用户名: 密码: 验证码:
钢的激光辅助渗硅过程与组织性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅钢是一种含碳量很低的Fe-Si软磁合金,是发展电力和电讯工业的基础材料。随着硅钢中Si含量的增加,其电阻率和最大磁导率增大、矫顽力和铁损降低,软磁性能提高。然而随着Si含量的增加,其加工性能也变差。高硅钢优异的软磁性能吸引着人们进行大量的研究和开发工作,一些新的高硅钢制备工艺如特殊轧制法、快速凝固法、喷射成型法、化学气相沉积法等相继展开,它们有其优点,同时也存在着方法本身带来的技术和成本方面的局限性。利用激光熔覆技术制备的涂层具有与基体呈冶金结合、外观形貌平整、微观组织致密、化学组成均匀、工艺参数容易控制、制备效率高、无污染、低能耗、成品率高等优点,显示出良好的应用前景。本文以提高硅钢表面硅含量为目的,提出激光辅助渗硅新技术,在低硅钢表面首先利用激光熔覆技术制备出质量良好的高Si涂层,再经过随后的退火处理,通过控制退火温度和保温时间制备Si成分均匀的高硅钢或Si成分呈梯度分布的高硅浓度梯度硅钢,为高硅钢片的开发研制提供一条新的技术路线,对于发展高硅钢制造技术和激光应用技术都具有十分重要的意义。
     本文从熔覆材料体系设计、熔覆工艺探索和最优化等方面,进行了系统的实验研究;利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)和穆斯堡尔谱仪(MS)等对优化条件下制备的高Si涂层的形貌、微观组织、相组成、成分和显微硬度分布进行系统的表征;运用Miedema和Toop热力学模型结合熔覆过程中温度场的分布对熔池内Fe-Si-C熔体进行热力学计算,为控制熔覆工艺参数提供重要的理论依据;探索随后的扩散退火工艺,对高温扩散退火后试样组织、相组成、硬度和成分的分布进行观察和分析,并利用振动样品磁强计(VSM)对退火后试样的室温磁性能进行了检测和分析。
     在低硅钢基体表面预置不同厚度的Fe和Si的混合粉末,利用Nd:YAG脉冲激光进行单道和多道搭接熔覆。在探索和调整工艺参数的过程中发现,激光功率和扫描速度是影响熔覆层质量的重要因素。激光功率过低,涂层与基体之间形成非冶金结合,裂纹等缺陷多;激光功率过高,熔覆涂层表面易发生氧化现象,且涂层被基体稀释严重。增大激光扫描速度有助于熔覆层组织的细化和均匀性的提高,同时,熔覆层厚度减小,稀释率减小。对于不同厚度的预置涂层来说,制备表面质量良好、无裂纹和气孔等缺陷的熔覆涂层存在所需的最小激光比能量值。比能量过高,熔覆材料烧损过多,不能形成平整的熔覆层,且涂层稀释现象严重;比能量过低,不能满足冶金反应所需的能量,熔覆层与基体之间不能形成冶金结合。
     对优化参数下制备的单道和多道搭接熔覆涂层的表面形貌和微观组织的分析表明,熔覆涂层表面质量良好,无裂纹和气孔等缺陷,组织致密,与基体呈良好的冶金结合。自熔覆试样表面起,单道和多道搭接熔覆层的显微组织可分为熔覆区、界面结合区和热影响区。凝固组织受熔池内液相成分和凝固过程控制参数的影响,在熔覆层与基体的结合界面(即熔池底部)处,凝固组织以平面晶形式外延生长;随着距离结合界面距离的增加,显微组织由受热流方向控制而垂直于结合界面的柱状晶过渡到树枝晶,组织细化;熔覆层顶部为细小的枝晶组织,生长方向紊乱。在熔覆层中,垂直于结合界面方向存在一定程度的组织不均匀性,而同一高度不同部位的枝晶形貌无明显变化,组织是均匀的。热影响区是细小的淬火马氏体组织,基体仍保持原始铁素体组织。由于多道搭接熔覆过程中存在激光的二次扫描现象,故搭接区的枝晶尺寸较大且生长方向较紊乱。
     测定优化参数下制备的两种熔覆涂层的室温Mossbauer谱,涂层超精细结构的分析结果表明,一种含Si量最高可达9.1wt.%左右的Fe-Si涂层中,存在相对含量分别为69.6%、13.0%和17.4%的α-Fe固溶体、Fe-Si化合物和y-Fe固溶体等三种类型的相,其中含Si主要相以A2型(体心立方)的a-Fe(Si)无序固溶体形式存在;另一种含Si量最高可达15.20wt.%左右的Fe-Si涂层中,存在相对含量分别为93.9%、5.8%和0.3%的Fe3Si、Fe-Si化合物和γ-Fe固溶体等三种类型的相,其中含Si主要相以D03型(面心立方超结构)的Fe3Si有序固溶体形式存在。
     熔覆涂层的Si含量远远高于低硅钢基体的Si含量,且Si含量在熔覆区内变化不大,结合区和热影响区的Si含量呈下降趋势;熔覆层显微硬度分布曲线与Si含量分布曲线具有相同的变化趋势,涂层的硬度远远高于基体的硬度,其硬度提高的主要原因是Si原子的固溶强化作用和激光处理后组织的细晶强化作用。
     在激光熔覆过程中,整个涂层处于高温熔化状态,形成Fe-Si-C合金熔池。垂直激光束扫描方向的熔池内Si活度以激光束入射方向为轴对称分布,而熔池内沿激光束扫描方向的前方Si的等活度线密集,后部Si的等活度线密度相对较低;熔池底面与表面激光束作用中心位置相比,Si活度低,这是熔覆层底部形成多种硅化物以及形成良好冶金结合的重要原因。
     将Si含量约为15.20wt.%的高Si熔覆涂层试样在1100℃进行不同时间的退火处理。高温扩散退火处理后,制备出由单一α-Fe(Si)固溶体相组成的、横截面上显微硬度与Si含量呈梯度分布的高硅浓度梯度硅钢。搭接熔覆和退火处理后的样品均具有室温铁磁性,其中,1100℃退火处理6小时的试样表面Si含量为5.94wt.%,心部Si含量为3.68wt.%,与Fe-1Si基体比较,其具有更高的比饱和磁化强度(235.06emu/g)和更低的矫顽力(1.5395G),直流磁性能优于原始Fe-1Si低硅钢板。
Silicon steel is the Fe-Si soft magnetic alloy containing low Si content and is the base material of electric power and telecommunication. It is well known that increasing the Si content improves the soft magnetic properties of silicon steel. However, as the Si content is increased, the material becomes extremely brittle and it is difficult to produce thin sheets by conventional rolling. Several methods have been developed to obtain high silicon steels including special thermomechanical rolling, rapid solidification, spay forming and chemical vapor deposition, etc. But each method has its limitations. Laser cladding technique aims at obtaining high performance alloy coatings on steel substrates, in which adhesion is obtained by surface melting of the substrate. In this process, a thin surface layer of the substrate is melted by the laser beam together with the additive or preplaced material to form the coating. The process has received a lot of attention over the years and is now applied commercially in a range of industries such as the automotive, mining and aerospace. The main advantages of laser cladding compared with the processes mentioned above are that the source of the energy can be localized and the size of laser beam can be controlled precisely. Moreover, the higher solidification rates induce a fine microstructure consisting of crystalline or amorphous phases and with an extended solid solubility of key alloying elements. The aim of the present work is to improve the Si content of the surface of silicon steel. The new method of laser assisted siliconizing is to laser clad a well-qualified high Si coating on the low silicon steel surface and then to prepare a high silicon steel or high si gradient silicon steel through the subsequent diffusion annealing treatment. It is a new potential technique to produce high silicon steel.
