用户名: 密码: 验证码:
锡银铜合金的电沉积工艺与沉积机制及其焊接性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统电子封装工艺广泛使用Sn-Pb合金镀层作为可焊性镀层,但是Pb有毒性,已被禁止在电子产品中使用。因此,电沉积无铅可焊性镀层是电子电镀领域的研究热点之一。目前,纯锡镀层的焊接可靠性差,锡基二元合金镀层有脆性大、润湿性差等方面的问题,贵金属镀层成本高。综合分析表明,Sn-Ag-Cu三元合金作为无铅可焊性镀层具有良好的应用前景。因此,开展电沉积Sn-Ag-Cu三元合金的研究具有重要的理论与实际意义。
     基于强酸性镀液和碱性镀液存在的诸多问题,开发了弱酸性甲磺酸盐–碘化物镀液电沉积Sn-Ag-Cu合金工艺。采用直流电沉积方法在铁、铜基体上电镀Sn-Ag-Cu合金,采用扫描电子显微镜观察镀层微观形貌,采用X-射线荧光光谱仪分析镀层组成。通过系统的工艺研究,明确了镀液组成及工艺条件的影响规律,从而优化出了获得光亮平整、结晶致密,Sn、Ag和Cu的质量分数分别为92%~97%、2%~6%和0.5%~2%的Sn-Ag-Cu合金镀层的镀液组成和工艺条件。
     镀液中同时使用自制的HT添加剂和三乙醇胺(TEA)时能够得到光亮的Sn-Ag-Cu合金镀层。通过研究二者对阴极极化、镀层形貌和镀层组成等的影响发现,HT能显著增大阴极极化,使镀层结晶细小;TEA虽然使阴极极化减小,但能使镀层结晶致密。据此可认为HT是电镀Sn-Ag-Cu合金的主光亮剂,TEA是光亮促进剂。动力学模拟计算发现,HT中的芳香醛分子在镀层表面的吸附能力较强,而TEA的吸附能力较弱。根据上述分析,建立了HT和TEA在阴极表面的协同作用模型,合理地阐述了光亮镀层形成的原因。
     通过对电镀液进行循环伏安曲线、极化曲线、计时电流曲线和阻抗谱等的测试,研究了Sn-Ag-Cu合金的电沉积行为。确定Sn-Ag-Cu合金的沉积类型为正则共沉积。随着电极电势的负移,电沉积过程可分为三个阶段:从扩散步骤控制发展到扩散步骤与电化学步骤混合控制,最后是电化学步骤控制。提出了金属配合离子的竞争放电机制,认为在一定的阴极电势下,镀液中的多种配合离子都具有相近的析出电势,它们在阴极表面竞争放电还原,形成Sn-Ag-Cu合金镀层。
     采用差示扫描量热法、Tafel曲线测试、拉伸实验、焊料铺展实验和高温高湿实验等方法评价了Sn-Ag-Cu合金镀层的焊接性能。实验结果表明,Sn-Ag-Cu合金镀层熔点在221~223℃之间,与Sn-3.0Ag-0.5Cu焊料兼容性良好,耐蚀性能与Sn-Pb合金镀层相当。当Sn-Ag-Cu合金镀层的微观形貌较好时,其润湿性也较好。在Cu基体上电镀的Sn-Ag-Cu合金镀层容易生长锡须,当使用氨基磺酸盐镀Ni层作为中间层时可有效地抑制Sn-Ag-Cu合金镀层表面锡须的生长。
     本文研究表明,从弱酸性镀液中可电沉积得到新型无铅可焊性镀层——Sn-Ag-Cu三元合金镀层。该镀层的可焊性优良,可作为印刷电路板和元器件的表面镀层,从而实现电子封装的无铅化。建立的光亮剂协同作用模型可为锡基合金镀液中光亮剂的选择提供理论指导,提出的配合离子竞争放电机制,丰富了合金共沉积理论。
Sn-Pb alloy deposit was widely used as a solder coating in traditional electronic packaging technology. However, Pb has been banned to use in electronic products due to its toxicity. Therefore, electroplating of lead-free solder coating is one of investigation hotspots in electronic electroplating field. At present, pure tin deposit has a bad solder reliability, tin-based binary alloy deposits have big brittleness or bad wettability, and noble metal deposits have high price. A general analysis shows that, Sn-Ag-Cu ternary alloy that used as a lead-free solder coating has a nice application foreground. So, it has an important theoretic and practical meaning to study on electrodeposition of Sn-Ag-Cu ternary alloy.
