用户名: 密码: 验证码:
持续惊厥后新生神经细胞的增殖状况及脑源性神经营养因子对其电生理特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分持续惊厥后幼年鼠脑内神经发生的动态变化和迁移趋势
     目的:探讨惊厥持续状态(status convulsion, SC)后未成熟大鼠脑内神经发生的动态变化。
     方法:建立幼年Wistar鼠3h SC模型,在SC后0天至40天的7个时间点上处死动物,处死前1天腹腔注射5-溴2-脱氧尿嘧啶核苷(5-bromo 2-deoxyuridine, BrdU);采用免疫组化方法动态检测海马、胼胝体下区(subcallosal zone, SCZ)和皮层在各时间点BrdU的表达,确定SC后各时间点上脑内不同区域神经干细胞(neural stem cells, NSCs)的增殖水平和迁移趋势。
     结果:⑴正常未成熟脑海马齿状回(dentate gyrus,DG)的颗粒细胞下层(subgranular zone,SGZ)和胼胝体下区(subcallosal zone,SCZ)以及皮层都存在少量BrdU阳性细胞;与对照组相比,SC后0天海马DG的SGZ,海马CA1、CA3区,SCZ以及皮层BrdU阳性细胞即开始显著升高,海马的SGZ、CA1、CA3以及皮层于SC后2天出现增殖高峰,SCZ于SC后7天出现增殖高峰。⑵SC后2天DG分子层出现BrdU阳性细胞,SC后7天DG门区出现BrdU阳性细胞。SGZ新生细胞有向DG分子层迁移趋势,SCZ细胞有向CA1、CA3和皮层迁移趋势。
     结论:SC刺激未成熟脑内神经发生,部分新生细胞发生异位迁移,部分细胞可能向海马神经细胞损伤区迁移。
     第二部分体外培养大鼠海马神经干细胞分化前与分化后电压门控钠、钾通道的表达
     目的:观察体外分离培养大鼠海马神经干细胞(neural stem cells, NSCs)分化前后钠、钾离子通道的表达。
     方法:无血清培养体外分离、纯化孕15-16天Wistar胎鼠的海马NSCs,nestin免疫荧光染色鉴定培养细胞是否为干细胞,无血清促分化培养基促分化,β-III-tubulin、GFAP荧光鉴定分化细胞类型。显微注射荧光黄标记记录细胞,采用β-III-tubulin免疫荧光染色检测所记录细胞是否具有神经元表型。膜片钳记录NSCs分化前和分化后具有神经元样细胞的电压门控钠、钾离子通道的表达,
     结果:⑴体外培养的海马NSCs nestin免疫染色阳性,具有自我增殖能力能在体外诱导分化为神经元或胶质细胞;⑵膜片钳记录的细胞均具有神经元表型;⑶未分化NSCs无内向性钠电流,分化后1天即可检测到内向性钠电流;未分化和分化的NSCs均表达瞬时外向钾电流和外向延迟整流钾电流。
     结论:⑴采用无血清培养方法,在体外成功分离海马NSCs;⑵神经发生过程中钠通道的功能性表达可能是NSCs退出细胞周期开始分化的标志。未分化和分化的NSCs表达两种类型的外向性钾离子电流。
     第三部分脑源性神经营养因子对体外培养大鼠海马神经干细胞分化过程中被动膜特性和电压门控钠、钾通道电生理特征的影响
     目的:探讨脑源性神经营养因子(brain derived neurotrophic factor, BDNF)对海马神经干细胞(neural stem cells, NSCs)被动膜特性和电压门控钠、钾通道电生理特征的影响
     方法:采用无血清促分化培养基促NSCs体外分化,选择体外分化前期(1-4天)和体外分化后期(8-15天)具有神经元形态细胞进行膜片钳记录;记录细胞被动膜特性、钠电流,分析钠电流密度,拟合钠通道激活曲线,计算半数激活电压和斜率因子。记录总钾电流,分离瞬时外向钾电流和外向延迟整流钾电流;分析两种电流在分化前期和后期的表达情况;分析电流密度,拟合激活曲线,计算半数激活电压和斜率因子。
     结果:⑴NSCs分化早期,BDNF促进静息电位左移,膜电容增加,输入阻抗降低,时间常数延长。⑵无BDNF干预,对照组钠电流密度随分化逐渐增加;BDNF干预后,分化前期,BDNF作用组钠电流密度明显高于对照组;而分化后期BDNF作用组钠电流密度明显低于对照组;BDNF长期作用使钠电流激活曲线右移。⑶所有记录的细胞都表达I_(K(DR)) ;无BDNF干预,对照组I_(K(A))的表达随着分化逐渐增加;BDNF干预后,I_(K(A))的表达随着分化逐渐降低;分化前期,BDNF作用组总钾电流密度较对照组明显增加;分化后期,两个实验组的总钾电流密度没有差异;无BDNF干预,随着分化对照组I_(K(A))和I_(K(DR))半数激活电压都发生左移;分化前期,与对照组相比I_(K(A))和I_(K(DR))半数激活电压也都发生左移,分化后期,BDNF作用组与对照组之间没有差异。
     结论:⑴分化前期为细胞被动膜特性发育的关键时期,BDNF在NSCs细胞形态改变的同时促进NSCs来源的神经元样细胞被动膜特性发育,以促进NSCs被动膜特性趋向成熟化。⑵体外培养NSCs分化前期(1-4天)也是细胞钠、钾通道发育的关键时期;⑶BDNF促进分化早期钠通道的表达和/或开放,而长期作用则抑制钠通道的表达和/或开放;使钠通道激活曲线右移,具有抑制新生神经细胞兴奋性作用。⑷BDNF与I_(K(A))的表达密切相关,BDNF可能抑制I_(K(A))的表达,I_(K(A))在钾通道的发育过程中具有一定作用;BDNF促进分化早期钾通道激活曲线左移,钾电流密度增加,促进钾通道的表达和/或开放。⑸BDNF参与调节NSCs钠、钾离子通道发育关键时期,降低神经元样细胞兴奋性,对惊厥后的产生的神经细胞可能起保护作用。
PART I PROLONGED SEIZURES INCREASE PROLIFERATING NEUROBLASTS IN THE IMATURE RAT HIPPOCAMPUS, SUBCALLOSAL ZONE, CORTEX AND THE TRENDS OF MIGRATION
     Objective: To explore the dynamic changes of neurogenesis after status convulsion in the immature rat brain.