     The investigations of design of cladding material, exploration of the processing parameters and optimization of the parameters were carried out in the present work. Characterizations of surface morphology, microstructure, phase constituents, chemical composition and microhardness were carried out by using the optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and Mossbauer spectroscopy (MS). Based on the Miedema's formation heat model for binary alloys and the Toop's asymmetric model for ternary alloys, the formation heat, excess entropy and activity coefficients of Si from 1 900K to 4 100K in the Fe-Si-C melt formed during the laser cladding high Si coatings process were calculated. The exploration of the subsequent diffusion annealing treatment was carried and the magnetic properties of the laser cladding specimens after annealing were measured by vibrating sample magnetometer (VSM).
     During the single-track and multi-track laser cladding mixed powders of Fe and Si on low silicon steel surface, the laser energy and the laser scanning speed are found to the the key factors affecting the cladding process. When the laser energy is lower, the non-metallurigical bonding formed between the cladding coating and the low silicon steel substrate and there are a lot of cracks in the coatings. When the laser energy is higher, the surface oxidation of laser cladding coating is easy to occur and the dilution is high. The increase of laser scanning speed is helpful for the refinement and uniformity of cladding microstructure. At the same time, the thickness of laser cladding coating decreased and the dilution rate is also decreased. As for the preplaced powder bed with different thickness, the specific laser energy exists to produce a pore and crack-free coating with dense microstructure and high Si content. The higher specific laser energy causes a severe burning loss and is not helpful for obtaining the smooth cladding coating. The dilution at higher specific laser energy is also high. When the specific laser energy is lower, the energy for forming the metallurgical bonding between the coating and the substrate is not satisfied.
     By means of optimized single-track and multi-track laser cladding, a crack-and pore-free coating through excellent metallurgical bonding with the substrate was successfully prepared on the low silicon steel. After cladding, the surface of silicon steel could be divided into the cladding zone, the interface zone and the heat-affected zone (HAZ). The interface zone between the cladding zone and the substrate is a planar front solidified layer, epitaxially grown from the substrate. The cladding zone forms after rapid solidification of the molten cladding materials. In the cladding zone, the microstructures along the interface-to-top surface of the coating exhibit vertically aligned columnar and dendritic microstructures, which indicate that a vertical temperature gradient as heat is conducted away from the melt pool towards the substrate. And there are disoriented and finer dendrites near the top surface. In the cladding coating, the microstructure along the interface-to-top surface of the coating is not uniform and that of same highness has no obvious change and the microstructure is uniform. The HAZ near the substrate is characterized by a fine acicular martensite and the substrate still keeps ferrite microstructure. The secondary scanning occurs obviously during the multi-track laser cladding process and the microstructure of the overlapping zone is coarser and disoriented.
     The results of Mossbauer spectroscopy show that there are two hyperfine structures in the cladding coatings prepared under the optimized process parameters. One is the Fe-Si coating containing Si as high as 9.1wt.%. In this coating, the relative content of the a-Fe solution, the Fe-Si compounds and the y-Fe solution are 69.6%,13.0% and 17.4%, respectively. The main phase containing Si element of this coating is existing in A2 type (body-centered cubic structured) disorder solid solution ofα-Fe. The other is the Fe-Si coating containing Si as high as 15.20wt.% in which the relative content of the Fe3Si, the Fe-Si compounds and the y-Fe solution are 93.9%,5.8%and 0.3%, respectively. The main phase containing Si element of this coating is DO3 type (face-centered cubic structured superlattice) order solid solution of Fe3Si.
     The Si content of laser cladding zone is much higher than that of silicon steel substrate and the change of Si content is not obvious. And the Si content is decreasing in the interface zone and the HAZ. The change of microhardness is the same as that of Si content. The microhardness of the cladding zone is much higher that of the substrate as a result of the effect of solid solution hardened of Si atom and the refinement of the microstructure.
     During the laser cladding process, the Fe-Si-C melt formed. The iso-activity lines of Si distribute axisymmetrically to the incident laser beam in the melt pool vertically to the laser scanning direction. And the iso-activity lines of Si in the front of the melt pool along the laser scanning direction are more intensive than those in the back of the melt pool. The activity of Si on the bottom of the melt pool is lower than that in the effecting center of laser beam on the top surface of the melt pool and it may be the important reason of the formation of the silicides and excellent metallurgical bonding between the laser cladding coating and the substrate.
     The laser cladding specimens of Si content of 15.20wt.% were diffusion annealed at 1100℃for different times. The high Si gradient silicon steel with single phase ofα-Fe(Si) solution solid was obtained and the microhardness and Si content are distributed gradiently at the cross-sections of the specimens. The specimens as clad and as annealed are ferromagnetic at room temperature. The Si content of the surface of specimen as clad and annealed at 1100℃for 6 hours is 5.94wt.% and the Si content of the core of it is 3.68wt.%. And the DC magnetic property of specimens as clad and annealed at 1100℃for 6 hours is better with the specific saturation magnetization of 235.06emu/g and the coercivity of 1.5395G than the original low silicon steel.
引文
1. Sievert J. The measurement of magnetic properties of electrical sheet steel-survey on methods and situation of standards[J], Journal of Magnetism and Magnetic Materials, 2000,215-216:647-651.
    2.张译中.国外晶粒取向硅钢技术的进展[J],上海金属,2002,24(3):31-38.
    3.何忠治.电工钢的现状与展望[J],中国冶金,2001,(4):14-16.
    4.何忠治.电工钢的现状与展望(续)[J],中国冶金,2001,(5):15-16.
    5.王东.高硅电工钢的特性及应用[J],电工材料,2001,(3):26-29.
    6.刘海明.高硅电工钢片的开发[J],金属材料研究,1993,19(2):23-28.
    7.杨劲松,谢建成,周成.6.5%Si高硅钢的制备工艺及发展前景[J],功能材料,2003,34(3):244-246.
    8. Komatsubara M, Sadahiro K, Kondo O, et al. Newly developed electrical steel for high-frequency use[J], Journal of Magnetism and Magnetic Materials,2002,242-245: 212-215.
    9. Ushigami Y, Mizokami M, Fujikura M, et al. Recent development of low-loss grain-oriented silicon steel [J], Journal of Magnetism and Magnetic Materials,2003, 254-255:307-314.
    10. Arai K I, Ishiyama K. Recent developments of new soft magnetic materials[J], Journal of Magnetism and Magnetic Materials,1994,133(1-3):233-237.
    11.何忠治.电工钢[M],北京:冶金工业出版社,1997,1-40.
    12. Ciurzynska W H. Magnetic susceptibility disaccommodation and Mossbauer studies of high silicon-iron alloy obtained by different methods[J], Journal of Magnetism and Magnetic Materials,1998,188(3):346-352.