     Since acidic baths and alkaline baths have a lot of shortcomings, a weakly acidic bath containing methylsulfonic acid salts and iodide was developed to electrodeposit Sn-Ag-Cu alloy coating. Electrodeposition of Sn-Ag-Cu alloy on Fe or Cu substrate is employed on a direct current power supply. Scanning electron microscopy was used to observe morphologies of coatings and X-ray fluorescence was used to analyze compositions of coatings. On base of systemic studies, influencing rules of compositions of electrolyte and process conditions were determined, and optimized compositions of electrolyte and process conditions are determined for electrodeposit bright, smooth and compact Sn-Ag-Cu alloy with mass contents of Sn, Ag and Cu are 92%~97%, 2%~6% and 0.5%~2%, respectively.
     A bright Sn-Ag-Cu alloy coating can be electrodeposited from the electrolyte modified by adding both HT additive that was self-made and triethanolamine (TEA). Effect of HT and TEA on cathodic polarization of baths and morphologies and compositions of Sn-Ag-Cu coatings was studied. The results show that, HT increases cathodic polarization and makes crystal of the coating finer, and TEA decreases cathodic polarization and makes crystal of the coating denser. So, HT is considered as main brightener and TEA is considered as brightening promoter for electrodeposition of Sn-Ag-Cu alloy coating. The compute results of molecular kinetics show that, aromatic aldehyde molecules in HT are strongly adsorbed on surface of cathodic electrode, however TEA molecules have weak adsorption. Based on above analysis, a brightener corporate action model is put forward, which explains the form reason of bright deposits well.
     Electrodeposition behaviors of Sn-Ag-Cu alloy in electrolyte were studied by testing of cyclic voltammetry, linear sweet voltammetry, chronoamperometry, and electrochemical impedance spectrum. Co-deposition type of Sn-Ag-Cu alloy is determined as canonical. With cathodic potential towards to negative direction, electrodeposition process is parted to three periods, which were controlled by diffusion, both diffusion and electrochemical step, and electrochemical step, respectively. Competed discharge mechanism of metal complexing ions is put forward. Multiform metal complexing ions have nearly equal graining potential under a certain cathodic potential, and discharge on cathodic surface vies with each other and forms Sn-Ag-Cu alloy coating.
     Solder properties of Sn-Ag-Cu alloy coating were evaluated by differential scanning calorimetry, Tafel plots, extending, spreading, and high temperature and humidity tests. The results show that, melt points of Sn-Ag-Cu alloy coatings are 221~223℃, Sn-Ag-Cu alloy coatings have good compatibility with Sn-3.0Ag-0.5Cu solder and its corrosion resistance is as good as Sn-Pb alloy. Sn-Ag-Cu alloy coating has good wettability while its morphology is smooth and fine. Tin whiskers easily grow on surface of Sn-Ag-Cu coating when Cu is used as substrate, while growth of tin whisker is inhibited effectively when Ni electrodeposited from sulfamate electrolyte is used as preplating.
     Investigations in this paper show that, eutectic Sn-Ag-Cu ternary alloy deposit electrodeposited from weakly acidic bath is a new lead-free solder coating. The coating has excellent solder properties and can be used on the surfaces of printed circuit board and patch-like electronic apparatus in order to carry out lead-free electronic packing. The brightener corporate action model affords theory guidance on choosing brighteners used in bath for tin-based deposits, and the mechanism of competed discharge of complexing ions enriches theory of co-deposition of alloys.