     Method: Rats were induced by chemoconvulsants lithium- pilocarpine and were killed 4h, 2 ,7,13,20,27,40d afer. All rats received four injections of bromodeoxyuridine (BrdU) with 2-h intervals 1 day before killed. Animals were perfused and brains were processed for immunocytochemistry antibodies against BrdU. Comparisons of the number of nuclei positive for BrdU which is the marker of proliferating cells at the 7 time points of hippocampus, subcallosal zone and cortex were performed to explore the proliferation and the trends of migration.
     Results: Our experiments with the lithium-pilocarpine models suggested that acute seizures considerably increase neurogenesis of subgranular zone (SGZ), subcallosal zone (SCZ) and cortex immediately when compared with the age-matched-control groups. Only a few of cells labeled by BrdU were found in SGZ, SCZ and cortex in the age-matched-control groups. SC induced a transitory proliferative surge in the SGZ、CA1、CA3 and cortex with the number of new neurons increasing several folds 2 days after SC which had the trend to migrate to the molecular layer and hilar of the dentate gyrus (DG), but 7 days after in the SCZ with the tendency of migrating toward CA1、CA3 and cortex.
     Conclusion: Prolonged seizure activity markedly increases neurogenesis of immature brain. Seizure recruits new born cells into abnormal locations and injured hippocampus.
     PART II THE EXPRESSION CHARACTERISTICS OF VOLTAGE-GATED SODIUM AND POTASSIUM CHANNELS VIA CULTURED NEURAL STEM CELLS DIFFERENTIATION.
     Objective: To exam the expression of voltage-gated sodium and potassium channels of neural stem cells cultured in vitro before and after differentiation.
     Method: Embryonic rat hippocampal neural stem cells(NSCs) were isolated and cultured in serum-free medium. Use nestin immunofluorescence labeling to identify if the cultured cells were neural stem cells. Passaged cells were plated on poly-llysine hydrochloride glass coverslips for 1 hour or differentiated for 1 to 3 days with differentiation serum-free medium. Useβ-III-tubulin and GFAP immunofluorescence labeling to identify the fate of these cells. Whole cell patch-clamp technique was used to record the voltage-gated ion channel currents in the neural like cells. To permit further visualization of the cell morphology, cells were routinely filled with Lucifer yellow (LY) during the recording, then colocalized withβ-III-tubulin to identify if the test cells were neuronal progenitors or neurons.
     Results: Cells aggregated could proliferate and form neurospheres which nestin immunoreactivity was within 3-5 days after primary culture. NSCs have been shown to differentiate into neurons, astrocytes in vitro. No inward Na+ current was detected in any of the undifferentiated NSCs.1 d after the induction of differentiating, cells exhibited voltage-gated sodium currents. The presence of two types of outward potassium currents, delayed recitifier potassium currents and transient potassium currents were also recorded before or after differentiation.
     Conclusion: NSCs from the embryonic rat brain could be isolated, cultured and differentiated. sodium current expression is a very early event following cell cycle exit in neurogenesis. The two types of outward potassium currents expressed either before or after differentztion.
     PART III MODULATION OF PASSIVE MEMBRANE PROPERTIES, VOLTAGE-GATED SODIUM CHANNELS AND VOLTAGE-GATED POTASSIUM CHANNELS BY BRAIN-DERIVED NEUROTROPHIC FACTOR DURING DIFFERENTIATION
     Objective: To explore the brain derived neurotrophic factor (BDNF) modulation of passive membrane properties and the electrophysiological properties of voltage-gated sodium and potassium channels during differentiation.