    13. Ciurzynska W H. Effect of the silicon content on the magnetic susceptibility disaccommodation in silicon-iron ribbons[J], Journal of Magnetism and Magnetic Materials,2000,215-216:542-544.
    14. Ros-Yanez T, Houbaert Y, Fischer O, et al. Production of high silicon steel for electrical applications by thermomechanical processing[J], Journal of Materials Processing Technology,2003,141(1):132-137.
    15. Ros-Yanez T, Houbaert Y, Fischer 0, et al. Thermomechanical processing of high Si-steel (up to 6.3%Si)[J], IEEE Transactions on Magnetics,2001,37(4):2321-2324.
    16. Kim K N, Pan L M, Lin J P, et al. The effect of boron content on the processing for Fe-6.5 wt%Si electrical steel sheets[J], Journal of Magnetism and Magnetic Materials, 2004,277(3):331-336.
    17. Ibarrondo I, San Juan J, Gonzalez J. Study of the incidence of the last annealing on the magnetic characteristics of high silicon (6.0-6.5%) crystalline ribbons directly obtained from the melted state by rapid quenching[J], Journal of Magnetism and Magnetic Materials,1991,101(1-3):83-85.
    18. Monstadt H, Hornbogen E, Rohde J. The effect of heat treatment on microstructures of melt-spun Fe6.5wt%Si alloys[J], Journal of Magnetism and Magnetic Materials,1992, 112(1-3):245-250.
    19. Gannac Y, Degauque J, Viala B, et al. Models of the magnetic behavior of GO and NO (3.2wt%Si) and rapidly quenched (6.5wt%Si) iron-silicon alloys[J], Journal of Magnetism and Magnetic Materials,1994,133(1-3):63-66.
    20. Viala B, Degauque J, Baricco M, et al. Magnetic and mechanical properties of rapidly solidified Fe-Si6.5wt%alloys and their interpretation [J], Journal of Magnetism and Magnetic Materials,1996,160:315-317.
    21. Ferrara E, Fiorillo F, Pasquale M, et al. Role of material purity on the structural and magnetic properties of rapidly solidified FeSi 6.5 wt.%alloys[J], Journal of Magnetism and Magnetic Materials,1994,133(1-3):366-370.
    22. Fiorillo F, Ferrara E, Ferrando L, et al. Magnetic losses and mechanical properties of Fe-4 to 7.8wt.%Si rapidly quenched alloy[J], IEEE Transaction on Magnetics,1997,33(5): 3802-3804.
    23. Ciurzynska W H, Zbroszczyk J, Olszewski J, et al. Order-disorder effect on magnetic properties of rapidly quenched Fe-6.5%Si alloy[J], Journal of Magnetism and Magnetic Materials,1994,133(1-3):351-353.
    24.杨林,田冲,陈桂云,等.喷射轧制Fe-4.5%Si硅钢片的组织和性能[J],材料科学与工艺,2002,10(1):55-58.
    25. Shin J S, Lee Z H, Lee T D, et al. The effect of casting method and heat treating condition on cold workability of high-Si electrical steel[J], Scripta Materialia,2001, 45(6):725-731.
    26. Kasama A H, Bolfarini C, Kiminami C S, et al. Magnetic properties evaluation of spray formed and rolled Fe-6.5wt.%Si-1.0wt.%Al alloy[J], Materials Science and Engineering, A449-451:375-377.
    27. Machado R, Kasama A H, Jorge Jr. A M, et al. Evolution of the texture of spray-formed Fe-6.5wt.%Si-1.0wt.%Al alloy during warm-rolling[J], Materials Science and Engineering, A449-451:854-857.
    28. Hu C Z, Zhang D M, Zhang L M. Fabrication of Fe-6.5wt%Si bulk by spark plasma sintering[J], Journal of Wuhan University of Technology:Materials Science Edition,2005, 20(1):72-74.
    29. Yuan W J, Li J G, Shen Q, et al. A study on magnetic properties of high Si steel obtained through powder rolling processing[J]. Journal of Magnetism and Magnetic Materials, 2008,320(1-2):76-80.
    30. Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling[J]. Journal of Magnetism and Magnetic Materials,2004, 281(2-3):135-139.
    31.员文杰,沈强,张联盟.粉末轧制法制备Fe-6.5%Si硅钢片的研究[J].粉末冶金技术,2007,25(1):32-34.
    32. Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5%Si steel sheet[J]. Journal of Magnetism and Magnetic Materials,1996,160:109-114.
    33. Okada K, Yamaji T, Kasai K. Basic investigation of CVD method for manufacturing 6.5%Si steel sheet[J]. ISIJ International,1996,36(6):706-713.
    34. Yamaji T, Abe M, Takada Y, et al. Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line[J], Journal of Magnetism and Magnetic Materials,1994,133(1-3):187-189.
    35. Ishikawa M, Okada K, Okami Y, et al. NK-Super E Core-manufacturing equipment and product properties[J], NKK Technical Review,1995, (72):43-52.
    36. Fujita K, Namikawa M, Takada Y. Magnetic properties and workability of 6.5%Si steel sheet manufactured by siliconizing process[J], Journal of Materials Science and Technology,2000,16(2):137-140.
    37. Crottier-Combe S, Audisio S, Degauque J, et al. The magnetic properties of Fe-Si6.5wt% alloys obtained by a SiCl4-based CVD process[J], Journal of Magnetism and Magnetic Materials,1996,160:151-153.
    38.吴润,陈大凯,夏先平,等.高硅钢的PCVD制造工艺及其电磁性能[J],钢铁研究学报,1997,9(4):42-45.
    39.王蕾,吴新杰,李平生,等.PCVD法制高Si钢片的研究[J],金属热处理,2000,(12):27-29.
    40.王蕾,周树清,陈大凯.PCVD法渗Si的研究[J],武汉科技大学学报:自然科学版,2000,23(3):245-246.
    41.李晓,孙跃,赫晓东.高温快速退火对电子束物理气相沉积制备高硅钢钢片的影响[J],功能材料,2007,(10):1603-1609.
    42. He X D, Li X, Sun Y. Microstructure and magnetic properties of high silicon electrical steel produced by electron beam physical vapor deposition[J], Journal of Magnetism and Magnetic Materials,2008,320(3-4):217-221.
    43. EL-Raghy T, Barsoum M W. Diffusion kinetics of the carburization and silicidation of Ti3SiC2[J], Journal of Applied Physics,1998,83(1):112-119.
    44.庄光山,陈增清,徐英,等.机械能助渗硅的研究[J],金属热处理,2000,(9):12-14.
    45.麻莉萍,麻云新,麻启承.碳钢渗硅工艺优化的研究[J],上海金属,1999,21(1):7-11.
    46.梁精龙.熔盐法沉积Si及制备Fe-6.5wt%Si薄板研究[D],天津:河北理工大学,2005.
    47.蔡宗英,张莉霞,李运刚.电化学还原法制备Fe-6.5%Si薄板[J],湿法冶金,2005,24(2):83-87.
    48. Sun S, Durandet Y, Brandt M. Parametric investigation of pulsed Nd:YAG laser cladding of satellite 6 on stainless steel[J], Surface and Coatings Technology,2005,194(2-3): 225-231.