引文
1张尹,李基森,齐坤等.片式电子元器件中无铅可焊镀层的研究.中国表面工程. 2005, (4): 1~5
    2庄瑞舫.电镀锡和可焊性锡合金发展概况.电镀与涂饰. 2000, 19(2): 38~43
    3 Y.D. Liu, M. Pritzker. Effect of Pulse Plating on Composition of Sn-Pb Coatings Deposited in Fluoroborate Solutions. J. Appl. Electrochem. 2003, 33(12): 1143~1153
    4 C.S. Chen, C.C. Wan, Y.Y. Wang. Effect of Agitation on Tin-lead Alloy Deposition in a Methane Sulfonate System. Plat. Surf. Fini. 2001, 88(1): 86~89
    5 W. J. Boettinger, C. E. Johnson, L. A. Bendersky et al. Whisker and Hillock Formation on Sn, Sn–Cu and Sn–Pb Electrodeposits. Acta Mat. 2005, 53(11): 5033~5050
    6 M. Abtew, G. Selvaduray. Lead-free Solders in Microelectronics. Mater. Sci. Eng. R. 2000, (27): 95~141
    7 B. Davis. Changing the Rules: RoHS Directive on Hazardous Substances. Envir. Eng. 2006,19(2): 21~23
    8陈亚军.从源头上加强电子信息产品污染防治管理.中国检验检疫. 2007, (3):41~42
    9刘琳,薛松柏,姚立华.电子元器件引线表面镀层的无铅化发展及展望.焊接. 2005, (9):5~9
    10王爱荣,张焱,亓新华.可焊性锡基二元合金镀层研究的现状与展望.材料保护. 2005, 38(3): 38~43
    11安茂忠.电镀理论与技术.哈尔滨工业大学出版社. 2004:2~3, 29~35, 190~197
    12刘仁志.电子电镀技术.化学工业出版社. 2008: 76~90
    13罗维.无铅可焊性锡基镀层的研究与发展.电镀与环保. 2004, 24(5): 4~6
    14 C. Han, Q. Liu, D.G. Ivey. Kinetics of Sn Electrodeposition from Sn(II)-Citrate Solutions. Electrochim. Acta. 2008,53: 8332~8340
    15 A.He, Q. Liu, D.G. Ivey. Electrodeposition of Tin: a Simple Approach. J. Mater. Sci.: Mater Electron. 2008,19: 553~562
    16牛振江,林飞峰,杨防祖.钒化合物稳定剂对锡电沉积过程的影响.电镀与精饰, 2001, 23(3): 1~4
    17王先锋,贺岩峰.抑制锡须的方法.电镀与涂饰. 2007,26(6): 30~32
    18马今朝.无铅可焊性镀层及其在电子工业中的应用.电子工艺技术. 2000, 21(3): 98~100
    19 M.D. Mathew, S. Movva, Y. Hong et al. Creep of Sn, Sn-3.5Ag and Sn-5Sb Solders for Electronic Packaging. Creep Behaviour of Advanced Materials for the 21st Century, Proceedings of Symposium, 1999 TMS Annual Meeting. 1999: 51~59
    20 K.L. Murty, M.D. Mathew, Y. Wang et al. Deformation Characteristics of Sn5%Sb Solder Alloy Modeling the Mechanical Response of Structural Materials. Proceedings of a Symposium Held at the 127th Annual Meeting of TMS. 1998: 145~152
    21 Q.L. Yang, J.K. Shang. Interfacial Segregation of Bi during Current Stressing of Sn-Bi/Cu Solder Interconnect. J. Electron. Mater, 2005, 34 (11): 1363~1367
    22 M.S. Suh, C.J. Park, H.S. Kwon. Effects of Plating Parameters on Alloy Composition and Microstructure of Sn–Bi Electrodeposits from Methane Sulphonate Bath. Surf. Coat. Technol. 2006, 200: 3527~3532
    23 S. Arai, Y. Funaoka, N. Kaneko et al. Electrodeposition of Sn-Cu Alloy from Pyrophosphate Bath. Electrochem. 2001, 69(5): 319~323
    24 S.W. Jung, J.P. Jung, Y. Zhou. Characteristics of Sn–Cu Solder Bump Formed by Electroplating for Flip Chip. Ieee Trans. Electron. Pack. Manu. 2006, 29(1): 10~16
    25 S. M. Abdel-Wahab, E. Mohamed, S.M. Rashwan. Electroplating of Sn-Zn Alloys from Aqueous Gluconate Baths. Metal. 2000, 54(5): 268~272
