3039-3044
    [9] Walker, G.M., Weatherley, L.R. Kinetics of acid dye adsorption on GAC Water Research, Vol: 33, Jun 1999 , 1895-1899
    [10] Walker, G.M., Weatherley, L.R. Fixed bed adsorption of acid dyes onto activated carbon, Environmental Pollution Vol: 99, 1998, 133-136
    [11] Kadirvelu, K., Palanival, M., Kalpana, R., Rajeswari, S. Activated carbon from an agricultural by-product, for the treatment of dyeing industry wastewater, Bioresource Technology Volume: 74, September 2000, 263-265
    [12] Chern, Jia-Ming; Wu, Chia-Yuan Desorption of dye from activated carbon beds: effects of temperature, pH, and alcohol, Water Research Volume: 35, December, 2001, 4159-4165
    
    
    [13] Zamora, R.M. Ramirez, Schouwenaars, R., Moreno, A. Duran, Buitron, G Production of activated carbon from petroleum coke and its application in water treatment for the removal of metals and phenol Water Science and Technology Vol:42 Nov 14-Nov 18 1999 2000 119~126
    [14] Jou, Chih-Ju G., Tai, H.S. Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat BTX, Chemosphere, Volume: 37, August 1998, 685~698
    [15] Scott, J. A., Karanjkar, A. M. Immobilized biofilms on granular activated carbon for removal and accumulation of heavy metals from contaminated streams, Water Science and Technology Volume: 38, November 20, 1998, 197~204
    [16] Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresource Technology Volume: 76, January, 2001,63~65
    [17] Gupta, V. K., Srivastava, S. K., Mohan, D., Sharma, S. Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions, Waste Management Volume: 17, 1997, 517~522
    [18] 黄国林,梁平等,活性炭吸附处理含铬电镀废水的研究,林产化工通讯,1999,33(5):14~17
    [19] 何争光,季喆,铬镀废水的活性炭吸附机理探讨,郑州工业大学学报,1997,18(1):65~69
    [20] Muthukumaran, K. Balasubramanian, N. Ramakrishna, T.V. Removal and recovery of chromium from plating waste using chemically activated carbon, Metal Finishing V 93 No.11 Nov 1995, 6pp
    [21] Selvi, K., Pattabhi, S., Kadirvelu, K. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresource Technology, Volume: 80, October, 2001, 87~89
    [22] 韦朝海,孙寿家等 活性炭处理含氰废水机理研究,华南理工大学学报(自然科学版),Vol 22,October 1994, 1~9
    [23] 韦朝海,孙寿家,活性炭处理含氰废水作用机理分析与研究,环境科学与技术,1995年第2期,1~5
    [24] Zhao, Xianda, Hickey, Robert F., C. Voice, Thomas Long-term evaluation of adsorption capacity in a biological activated carbon fiuidized bed reactor system, Water Research
    
    Volume: 33, September 1999, pp. 2983-2991
    [25] Nishijima, Wataru, Shoto, Eiji, Okada, Mitsumasa, Improvement of biodegradation of organic substance by addition of phosphorus in biological activated carbon, Water Science and Technology, Volume: 36, 1997, pp. 251-257
    [26] Van der Hoek, J. P.; Hofman, J. A. M. H.; Graveland, A. The use of Biological Activated Carbon Filtration for the Removal of Natural Organic Matter and Organic Micropollutants from Water, Water Science and Technology Volume: 40, November, 1999, pp. 257-264
    [27] 郑传宁 宾淮湘 活性炭-生物处理法机理的探讨 第21卷第6期 合肥工业大学学报(自然科学版)1998年12月
    [28] Tian Qing, Chen Jihua Advanced treatment of waste water and slightly deteriorated raw water by biological activated carbon method under rich oxygen condition, Journal of China Textile University, English Edition 17 1 Mar 2000 p 61-63 1000-1484
    [29] 许丹倩,严新焕等;活性炭-H2O2催化氧化降解对氨基苯酚(PAP)废水,中国环境科学, 2000, 20 (2) : 111-113 (浙江工业大学化工学院)
    [30] Ince, Nilsun H.; Apikyan, Izzet G. Combination of activated carbon adsorption with light-enhanced chemical oxidation via hydrogen peroxide, Water Research Volume: 34, December, 2000, pp. 4169-4176
    [31] Lucking, F.; Koser, H.; Jank, M.; Ritter, A. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Research Volume: 32, September, 1998, pp. 2607-2614
    [32] Lin, Sheng H.; Lai, Cheng L. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds, Water Research Volume: 34, February 15, 2000, pp. 763-772
    [33] Nishijima, Wataru; Kim, Woo Hang; Shoto, Eiji; Okada, Mitsumasa The performance of an ozonation-biological activated carbon process under long term operation, Water Science and Technology Volume: 38, 1998, pp. 163-169
    [34] Woo, Hang Kim; Nishijima, Wataru; Baes, Aloysius U.; Okada, Mitsumasa Micropollutant removal with saturated biological activated carbon (BAC) in ozonation-BAC process, Water Science and Technology, Volume: 36, 1997, pp. 283-298
    [35] 张彭义,余刚等,臭氧/活性炭协同降解有机物的初步研究,中国环境科学,2000(2) :159-162
    