    49. Hidouci A, Pelletier J M, Ducoin F, et al. Microstructural and mechanical characteristics of laser coatings[J], Surface and Coatings Technology,2000,123(1):17-23.
    50. Manna I, Dutta Majumdar J, Ramesh Chandra B, et al. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel[J], Surface and Coatings Technology, 2006,201(1-2):434-440.
    51. Wu X L. Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating[J], Surface and Coatings Technology,1999, 115(2-3):153-162.
    52. Li M X, He Y Z, Sun G X. Microstructure and wear resistance of laser clad cobalt-based alloy multi-layer coatings[J], Applied Surface Science,2004,230(1-4):201-206.
    53. Jagdheesh R, Sastikumar D, Kamachi Mudali U, et al. Laser processed metal-ceramic coatings on AISI type 316L stainless steel[J], Surface Engineering,2004,20(5):360-365.
    54. Jagdheesh R, Kamachi Mudali U, Sastikumar D, et al. Laser cladding of Si on austenitic stainless steel[J], Surface Engineering,2005,21(2):113-118.
    55. Tsai W T, Lai T H, Lee J T. Laser surface alloying of stainless steel with silicon nitride[J], Materials Science and Engineering,1994, A183(1-2):239-245.
    56. Tsai W T, Shieh C H, Lee J T. Surface modification of ferritic stainless steel by laser alloying[J], Thin Solid Films,1994,247(1):79-84.
    57. Isshiki Y, Shi J, Nakai H, et al. Microstructure, microhardness, composition, and corrosive properties of stainless steel 304-Ⅰ. Laser surface alloying with silicon by beam-oscillating method[J], Applied Physics,2000, A70(4):395-402.
    58. Isshiki Y, Shi J, Nakai H, et al. Microstructure, microhardness, composition, and corrosive properties of stainless steel 304-Ⅱ. Low-pressure laser spraying with silicon[J], Applied Physics,2000, A70(6):651-656.
    59.刘光穆.电工钢的生产开发现状和发展趋势[J],特殊钢,2005,26(1):38-41.
    60.卢凤喜.以Mn部分代Si生产晶粒取向电工钢片的探讨[J],中国冶金,2002,(4):39-41.
    61. Il'inskii A, Slyusarenko S, Slukhovskii O, et al. Structural properties of liquid Fe-Si alloys[J], Journal of Non-Crystalline Solids,2002,306(1):90-98.
    62. Bolivar F J, Sanchez L, Tsipas S A, et al. Silicon coating on ferritic steels by CVD-FBR technology[J], Surface and Coatings Technology,2006,201(7):3953-3958.
    63.石坂哲郎,山部惠造,高橋後夫.6.5%Si-Fe合金の冷間压延と磁気特性[J],日本金属学会志,1966,30(6):552-558.
    64.钟太彬,林均品,陈国良.Fe3Si基合金的制备及其应用研究进展[J],功能材料,1999, 30(4):337-344.
    65.谢燮揆.高硅电工钢[J],中小型电机,1994,21(3):60-61.
    66. Matsumura S, Tanaka Y, Koga Y, et al. Concurrent ordering and phase separation in the vicinity of the metastable critical point of order-disorder transition in Fe-Si alloys[J], Materials Science and Engineering,2001, A312:284-292.
    67.王公平,岳明,张久兴,等.放电等离子体烧结NdFeB永磁材料力学性能的研究[J],粉末冶金技术,2006,24(4):259-266.
    68.范景莲,艾宪平,马运柱.高能球磨和放电等离子体烧结制备超细WC-8Co硬质合金[J],稀有金属,2005,29(2):129-132.
    70.胡长征.粉末冶金方法制备高硅铁硅合金的探索性研究[D],武汉:武汉理工大学,2004.
    71.张忠伟,汪凌云,黄光胜.金属带材粉末轧制的研究[J],轻合金加工技术,2005,33(4):40-51.
    72. Wang W F. Rolling compaction, magnetic properties, and microstructural development during sintering of Fe-Si[J], Powder Metallurgy,1995,38(4):289-293.
    73. Bas J A, Calero J A, Dougan M J. Sintered soft magnetic materials. Properties and applications[J], Journal of Magnetism and Magnetic Materials,2003,254-255:391-398.
    74.李崇俊,马伯信.化学气相沉积渗透技术综述[J],固体火箭技术,1999,22(1):54-58.
    75.刘立,沈复初,袁骏,等.CVD技术在制备含硅化合物膜层中的应用[J],材料科学与工程,2001,19(2):128-131.
    76.杜平凡,沃银花,姚奎鸿,等.硅烷CVD法在钢基体表面生成硅扩散涂层[J],浙江理工大学学报,2005,22(3):266-268.
    77. Xiong H P, Mao W, Xie Y H, et al. Formation of silicide coatings on the surface of a TiAl-based alloy and improvement in oxidation resistance[J], Materials Science and Engineering,2005, A391:10-18.
    78.潘邻.化学热处理应用技术[M],北京:机械工业出版社,2004,333-334.
    79.徐滨士,刘世参.表面工程新技术[M],北京:国防工业出版社,2001,214-241.
    80.潘邻.化学热处理应用技术[M],北京:机械工业出版社,2004,159-163.
    81. Ros-Yanez T, Ruiz D, Barros J, et al. Advances in the production of high-silicon electrical steel by thermomechanical process and by immersion and diffusion annealing[J], Journal of Alloys and Compounds,2004,369(1-2):125-130.
    82. Ros-Yanez T, Houbaert Y, Gomez Rodriquez V G High-silicon steel produced by hot dipping and diffusion annealing[J], Journal of Applied Physics,2002,91(10):7857-7859.
    83. Ros-Yanez T, Wulf M D, Houbaert Y. Influence of the Si and Al gradient on the magnetic properties of high-Si electrical steel produced by hot dipping and diffusion annealing[J], Journal of Magnetism and Magnetic Materials,2004,272-276(S1):e521-e522.
    84. Barros J, Ros-Yanez T, Vandenbossche L, et al. The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel[J], Journal of Magnetism and Magnetic Materials,2005,290-291:1457-1460.
    85. Barros J, Ros-Yanez T, Fischer O, et al. Texture development during the production of high Si steel by hot dipping and diffusion annealing[J], Journal of Magnetism and Magnetic Materials,2006,304(2):e614-e616.
    86. Dupre L, Vandenbossche L, Segeant P, et al. Optimization of a Si gradient in laminated SiFe alloys[J], Journal of Magnetism and Magnetic Materials,2005,290-291:1491-1494.
    87.胡广勇,武保林,王刚,等.CVD法制取Fe-6.5%Si薄板的扩散工艺计算机模拟[J],东北大学学报:自然科学版,1999,20(4):405-407.
    88. James M R, Gnanamuthu D S, Moores R J. Mechanical state of laser melted surfaces[J], Scripta Metallurgica,1984,18(4):357-361.
    89.应小东,李午申,冯灵芝.激光表面改性技术及国内外发展现状[J],焊接,2003,(1):5-8.
    90.马玉涛.激光熔覆钢基表面自生复合材料的研究[D],大连:大连理工大学,2004.