    26黎小燕,陈国海,马莒生. Sn-Zn无铅焊料的研究与发展.电子工艺技术. 2004, 25(4): 150~153
    27 K.S. Kim, J.M. Yang, C.H. Yu et al. Analysis on Interfacial Reactions between Sn–Zn Solders and the Au/Ni Electrolytic-plated Cu Pad. J. Alloy. Comp. 2004, 379: 314~318
    28 I. Dutta, C. Park, S. Choi. Impression Creep Characterization of Rapidly Cooled Sn–3.5Ag Solders. Mater. Sci. Eng. A. 2004, 379: 401~410
    29于海燕,王兵.电镀可焊性Sn-3.0Ag合金镀层影响因素的研究.沈阳工业大学学报. 2002, 12(6): 534~537
    30李立清.甲基磺酸盐电镀锡银合金工艺的研究.电镀与环保. 2005, 25(6): 6~7
    31 N. Kaneko, Y. Shiraya, S.Arai et. al. Sn-Ag Alloy Electroplating for Pb-free Solder from Acid Sulfate Baths in the Presence of N,N-bis(polyoxyethylene) octadecylamine. Electrochem. 2003, 5(5): 322~366
    32 Y. Fujiwara, H. Enomoto, T. Nagao et al. Composite Plating of Sn-Ag Alloys forPb-Free Soldering. Surf. Coat. Technol. 2003, 169-170: 100~103
    33乔木,冼爱平,尚建库.碱性焦磷酸盐镀液电镀Sn-Ag无Pb钎料的研究.金属学报. 2004, 8(8): 822~826
    34 M. Amagai, M. Watanabe, M. Omiya et al. Mechanical Characterization of Sn–Ag-based Lead-free Solders. Microelectro. Reliab. 2002, (42): 951~966
    35 C.W. Hwang, K. Suganuma. Joint Reliability and High Temperature Stability of Sn–Ag–Bi Lead-Free Solder with Cu and Sn–Pb/Ni/Cu Substrates. Mater. Sci. Eng. 2004, A 373: 187~194
    36 F. Guo, S. Choi, K.N. Subramanian et.al. Evaluation of Creep Behavior of Near-Eutectic Sn-Ag Solder Containing Small Amount of Alloy Additions. Mater. Sci. Eng. 2003, A351: 190~199
    37蔡积庆.低熔点锡合金电镀.电镀与环保. 1998, 11(6): 20~22
    38 K.S. Kim, S.H. Huh, K. Suganuma. Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints. J. Alloy. Comp. 2003, 352: 226~236
    39 K.S. Kim, S.H. Huh, K. Suganuma. Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn–Ag–Cu Alloy and Joints with Cu. Microelectro. Reliab. 2003, 43: 259~267
    40 H. Sonoda, K. Nakamura. Tin-Silver-copper Plating Solution, Used for Forming Plating Film, Comprises Medium Containing Water and Sulfonic Acid with Tin, Copper and Silver Ions. WO2004011698
    41 S. Miura. Formation of Tin-Silver-Copper Ternary Alloy Thin Film for Articles, Involves Immersing Material in Bath Having Tin, Silver, Copper Compounds, Polymerizable Phosphate Group Chelating Agent and Porphyrin, and Electroplating. JP3662577
    42 S. Miura. Forming Tin-Silver-Copper Ternary-alloy Thin Film Involves Immersing Base Material into Plating Bath Containing Specific Compounds, and Forming Tin-Silver-Copper Ternary-alloy Thin Film on Base Material by Electroplating. JP3711141
    43 S. Miura. Formation of Tin-Silver-Copper Ternary Alloy Thin Film for Electrical Products, Involves Immersing Base Material in Plating Bath of Tin, Silver and Copper Compounds, Specific Inorganic and Organic Chelating Agents. JP3741709