    
    [36] 蔡为荣,欧阳明,王雪梅,王绍运,活性碳—天然锰砂混合处理镀锌废水的初探,安徽机电学院学报,Vol.15 No.1 Mar 2000,28~30
    [37] 熊英健 范娟 朱锡海 三维电极电化学水处理技术研究现状及方向 工业水处理 1998,18(1):5-8
    [38] 董献堆,陆平安,陆君涛,贺平,电解用三维电极体系的研究与发展,化学通报 1997,第5期,12~19
    [39] 朱宏丽,王书惠,三维电极在水处理中的应用,环境科学 1985,6(6),36~40
    [40] Fleischmann M. et al.Elecrtochem Acta, 1977, 22: 913~920
    [41] 草壁克己,诸风成治,加藤康夫.水处理技术 1981,22(11):55~65
    [42] 周抗寒,周定.用涂膜活性炭提高复极性电解槽电解效率.环境科学 1994,15(2):38~40
    [43] 片桐晃.流化床电极复极性填充床电极.电气化学(日) 1987,55(6):418~422
    [44] 董献堆,陆平安,陆君涛,贺平.电解用三维电极体系的研究与发展 化学通报 1997,(5):12~19
    [45] Fahidy T Z. The chemical engineering approach to some electrochemical processes. Can.J. Chem. Eng., 1973, 51: 521~535
    [46] 陈延禧主编.电解工程 天津科学技术出版社,1993
    [47] Fleischmann M. Ibrisagic Z. Examination of flow models for bipolar trickle reactors, J. Appl. Electrochem., 1980,(10): 157~168
    [48] Ismail M I. Electrochemical Reactors: Their Science and Technology Part A, Elsevier Science Publishers B. V., Amsterdam, 1989
    [49] Levie de. Electrochemical response of porous and rough electrode. Adv. Elctrochem.Eng., 1967,(6): 329
    [50] 竹原善一郎,小久见善八.固定床电解槽构成充粒子役割.电气化学(日),1985,53(1):75~79
    [51] 周抗寒,周定.复极性固定床电解槽内电极电位的分布.环境化学 1994,13(4):318~322
    
    
    [52] Eardley D C. Handley D. Andrew S.P.S. Bipolar electrolysis with intra phase conduction in two phase media, Electrochimica. Acta., 1973,18: 839~848
    [53] 草壁克己,诸冈成治,加藤康夫.3次元电极用电解法金属含有废水处理.工业用水(日),1983,298:25~34
    [54] 诸冈成治,加藤康夫.3次元电极.化学工学(日),1980,44(10):611~615
    [55] EI-Ghaoui E A. Jansson R E W. Moreland C. Application of the trickle tower to problems of pollution control. Ⅱ. The direct and indirect oxidation of cyanide, J. Appl. Electrochem, 1982, (12): 69~73
    [56] EI-Ghaoui E A. Jansson R E W. Application of the trickle tower to problems of pollution control.Ⅲ. Heavy-metal cyanide solutions, J. Appl. Electrochem., 1982, (12): 75~80
    [57] 朱宏丽,王书惠.三元电极电解在水处理中的应用.环环境科学,1985,6(6):36~40
    [58] 周定,蔡伟民等.印染废水脱色新方法研究 环境化学,1984,3(4):35~41
    [59] 汪群慧,周定等.双极性颗粒床电极用于活性炭的再生.化工环保,1990,10(2):69~72
    [60] 杨卫身,周集体等.微电解法降解染料的研究.上海环境科学,1996,15(7):30~35
    [61] 许海梁,杨卫身,周集体,杨凤林.蒽醌染料的电解处理研究.环境保护科学,1998,24(4):14~16
    [62] 许海梁,杨卫身,周集体,杨凤林.偶氮染料废水的电解处理 化工环保 1999,19(1)32~36
    [63] 刘振宇,王栋等.微电解法处理阴离子表面活性剂废水的研究.环境工程,1998,16(2):24~27
    [64] 唐启明、王栋、杨卫身等,催化曝气—微电解工艺处理石油炼厂延迟焦化装置生产废水的小试研究,环境工程,Vol.17(4):7~10,1999.8
    
    
    [65]沈慕昭 编 电化学基本原理及其应用 北京师范大学出版社 p.109
    [66]乌锡康主编 有机化工废水治理技术 化学工业出版社
    [67]程里 袁相里 袁云,含取代苯胺类化合物工业废水的电解处理研究,上海环境科学 1994,3,11~15
    [68]D.K.KIRK, H.SHARIFIAN, F.R.FOULKES Anodic oxidation of aniline for waste water treatment Journal of Applied Electrochemistry 1985, 15 285~292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700