    91. Sha C K, Tsai H L. Hardfacing characteristics of S42000 stainless steel powder with added silicon nitride using a CO2 laser[J], Materials Characterization,2004,52(4-5): 341-348.
    92. Yang S, Chen N, Liu W J, et al. Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding[J], Surface and Coatings Technology,2004,183(2-3): 254-260.
    93. Xu J, Liu W J. Wear characteristic of in situ synthetic TiB2 particulate-reinforced Al matrix composite formed by laser cladding[J], Wear,2006,260(4-5):486-492.
    94. Zhang D W, Lei T C, Zhang J G,et al. The effects of heat treatment on microstructure and erosion properties of laser surface-clad Ni-base alloy [J], Surface and Coatings Technology,1999,115(2-3):176-183.
    95. Georges C, Semmar N, Boulmer-Leborgne C. Effect of pulsed laser parameters on the corrosion limitation for electric connector coatings [J], Optics and Laser in Engineering, 2006,44(12):1283-1296.
    96. Liu X B, Yu L G, Wang H W. Synthesis of a nickel silicide-base composite coating on austenitic steel by laser cladding[J], Journal of Materials Science Letters,2001,20(16): 1489-1492.
    97.郭伟,徐庆鸿,田锡唐.激光熔覆的研究发展状况1[J],宇航材料工艺,1998,(1):1-8.
    98.郭伟,徐庆鸿,田锡唐.激光熔覆的研究发展状况2[J],宇航材料工艺,1998,(2):33-35.
    99.杨洗陈,雷剑波,王云山,等.Nd:YAG激光和CO2激光熔敷性能比较研究[J],天津工业大学学报,2003,22(5):2-4.
    100.Jouvard J M, Grevey D F, Lemoine F, et al. Continuous wave Nd:YAG laser cladding modeling a physical study of track creation during low power processing[J], Journal of Laser Applications,1997,9(1):43-50.
    101.Lackner J M, Waldhauser W, Ebner R. Large-area high-rate pulsed laser deposition of smooth TiCxN1-x coatings at room temperature-mechanical and tribological properties[J], Surface and Coatings Technology,2004,188-189:519-524.
    102.Kac S, Kusinski J. SEM structure and properties of ASP2060 steel after laser melting[J], Surface and Coatings Technology,2004,180-181:611-615.
    103.Yakovlev A, Trunova E, Grevey D, et al. Laser-assisted direct manufacturing of functionally graded 3D objects[J], Surface and Coatings Technology,2005,190(1): 15-24.
    104.李胜,曾晓雁,胡乾午.工艺参数对Nd:YAG激光熔覆层几何尺寸和性能的影响[J],热加工工艺,2007,36(7):56-58.
    105.王扬,邓宗全,曲存景,等.YAG激光和C02激光相变硬化机理研究[J],应用激光, 2000,20(4):159-161.
    106.董世运,马运哲,徐滨士,等.激光熔覆材料研究现状[J],材料导报,2006,20(6):5-13.
    107.刘录录,孙荣禄.激光熔覆技术及工业应用研究进展[J],热加工工艺,2007,36(11):58-61.
    108.潘邻.化学热处理应用技术[M],北京:机械工业出版社,2004,395-398.
    109.曾晓雁,吴懿平.表面工程学[M],北京:机械工业出版社,2001,253-254.
    110.孙宽,姚继蔚,徐忠锦,等.影响激光熔覆质量的主要因素[J],农业装备与车辆工程,2007,(3):36-42.
    111.吴健.影响激光熔覆品质的主要因素分析[J],机械制造与自动化,2004,33(4):52-56.
    112.马乃恒,梁工英,苏俊义.激光熔覆工艺参数对TiCp/Al表层复合材料的影响[J],中国有色金属学报,2001,11(6):1041-1044.
    113.任振安,郭作兴,吴山力.工艺参数对铜基激光熔覆层组织及耐磨性的影响[J],焊接学报,2002,23(1):69-80.
    114.徐庆鸿,郭伟,田锡唐.激光扫描速度对激光熔覆宏观质量的影响因素[J],航天工艺,1997,(4):1-4.
    115.汪刘应,王汉功,苏勋家,等.铝合金表面激光熔覆NiCrBSi涂层工艺参数对显微组织的影响[J],金属热处理,1999,(7):12-15.
    116.王爱华,谢长生,黄为,等.Al-Si合金表面激光熔覆铝青铜合金的工艺研究[J],稀有金属材料与工程,1997,26(6):41-46.
    117.陈莉,黄凤晓,刘喜明.激光加工参数与熔覆层特征和性能的关系[J],电焊机,2007,37(3):20-22.
    118.姜伟,胡芳友,黄旭仁.工艺参数对激光熔覆层微观形貌的影响[J],表面技术,2007,36(4):57-75.
    119.杨玉玲,刘常升,张多,等.激光熔覆-激光气体氮化方法制取TiCN-TiN复合熔覆层[J],东北大学学报:自然科学版,2007,28(9):1289-1292.
    120.李春华,徐恺悌,王顺兴,等.激光熔覆工艺对排气门熔覆层质量的影响[J],金属热处理,2000,(7):8-9.
    121.Liu Y H, Guo Z X, Yang Y, et al. Laser (a pulsed Nd:YAG) cladding of AZ91D magnesium alloy with Al and A12O3 powders[J],2006,253(4):1722-1728.
    122.Capello E, Previtali B. The influence of operator skills, process parameters and materials on clad shape in repair using laser cladding by wire[J], Journal of Materials Processing Technology,2006,174(1-3):223-232.
    123.Cheng F T, Lo K H, Man H C. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire[J], Materials Science and Engineering,2004, A380(1-2): 20-29.
    124.Li Y M, Yang H O, Lin X, et al. The influences of processing parameters on forming characterizations during laser rapid forming[J], Materials Science and Engineering,2003, A360(1-2):18-25.
    125.Qian M, Lim L C, Chen Z D, et al. Parameters studies of laser cladding processes[J], Journal of Materials Processing Technology,1997,63(1-3):590-593.
    126.Ignat S, Sallamand P, Nichici A, et al. MoSi2 laser cladding-A new experimental procedure:double-sided injection of MoSi2 and ZrO2[J], Surface and Coatings Technology,2003,172(2-3):233-241.
    127.Wu X L. In situ formation by laser cladding of a TiC composite coating with gradient distribution[J], Surface and Coatings Technology,1999,115(2-3):111-115.
    128.Pelletier J M, Renaud L, Fouquet F. Solidification microstructures induced by laser surface alloying:influence of the substrate[J], Materials Science and Engineering,1991, A134:1283-1287.
    129.高阳,佟百运,梁勇.激光熔敷Ni基合金涂层的结构与性能[J],材料研究学报,2003,17(1):87-91.
    130.张庆茂.送粉激光熔覆应用基础理论的研究[D],长春:中国科学院长春光学精密机械与物理研究所,2000.
    131.苏修梁,张欣宇.表面涂层与基体间的界面结合强度及其测定[J],电镀与环保,2004,24(2):6-11.
    1.孙宽,姚继蔚,徐忠锦,等.影响激光熔覆质量的主要因素[J],农业装备与车辆工程,2007,(3):36-42.