    44 P. Ozga. Electrodeposition of Sn-Ag-Cu Alloys from Thiourea Aqueous Solutions. Archiv. Metallur. Mater. 2003, 51(3): 413~421
    45 N. Kaneko, M. Komatsu, T. Kurashina et al. Sn-Ag-Cu Alloy Electroplating from Acid Sulfate Baths for Pb-free Solder. Electrochem. 2005, 73(11): 951~955
    46 M. Fukuda, K. Imayoshi, Y. Matsumoto. Effect of Adsorption of Polyoxyethylene Laurylether on Electrodeposition of Pb-free Sn alloys. Surf. Coat. Technol. 2003, 169-170: 128~131
    47 S. Joseph, G.J. Phatak. Effect of Surfactant on the Bath Stability and Electrodeposition of Sn-Ag-Cu Films. Surf. Coat. Technol. 2008, 202: 3023~ 3028
    48 B. Kim, T. Titzdorf. Elecrochemisclly Deposited Tin-Silver-Copper Ternary Solder Alloys. J. Electrochem. Soc. 2003, 150(2): C53~C60
    49张允诚,胡如南,向荣.电镀手册.第二版.国防工业出版社. 1997: 439~ 489
    50 S. Jayakrishnan, S.R. Natarajan, A. Noncyanide. Bath for Electrodeposition of Silver. Metal. Finish. 1996, (5): 12~15
    51魏立安.无氰镀银清洁生产技术.电镀与涂饰. 2004, 23(5): 28~29,57
    52 A. Saú1, B. Legrand, G. Tréglia. Link between the Surface Wetting in Cu (Ag) and the Layer-By-Layer Dissolution Mode of a Thick Ag Deposit on a Cu Substrate. Surf. Sci. 1995, 331-333: 805~810
    53 B. Bozzini, V. Romanello, C. Mele. A SERS Investigation of the Electrodeposition of Au in a Phosphate Solution. Surf. Coat. Technol. 2007, 201: 6267~6272
    54 J. A. Harrison, H. B. S. Alcazar. J. Thompson. Kinetics of the Electro-deposition of Palladium. J. Electroanal. Chem. 1974, 53(10): 145~150
    55 N. Warburg.无铅制造的科学.中国电子商情. 2003, 5(6): 28
    56 J. Doesburg, D.G. Ivey. Microstructure and Preferred Orientation of Au–Sn Alloy Plated Deposits. Mater. Sci. Eng. 2000, B78: 44~52
    57 S.K. Ghosh, A.K. Grover, G.K. Dey et al. Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis. Surf. Coat. Technol. 2000, 126: 48~63
    58 S. Valizadeh, G. Holmbom, P. Leisner. Electrodeposition of Cobalt-Silver Multilayers. Surf. Coat. Technol. 1998, 105: 213~217
    59 S. Arai, H. Akatsuka, N. Kaneko. Sn-Ag Solder Bump Formation for Flip-Chip Bonding by Electroplating. J. Electrochem. Soc. 2003, 150(10): C730~C734
    60 B. Kim, T. Ritzdorf. Electrodepositon of Near-Eutectic SnAg Solders for Wafer-level Packaging. J. Electrochem. Soc. 2003, 150 (9): C577~C584
    61 Z. Zech, E.J. Podlaha, D. Landolt. Anomalous Codeposition of Iron Group Metals - I. Experimental results. J. Electrochem. Soc. 1999, 146: 2886~2891
    62印仁和,董晓明,曹为民等. Zn-Ni合金共沉积影响机理的拉曼光谱研究.电镀与涂饰.2006,25(4):5~7
    63黄振谦.锌钴异常共沉积机理研究.中南矿冶学院学报. 1993,24(5):689~694
    64许书楷,杨防祖,周绍民.厦门大学学报(自然科学版). 1991,30(2): 179~183
    65邓朝阳,谢勤,刘会基等.电镀与环保. 2000,20(4): 1~5
    66 L.S. Sanches, S.H. Domingues, A. Carubelli et al. Electrodeposition of Ni-Mo and Fe-Mo Alloys from Sulfate-Citrate Acid Solutions. J. Braz. Chem. Soc.2003, 14(4): 556~563