    2.吴健.影响激光熔覆品质的主要因素分析[J],机械制造与自动化,2004,33(4):52-56.
    3.郭伟,徐庆鸿,田锡唐.激光熔覆的研究发展状况1[J],宇航材料工艺,1998,(1):1-8.
    4.张祥林,章小峰,王爱华,等.激光熔覆金属基固体自润滑涂层的组织结构[J],中国机械工程,2006,17(19):2084-2088.
    5. Qian M, Lim L C, Chen Z D, et al. Parameters studies of laser cladding processes[J], Journal of Materials Processing Technology,1997,63(1-3):590-593.
    6.王新林,漆海滨,石世宏.激光熔覆石化阀门密封面熔覆层裂纹控制的研究[J],激光技术,2002,26(5):359-363.
    7.宋建丽,邓琦林,陈畅源,等.宽带激光熔覆高硬度火焰喷涂层组织和裂纹行为[J],机械工程学报,2006,42(12):169-174.
    8.陈莉,黄凤晓,刘喜明.激光加工参数与熔覆层特征和性能的关系[J],电焊机,2007,37(3):20-22.
    9.张庆茂,刘文今,钟敏霖.宽带激光熔覆铁基合金显微组织与工艺参数的关系[J],应用激光,2001,21(4):220-224.
    10.孟庆武.钛合金表面激光熔覆复合材料涂层的生成机制与耐磨性能[D],哈尔滨:哈尔滨工业大学,2006.
    11.陈静,谭华,杨海欧,等.激光快速成形过程中熔池形态的演化[J],中国激光,2007,34(3):442-446.
    12.张庆茂.送粉激光熔覆应用基础理论的研究[D],长春:中国科学院长春光学精密机械与物理研究所,2000.
    13.关振中.激光加工工艺手册[M],北京:中国计量出版社,1998,243-244.
    14. Pelletier J M, Renaud L, Fouquet F. Solidification microstructures induced by laser surface alloying:influence of the substrate[J], Materials Science and Engineering,1991, A134:1283-1287.
    15.潘清跃,李延民,黄卫东,等.不锈钢激光表面熔凝处理的组织特征[J],金属学报, 1996,32(7):718-722.
    16.陈光,傅恒志.非平衡凝固新型金属材料[M],北京:科学出版社,2004,145-152.
    17. Gaumann M, Henry S, Cleton F, et al. Epitaxial laser metal forming:analysis of microstructure formation[J], Materials Science and Engineering,1999, A271(1-2): 232-241.
    18. Kurz W, Bezencon C, Gaumann M. Columnar to equiaxed transition in solidification processing[J], Science and Technology of Advanced Materials,2001,2(1):185-191.
    19. Guo W, Kar A. Interfacial instability and microstructural growth due to rapid solidification in laser processing[J], Acta Materialia,1998,46(10):3485-3490.
    20. Boettinger W J, Coriell S R, Greer A L, et al. Solidification microstructures:recent developments, future directions [J], Acta Materialia,2000,48(1):43-70.
    21. Picasso M, Marsden C F, Wagniere J D, et al. A simple but realistic model for laser cladding[J], Metallurgical and Materials Transactions, B25(2):281-291.
    22.曾大文,王毛球,谢长生.Co基合金激光熔覆层的局部组织特征[J],稀有金属材料与工程,1998,27(2):87-91.
    23. Ignat S, Sallamand P, Nichici A, et al. MoSi2 laser cladding-A new experimental procedure:double-sided injection of MoSi2 and ZrO2[J], Surface and Coatings Technology,2003,172(2-3):233-241.
    24. Hidouci A, Pelletier J M, Ducoin F, et al. Microstructural and mechanical characteristics of laser coatings[J], Surface and Coatings Technology,2000,123(1):17-23.
    25. Wu X L. In situ formation by laser cladding of a TiC composite coating with gradient distribution[J], Surface and Coatings Technology,1999,115(2-3):111-115.
    26.黄卫东,毛志英,周尧和.改变热流方向对定向凝固条件下晶体生长方向的影响[J],金属学报,1986,22(5):B240-B241.
    27.张庆茂,刘文今,钟敏霖,等.宽带激光熔覆工艺参数对熔覆层质量的影响[J],钢铁研究学报,2001,13(4):14-18.
    1.张庆茂,刘喜明,孙宁,等.送粉式宽带激光搭接熔覆F305粉组织和性能的研究[J],金属热处理,2001,(4):13-18.
    2. Shi G, Liu J, Ding P, et al. Microstructure and hardness distribution of laser surface overlap coating layer[J], Materials Science and Technology,1998,14(1):80-84.
    3. Hu C, Xin H, Baker T N. Formation of continuous surface Al-SiCp metal matrix composite by overlapping laser tracks on AA6061 alloy [J], Materials Science and Technology,1996,12(3):227-232.
    4.张庆茂,何金江,刘文今,等.激光熔覆制备ZrC颗粒增强金属基复合表层组织[J],焊接学报,2002,23(2):22-58.
    5. Li Y X, Ma J. Study on overlapping in the laser cladding process[J], Surface and Coatings Technology,1997,90(1-2):1-5.
    6.张来启,陈光南,孙祖庆,等.激光熔覆原位合成a-Fe(Al)/Fe3Al涂层的研究[J],金属热处理,2004,29(6):1-4.
    7.吴惠英,程广萍,何宜柱.钢基表面激光熔覆Fe3Al的组织结构[J],热处理,2004,19(3):31-34.
    8.陶锡麒,曹庆,夏春怀,等.工艺参数对钴基合金激光熔覆层显微组织及开裂性的影响[J],应用激光,1999,19(5):206-208.
    9.张庆茂,刘喜明,孙宁,等.送粉式宽带激光熔覆-搭接基础理论的研究[J],金属热处理,2001,(2):25-28.
    10. Isshiki Y, Shi J, Nakai H, et al. Microstructure, microhardness, composition, and corrosive properties of stainless steel 304-Ⅰ. Laser surface alloying with silicon by beam-oscillating method[J], Applied Physics,2000, A70(4):395-402.
    11. Tsai W T, Lai T H, Lee J T. Laser surface alloying of stainless steel with silicon nitride[J], Materials Science and Engineering,1994, A183(1-2):239-245.
    12. Tsai W T, Shieh C H, Lee J T. Surface modification of ferritic stainless steel by laser alloying[J], Thin Solid Films,1994,247(1):79-84.
    13. Jagdheesh R, Sastikumar D, Kamachi Mudali U, et al. Laser processed metal-ceramic coatings on AISI type 316L stainless steel[J], Surface Engineering,2004,20(5):360-365.
    14. Jagdheesh R, Kamachi Mudali U, Sastikumar D, et al. Laser cladding of Si on austenitic stainless steel[J], Surface Engineering,2005,21(2):113-118.
    15.赵民,丁津原.9SiCr工具钢表面激光熔覆合金的组织与性能[J],东北大学学报:自然科学版,2002,23(6):581-584.
    16. Hidouci A, Pelletier J M, Ducoin F, et al. Microstructural and mechanical characteristics of laser coatings[J], Surface and Coatings Technology,2000,123(1):17-23.
    17. Wu X L. In situ formation by laser cladding of a TiC composite coating with gradient distribution[J], Surface and Coatings Technology,1999,115(2-3):111-115.
    18.王存山,夏元良,李刚,等.宽带激光熔覆Ni基合金涂层结合区组织结构[J],应用激光,2001,21(2):88-90.
    19.刘其斌,陈佳,王存山,等.宽带激光熔覆铸造WCp/Ni基合金复合涂层结合界面组织特征[J],贵州工业大学学报:自然科学版,2001,30(1):27-30.
    20.刘秀波,王华明.工艺参数对TiAl合金激光熔覆复合涂层的影响[J],激光技术,2006,30(1):67-69.
    21.张大伟,雷廷权,李福军,等.激光单道与多道搭接熔覆Ni+Cr3C2复合涂层的组织及硬度[J],材料热处理学报,2001,22(3):23-27.
    22.王清波.38CrMoAl激光淬火及镍基合金激光熔覆研究[D],郑州:郑州大学,2005.
    23.孙宽,姚继蔚,徐忠锦,等.影响激光熔覆质量的主要因素[J],农业装备与车辆工程,2007,(3):36-42.
    24.吴健.影响激光熔覆品质的主要因素分析[J],机械制造与自动化,2004,33(4):52-56.
    25.郭伟,徐庆鸿,田锡唐.激光熔覆的研究发展状况1[J],宇航材料工艺,1998,(1):1-8.
    26.张祥林,章小峰,王爱华,等.激光熔覆金属基固体自润滑涂层的组织结构[J],中国机械工程,2006,17(19):2084-2088.
    27. Qian M, Lim L C, Chen Z D, et al. Parameters studies of laser cladding processes[J], Journal of Materials Processing Technology,1997,63(1-3):590-593.
    28.王新林,漆海滨,石世宏.激光熔覆石化阀门密封面熔覆层裂纹控制的研究[J],激光技术,2002,26(5):359-363.
    29.宋建丽,邓琦林,陈畅源,等.宽带激光熔覆高硬度火焰喷涂层组织和裂纹行为[J],机械工程学报,2006,42(12):169-174.
    30.陈莉,黄凤晓,刘喜明.激光加工参数与熔覆层特征和性能的关系[J],电焊机,2007,37(3):20-22.
    31.吴新伟,曾晓雁,朱蓓蒂,等.镍基WC金属陶瓷激光熔覆涂层的熔化烧损规律[J],金属学报,1997,33(12):1282-1288.
    32.王燕华,涂德銮,崔立山.激光制备金属/陶瓷复合层中的陶瓷相及作用机理[J],中国表面工程,1998,(4):29-33.
    33.杨森,苏云鹏,刘文今,等.激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征[J],物理学报,2003,52(1):81-86.
    34. Su Y P, Lin X, Wang M, et al. Absolute stability of the solidification interface in a laser resolidified Zn-2wt.%Cu hypoperitectic alloy[J], Chinese Physics,2006,15(7): 1631-1637.
    35. Sun S, Durandet Y, Brandt M. Parametric investigation of pulsed Nd:YAG laser cladding of satellite 6 on stainless steel[J], Surface and Coatings Technology,2005,194(2-3): 225-231.
    36.赵媛,沈强,王传彬,等.Fe-Si机械合金化过程的研究[J],粉体冶金技术,2006,24(6):407-411.
    37. Li T, Li Y Z, Zhang Y H. Phases in ball-milled Fe0.6Si0.4[J], Journal of Physics: Condensed Matter,1997,9(6):1381-1388.
    38. Johnson V, Weiher J F, Frederick C G, et al. Magnetic and Mossbauer effect studies of Mn5Si3:Fe5Si3 solid solutions[J], Journal of Solid State Chemistry,1972,4(2):311-323.
    39.李晓娜,聂冬,董闯,等.离子注入合成p-FeSi2薄膜的显微结构[J],物理学报,2002,51(1):115-124.
    40. Stephan K, Michael Z, Oliver O, et al. Reactivity and transport in the system Fe-Si[J], Solid State Ionics,2004,172(1-4):407-412.
    41.袁晓光,徐达鸣,张卫方,等.双级雾化快速凝固高硅铝合金粉末形貌及组织特征[J],金属学报,1996,32(10):1034-1038.
    42.贾建刚,马勤,吕晋军,等.机械活化/热压Fe3Si有序金属间化合物的制备[J],兰州理工大学学报,2007,33(1):14-16.
    43.魏全金.材料电子显微分析[M],北京:冶金工业出版社,1990,52-54.
    44.孟庆昌.透射电子显微学[M],哈尔滨:哈尔滨工业大学,1998,69-70.
    45.章晓中.电子显微分析[M],北京:清华大学,2006,128-129.
    46.胡赓祥,钱苗根.金属学[M],上海:上海科学技术出版社,1980,40-41.
    47. Il'inskii A, Slyusarenko S, Slukhovskii O, et al. Structural properties of liquid Fe-Si alloys[J], Journal of Non-Crystalline Solids,2002,306(1):90-98.
    48. Petretis Br, Amulevicius A, Balciuniene M, et al. The investigation of Fe-Si alloys synthesized by laser irradiation[J], Thin Solid Films,1997,293(1-2):29-33.
    49. Kudronvsky J, Christensen N E, Andersen O K. Electronic structures and magnetic moments of Fe3+ySi1-y and Fe3-xVxSi alloys with D03-derived structure[J], Physical Review,1991, B43(7):5924-5933.
    50.李具仓,陈银莉,汪淑英,等.一种新型的含镍耐蚀高硅铁基合金[J],北京科技大学学报,2007,29(2):125-129.
    51.滕新营,叶以富,石志强,等.Fe68Si32合金液态结构与固态组织的相关性[J],物理化学学报,2002,18(4):336-339.
    52.胡赓祥,钱苗根.金属学[M],上海:上海科学技术出版社,1980,59-60.
    53. Kulik T, Horubat T, Matyja H. Flash annealing nanocrystallization of Fe-Si-B-based glasses[J], Materials Science and Engineering,1992,A157(1):107-112.
    54.马如璋,徐英庭.穆斯堡尔谱学[M],北京:科学出版社,1996,29-33.
    55.陈岁元,刘常升,傅贵勤,等.高硼钢中B与Fe作用的超精细结构研究[J],物理学报,2002,51(8):1711-1715.
    56. Stearns M B. Internal magnetic fields, isomer shifts, and relative abundances of the various Fe sites in FeSi alloys[J], Physical Review,1963,129(3):1136-1144.
    57.刘涛,徐祖雄,翟启华,等.纳米微晶软磁合金中的磁织构[J],金属学报,1996,32(2):211-214.
    58.白魁昌,江自应,何开元,等.Fe-Cu-Nb-Si-B纳米晶合金结构的Mossbauer谱研究[J],金属学报,1994,30(2):B66-B71.
    59.晁月盛,曾繁武,杨玉玲,等.γ'-Fe4N磁粉的超精细结构及结构转变[J],金属学报,2000;36(3):235-238.
    60.马如璋,徐英庭.穆斯堡尔谱学[M],北京:科学出版社,1996,438-439.