    67曾跃,姚素薇,郭鹤桐.物理化学学报. 1995,11(4): 351~355
    68陈文亮,曾令全.电沉积锡镍合金的工艺研究.防腐包装. 1987, (5): 34~37
    69安茂忠,张鹏,刘建一.碘化物镀液脉冲电镀Ag-Ni合金工艺.电镀与环保. 2003, (2): 17~20
    70陈丽君,袁宝林. Ni-W合金镀层的结构分析.上海钢研. 1994, (4): 14~17
    71侯峰岩,路庆华,谭兴海等. Co-Ni合金镀层组织结构及性能研究.材料热处理学报. 2007, (1): 127~130
    72 G.Y. Qiao, T.F. Jing, N. Wang et al. Effect of Current Density on Microstructure snd Properties of Bulk Nanocrystalline Ni-Co Alloys Prepared by JED. J. Electrochem. Soc. 2006, 153(5): C305~C308
    73赵忠俭,陈立范,邵桂春等. Ni-P合金化学镀层的组织结构及性能.沈阳工业大学学报. 1999, (5): 393~396
    74饶群力,王浩伟,周尧和.镍硼及镍钼硼合金镀层的组织和性能研究.电镀与环保. 2001, (2): 24~26
    75王吉会,张爱平,王茂范. Al-Mn合金镀层的制备与性能.天津大学学报. 2007, (2): 99~105
    76 G.R. Li, L.G. Kay, G.K. Liu et al. Electrochemical Preparation and Characterization of Nanostructured Ag-Bi Thin Films in Organic Baths. Electrochem. Sol. Sta. Lett. 2006, 9(2): C32~C35
    77覃奇贤编译. NiAl金属间化合物镀层的制备.电镀与精饰. 2008, 30(3): 12
    78庄瑞舫,蒋凤生,戴安邦等. HEDP体系电镀锡基合金镀层物相结构的研究.包装工程. 1983, (4): 3~13
    79 S. Joseph, G.J. Phatak, K. Gurunathan et al. Electrochemical Co-deposition of Ternary Sn–Bi–Cu Films for Solder Bumping Applications. J. Appl. Electrochem. 2006, 36: 907~912
    80杨余芳,龚竹青,李强国. Ni-Fe-Cr合金共沉积的电化学行为.材料保护. 2008,41(3): 4~7
    81 F. Lallemand, D. Comteb, L. Ricqa et al. Effects of Organic Additives on Electroplated Soft Magnetic CoFeCr Films. Appl. Surf. Sci. 2004, 225: 59~71
    82袁定胜,刘冠昆,童叶翔.在二甲亚砜中La-Ni-Co合金膜的电化学制备.中国有色金属学报. 2000, 10(6): 919~925
    83 E. Beltowska-Lehman. Electrodeposition of Protective Ni-Cu-Mo Coatings from Complex Citrate Solutions. Surf. Coat. Technol. 2002, 151-152: 440~ 443
    84刘江,蒋雄,江琳才等.非晶态Ni-Ce-P合金的共沉积与耐蚀性能.电化学. 2001,7(3): 294~301
    85 S. Pané, E. Gómez, E. Vallés. Magnetoresistive Granular Cu-Co-Ni Coatings Prepared by Electrodeposition. J. Electroanaly. Chem. 2006, 596: 87~94
    86 L. Péter, Z. Kupay, J. Pádár. Electrodeposition of Co-Cu-Zn/Cu Multilayers: Influence of Anomalous Codeposition on the Formation of Ternary Multilayers. Electrochim. Acta. 2004, 49: 3613~3621
    87 F. El-Chiekh, M.T. El-Haty, H. Minoura. Electrodeposition and Characterization of Cu-Ni-Zn and Cu-Ni-Cd Alloys. Electrochim. Acta. 2005, 50: 2857~2864
    88 Z.F. Lodhi, F.D. Tichelaar, C. Kwakernaak et al. A Combined Composition and Morphology Study of Electrodeposited Zn-Co and Zn-Co-Fe Alloy Coatings. Surf. Coat. Technol. 2008, 202: 2755~2764
    89武玉英,刘相法,刘相俊等. Sb , Bi和Fe对Cu-8P共晶合金熔点和组织的影响.中国有色金属学报, 2004, 14(7): 1206~1210
    90黄新民,吴玉程,张勇.电镀Sn-Pb-In合金研究.电镀与涂饰. 1999, 18(3): 37~39
    91陆敏暖.锡-铋合金局部电镀工艺在电子产品中的应用.电子工艺技术. 2007, 28(6): 327~329
    92陈文华,王玲. Sn-Zn镀层钎焊性研究.材料保护. 1999, 32(1): 29~30
    93方景礼,叶向荣,陈中法.影响化学镀Ni-P层钎焊性的因素.电镀与精饰. 1990, 12(6): 3~7
    94王兵,于海燕,孙硕等.抗氧化光亮Sn-Pb合金镀层电镀工艺的研究.沈阳工业大学学报. 1998, 20(2): 84~87
    95郑振,王琦.连续电化学还原法测试焊接性能.电镀与环保. 2000, 20(1): 10~12
    96连鸿丹.玻壳模具镀金工艺及镀层性能研究.九江职业技术学院学报. 2005, (3): 15~16
    97程轩挺,王敏,王宸煜.镀层厚度对镀锌钢板点焊质量的影响.电焊机. 2001, 31(11): 28~30
    98郭福.无铅钎焊技术与应用.科学出版社, 2006: 371~372
    99常俊玲,刘晓庆,谢晓明. SnAgCu(SnPb)/Ni和SnAgCu(SnPb)/Cu界面金属间化合物在热冲击过程中的生长规律.功能材料与器件学报. 2005, 11(4): 445~450
    100 T.C. Chang, M.H. Hon, M.C. Wang et.al. Electrochemical Behaviors of the Sn-9Zn-χAg Lead-free Solders in a 3.5wt% NaCl Solution. J. Electrochem. Soc. 2004, 151(7): C484~C491
    101张祖军,王勇.铝合金化学镀Ni-P/Ni-B双层复合镀层及其性能研究.材料导报. 2006, 20(11): 342~344
    102上官东恺.无铅焊料互联及可靠性.电子工业出版社, 2008:12~14
    103 T. Shibutani, Q. Yu, M. Shiratori. Pressure-induced Tin Whisker Formation. Microelectronics Reliability. 2008, 48: 1033~1039
    104 W.J. Boettinger, C.E. Johnson, L.A. Bendersky. Whisker and Hillock Formation on Sn, Sn-Cu and Sn-Pb Electrodeposits. Acta Materialia. 2005, 53: 5033~5050
    105 K.H. Prakash, T. Sritharan. Interface Reaction between Copper and Molten Tin-lead Solders. Acta. Mater. 2001, 49: 2481~2489
    106 K.S. Kim, C.H. Yu, J.M. Yang. Tin Whisker Formation of Lead-free Plated Leadframes. Microelectro. Reliab. 2006, 46:1080~1086
    107 K.L. Lin, P.C. Shih. IMC Formation on BGA Package with Sn-Ag-Cu and Sn-Ag-Cu-Ni-Ge Solder Balls. J. Alloy. Comp. 2008, 452: 291~297
    108 K.S. Kim,C.H. Yu, J.M. Yang. Behavior of Tin Whisker Formation and Growth on Lead-free Solder Finish. Thin Sol. Film.2006, 504: 350~354
    109 JEDEC Standard JESD22A121, Measuring Whisker Growth on Tin and Tin alloy Surface Finishes. 2005
    110 I. Sakamoto. Whisker Test Methods of JEITA Whisker Growth Mechanism for Test Methods. Ieee Trans. Electron. Pack. Manu. 2005, 28(1): 10~16
    111 M.N. Chen, S.J. Ding, Q.Q. Sun et.al. Effect of Pulse-Plated Nickel Barriers on Tin Whisker Growth for Pure Tin Solder Joints. J. Elec. Mater. 2008, 37(6): 894~900
    112 Y. Fukuda, M. Osterman, M. Pecht. The Impact of Electrical Current, Mechanical Bending, and Thermal Annealing on Tin Whisker growth. Microelectro. Reliab. 2007, 47: 88~92
    113崔志明,刘安昌.甲基磺酸铅(Ⅱ)、甲基磺酸锡(Ⅱ)的制备.电镀与精饰. 2001, 23(4): 26~27
    114徐红娣,邹群.电镀溶液分析技术.化学工业出版社. 2003, 4:25~26, 156
    115李声泽,张明祥等.氨磺酸镀镍工艺.西南师范学院学报. 1981, (1): 30~50
    116羊秋福.印制电路板氨基磺酸盐镀镍工艺.电镀与精饰. 2004, 26(1): 23~26
    117孙伟,鄂利海.电极微分电容的交流阻抗测量方法.抚顺石油学院学报.2000, 20(2):18~22
    118罗慧梅.甲基磺酸在电镀相关金属精饰领域的应用.电镀与涂饰. 2004, 23(5): 41~45
    119李基森,陈锦清.甲基磺酸盐体系电镀液的研究.中国表面工程. 2000, (3): 1~4
    120曹楚南.腐蚀电化学原理.第二版.化学工业出版社. 2004: 326~329
    121蔡积庆. Sn-Ag合金无氰电镀液.航空制造技术. 2002, 3: 68~70
    122范晓林,戴真.硫酸光亮镀锡体系溶液不稳定性的机理探讨.电镀与精饰. 1988, 10(4): 10~12
    123方景礼.电镀添加剂理论与应用.国防工业出版社. 2006:235~236
    124査全性等.电极过程动力学导论.第三版.科学出版社. 2002: 313~314
    125罗序燕,李东林,罗国添.新型酸性镀锡光亮剂的表征及其性能.材料保护. 2001, 34(10): 11~13
    126 A.F. Jankowski, C.K. Saw, J.F. Harper et.al. Nanocrystalline Growth and Grain-size Effects in Au–Cu Electrodeposits. Thin Sol. Film. 2006, 494: 268~273