    61. Ustinovshchikov Yu I, Sapegina I V. Ordering of Fe-Si phases[J], Inorganic Materials, 2005,41(1):24-31.
    62. Johnson C E, Forsyth J B. Magnetic moments and hyperfine interactions in carbon-stabilized Fe5Si3[J], Journal of Applied Physics,1968,39(2):465-465.
    63.冯莉萍,黄卫东,李延民,等.激光金属成形定向凝固显微组织及成份偏析研究[J],金属学报,2002,38(5):501-506.
    1.高瑞峰,蒋国昌,郑少波.C-Si-Fe合金熔体1873.15K时的组元活度计算[J],上海金属,2004,26(3):27-29.
    2.唐恺,徐建伦,丁伟中,等.Fe-Si-C合金熔体的活度解析计算[J],华东冶金学院学报,1997,14(3):190-195.
    3.郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元温度场分析[J],中国表面工程,2004,(6):10-14.
    4.薛春芳,戴耀,王丹杰,等.金属粉末激光熔覆成形温度场的数值分析[J],装甲兵工程学院学报,2006,20(3):93-96.
    5.席明哲,虞钢.连续移动三维瞬态激光熔池温度场数值模拟[J],中国激光,2004,31(12):1527-1532.
    6.赵永,黄安国,林雪楠,等.激光熔覆过程模拟[J],电焊机,2007,37(3):37-40.
    7.曾大文,谢长生.激光熔覆熔池二维准稳态流场及温度场的数值模拟[J],金属学报,1999,35(6):604-610.
    8.卢金斌,王志新,席艳君.基于有限元的激光熔覆温度场分析[J],中原工学院学报,2005,16(6):58-60.
    9.曾大文,谢长生.激光熔覆温度场和流场数值模拟研究现状和发展趋势[J],材料科学与工程,1997,15(4):1-8.
    10.路有勤,郭伟.激光熔覆三维温度常数值模型的建立与计算[J],山西机械,1999,(2):32-35.
    11. Hoadley A F A, Rappaz M. A thermal model of laser cladding by powder injection[J], Metallurgical Transactions,1992, B23(5):631-642.
    12. Kar A, Mazumder J. One-dimensional diffusion model for extended solid solution in laser cladding[J], Journal of Applied Physics,1987,61(7):2645-2656.
    13. Miedema A R, De Chatel P F, De Boer F R. Cohesion in alloys-fundamentals of a semi-empirical model [J]. Physica,1980, B+C100(1):1-28.
    14.刘杨,姜周华,李阳,等.含钡二元合金熔体热力学性质的计算[J],钢铁研究学报,2005,17(4):17-21.
    15. Tanaka T, Gokcen N A, Morita Z, et al. Thermodynamic relationship between enthalpy of mixing and excess entropy in liquid binary alloys[J], Zeitschrift fur Metallkunde,1993, 84(3):192-200.
    16.丁学勇,范鹏,韩其勇.三元系金属熔体中的活度和活度相互作用系数模型[J],金属学报,1994,B30(2):49-59.
    17. Su Y Q, Liu Y, Guo J J, et al. Calculation of activity coefficients for components in Ti-15-3 melt[J], Journal of Harbin Institute of Technology,1999,6(1):54-57.
    18. Toop G W. Predicting ternary activities using binary data[J], Transactions of the Metallurgical Society of AIME,1965,233:850-855.
    19. Olson N J, Toop G W. Predicting ternary phase diagrams and quaternary excess free-energy using binary data[J], Transactions of the Metallurgical Society of AIME, 1969,245(5):905-910.
    1. Yuan W J, Li J G, Shen Q, et al. A study on magnetic properties of high Si steel obtained through powder rolling processing[J]. Journal of Magnetism and Magnetic Materials, 2008,320(1-2):76-80.
    2. Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling[J]. Journal of Magnetism and Magnetic Materials,2004, 281(2-3):135-139.
    3.员文杰,沈强,张联盟.粉末轧制法制备Fe-6.5%Si硅钢片的研究[J].粉末冶金技术,2007,25(1):32-34.
    4. Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet[J]. Journal of Magnetism and Magnetic Materials,1996,160:109-114.
    5. Okada K, Yamaji T, Kasai K. Basic investigation of CVD method for manufacturing 6.5% Si steel sheet[J]. ISIJ International,1996,36(6):706-713.
    6. Fujita K, Namikawa M, Takada Y. Magnetic properties and workability of 6.5%Si steel sheet manufactured by siliconizing process[J], Journal of Materials Science and Technology,2000,16(2):137-140.
    7. Crottier-Combe S, Audisio S, Degauque J, et al. The magnetic properties of Fe-Si 6.5wt% alloys obtained by a SiCl4-based CVD process[J], Journal of Magnetism and Magnetic Materials,1996,160:151-153.
    8.吴润,陈大凯,夏先平,等.高硅钢的PCVD制造工艺及其电磁性能[J],钢铁研究学报,1997,9(4):42-45.
    9.王蕾,吴新杰,李平生,等.PCVD法制高Si钢片的研究[J],金属热处理,2000,(12):27-29.
    10.王蕾,周树清,陈大凯.PCVD法渗Si的研究[J],武汉科技大学学报:自然科学版,2000,23(3):245-246.
    11. Ros-Yanez T, Ruiz D, Barros J, et al. Advances in the production of high-silicon electrical steel by thermomechanical process and by immersion and diffusion annealing[J], Journal of Alloys and Compounds,2004,369(1-2):125-130.
    12. Ros-Yanez T, Houbaert Y, Gomez Rodriquez V G High-silicon steel produced by hot dipping and diffusion annealing[J], Journal of Applied Physics,2002,91(10):7857-7859.
    13. Barros J, Ros-Yanez T, Vandenbossche L, et al. The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel[J], Journal of Magnetism and Magnetic Materials,2005,290-291:1457-1460.
    14. Ros-Yanez T, Wulf M D, Houbaert Y. Influence of the Si and Al gradient on the magnetic properties of high-Si electrical steel produced by hot dipping and diffusion annealing[J], Journal of Magnetism and Magnetic Materials,2004,272-276(S1):e521-e522.
    15.蔡宗英,张莉霞,李运刚.电化学还原法制备Fe-6.5%Si薄板[J],湿法冶金,2005,24(2):83-87.
    16. Schneeweiss O, Pizurova N, Jiraskova Y, et al. Fe3Si coating on SiFe steel[J], Journal of Magnetism and Magnetic Materials,2000,215-216:115-117.
    17.胡广勇,武保林,王刚,等.CVD法制取Fe-6.5%Si薄板的扩散工艺计算机模拟[J],东北大学学报:自然科学版,1999,20(4):405-407.
    18. Dupre L, Vandenbossche L, Segeant P, et al. Optimization of a Si gradient in laminated SiFe alloys[J], Journal of Magnetism and Magnetic Materials,2005,290-291:1491-1494.
    20. Shin J S, Bae J S, Kim H J, et al. Ordering-disordering phenomena and microhardness characteristics of B2 phase in Fe-(5-6.5%)Si alloys[J], Materials Science and Engineering 2005, A407(1-2):282-290.
    21.郑精武,姜力强,陈巧玲,等.电沉积工艺参数对软磁铁箔磁性能的影响[J],稀有金属,2006,30(3):266-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700