    127 S.M.S.I. Dulal, H.J. Yun, C.B. Shin et. al. Electrodeposition of CoWP Film III. Effect of pH and Temperature. Electrochim. Acta. 2007, 53: 934~943
    128 M. Schwartz, N.V. Myung, K.Nobe. Electrodeposition of Iron Group-rare Earth Alloy from Aqueous Media. J. Electrochem. Soc. 2004, 151(7): C468~C477
    129 B. Bozzini, C. Mele, A. Tadjeddine. Electrochemical Adsorption of Cyanide on Ag(1 1 1) in the Presence of Cetylpyridinium Chloride. J. Crys. Grow. 2004, 271: 274~286
    130 R. S. Nicolson. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Analy. Chem. 1965, 37(11): 1351~1355
    131 A. Afshar, A. G. Dolati, M. Ghorbani. Electrochemical Characterization of the Ni–Fe Alloy Electrodeposition from Chloride–citrate–glycolic Acid Solutions. Mater. Chem. Phy. 2002, 77: 352~358
    132 A. E. Alvarez, D. R. Salinas. Nucleation and Growth of Zn on HOPG in the Presence of Gelatine as Additive. J. Electroanal. Chem. 2004, 566(2): 393~400
    133 M.C. Santos, L.O.S. Bulh?es. The Underpotential Deposition of Sn on Pt in Acid Media. Cyclic voltammetric and Electrochemical Quartz Crystal Microbalance Studies. Electrochim. Acta. 2003,48: 2607~2614
    134 A.J. Bard, L.R. Faulkner.电化学方法原理和应用.第二版.化学工业出版社. 2005: 163
    135 A. Dolati, A. Afshar, H. Ghasemi. A Kinetic Study on the Electrodeposition of Cadmium with the Presence of Organic Agents in Sulfate Solutions. Mater.Chem. Phys. 2005, 94(1): 23~28
    136 Z. Chen, M. L. Zhang , W. Han et al. Electrodeposition of Li and Electrochemical Formation of Mg–Li Alloys from the Eutectic LiCl–KCl. J. Alloy. Comp. 2008, 464: 174~178
    137杨余芳,龚竹青,李强国. Ni-Fe合金共沉积的电化学行为.功能材料.2007, 38(12): 2036~2040
    138曹楚南,张鉴清.电化学阻抗谱导论.科学出版社. 2002: 21
    139杨余芳,龚竹青,李强国.Ni-Fe-Cr合金共沉积的电化学行为.材料保护. 2008, 41(3): 4~10
    140胡茂圃,栾本利.交流阻抗测定化学镀镍的电化学机理.北京科技大学学报. 1991, 13(2): 162~168
    141 M. Gu. Initial Stages of the Electrocrystallization of Co–Cu Alloys on GCE from the Co Rich Electrolytes. Electrochim. Acta. 2007, 52: 4443~4448
    142 A. N. Correia , M. X. Fa?anha, P. L. Neto. Cu–Sn Coatings Obtained from Pyrophosphate-based Electrolytes. Surf. Coat. Technol. 2007, 201: 7216~ 7221
    143 B. Scharifker, G. Hills. Theoretical and Experimental Studies of Multiple Nucleation. Electrochim. Acta. 1983, 28(7): 879~889
    144吴辉煌,许书楷,周绍民.锌在玻璃碳上的电化学成核机理.物理化学学报. 1985, 1(4): 357~364
    145 M. Palomar-Pardavé, B.R. Scharifker, E.M. Arce et al. Nucleation and Diffusion-controlled Growth of Electroactive Centers Reduction of Protons during Cobalt Electrodeposition. Electrochim. Acta. 2005, 50: 4736~4745
    146《实用化学手册》编写组.实用化学手册.科学出版社. 2001: 472~553
    147李声泽,张明祥等.氨磺酸镀镍工艺.西南师范学院学报. 1981(1): 30~50
    148肖代红,陈康华,吴金昌.无铅Sn-Cu电镀层锡须的形成与长大.电子工艺技术. 2007, 28(1): 6~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700