     Method: Passaged cells were plated on poly-llysine hydrochloride glass coverslips with differentiation serum-free medium. Whole cell patch clamp recordings were used to monitor the passive membrane properties,sodium and potassium currents. Analyze the passive membrane properties、sodium current density, generated the activation curves, compared the mean half activation voltage (V1/2) and mean slope k at the early development stage (DIV 1-4) and the late development stage (DIV 8-14).Analyze the potassium current density. Different holding membrane potentials were used to identify the two current types: delayed recitifier potassium currents and transient potassium currents.generated the activation curves, compared the mean half activation voltage (V_(1/2)) and mean slope k at the early development stage (DIV 1-4) and the late development stage (DIV 8-14).
     Results: Compared with the time-match controls, Cells treated with BDNF were accompanied by a gradual increase in membrane capacitance, time constant and decrease in input resistance during the progress of development. Chronic stimulation of neuron-like cell cultures with BDNF evoked biphasic changes in sodium currents (I_(dNa)). During the early stage of differentiation chronic treatment with BDNF induced a significantly increase of sodium current density, but evoked opposite changes at the later stage, compared with the time-match control group.Chronic BDNF stimulation revealed an increase in total whole-cell potassium current density in BDNF-treated neurons at the early development stage and no significant difference at the later development stage compared with time-match controls. The delayed rectifier outward currents are observed in all neuron-like cells. The expression of I_(K(A)) increased significantly following induction of neural differentiation treated without BDNF, but the expression of I_(K(A)) decreased after the supplementation of BDNF. Current–conductance relationships indicated that there was negative shift in the V_(1/2) of I_(K(A)) and I_(K(DR)) following chronic exposure of neuron-like cells to BDNF during the early stage of differentiation but no significant change of the mean slope during the two differentiate stages compared with time-match controls.
     Conclusion: significant changes in passive membrane properties accompany the dramatic morphological transition observed during the different differentiated stages of cells treated with BDNF. The early stage of differentiation might be a critical period, BDNF was involved in the regulation of the critical period by promoting the functional development of passive membrane. The difference of I_(dNa) between the early stage of differentiation and the late stage of differentiation stimulated by BDNF indicated that BDNF might play an important role by regulating the formation and/or activation of sodium channels. Our results strongly indicated that the early development stage (1-4days) was a critical period for the development of sodium channels and BDNF could play a protective role in the epileptic brain which reduced excitatory of the new born cells. BDNF might play an important role by regulating the formation and/or activation of potassium channels at the early development stage. There was a significant correlation between the supplementation of BDNF and the expression of I_(K(A)). I_(K(A)) might be suppressed by BDNF and might serve a developmental function during the period when it is present.The early development stage (DIV 1-4) might be a critical period of potassium channels during which BDNF might be involved in regulating potassium channels and served to limit excitability in neural cells.
引文
[1] Holopainen IE. Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization[J]. Neurochem Int, 2008,52(6):935-47.
    [2] Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain[J]. Proc Natl Acad Sci U S A, 1996,93(25):14895-900.
    [3] Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus[J]. Nat Med, 1998,4(11):1313-7.
    [4]李听松,郭艺,蒋莉,等.惊厥后大鼠海马神经再生与凋亡的动态变化[J].细胞生物学杂志, 2007,29(3): 444-448.
    [5]何志慧,蒋莉,张明,等.大鼠惊厥持续状态及培养海马神经元惊厥样放电后的BDNF表达研究[J].重庆医科大学学报, 2007,32(3): 225-228,274.
    [6] Scharfman H, Goodman J, Macleod A, et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats[J]. Exp Neurol, 2005,192(2):348-56.
    [7] Moody WJ, Bosma MM. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells[J]. Physiol Rev, 2005,85(3):883-941.
    [8] Picken Bahrey HL, Moody WJ. Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex[J]. J Neurophysiol, 2003,89(4):1761-73.
    [9] Cummins TR, Aglieco F, Renganathan M, et al. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons[J]. J Neurosci, 2001,21(16):5952-61.
    [10] Klein JP, Tendi EA, Dib-Hajj SD, et al. Patterned electrical activity modulates sodium channel expression in sensory neurons[J]. J Neurosci Res, 2003,74(2):192-8.
    [11] Blum R, Konnerth A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions[J]. Physiology (Bethesda), 2005,20:70-8.
    [12]蒋莉,蔡方成,张晓萍.未成熟大脑对惊厥性脑损伤耐受性的分子生物学机理研究[J].重庆医科大学学报, 2005,30(5): 640-643.
    [13] Haut SR, Veliskova J, Moshe SL. Susceptibility of immature and adult brains to seizure effects[J]. Lancet Neurol, 2004,3(10):608-17.
    [14]胡越,蒋莉.控制氯化锂-匹罗卡品诱发惊厥持续状态发作的实验研究[J].儿科药学杂志, 2003,9(4): 5-8.
    [15] George Paxinos &, Charles Watson. The Rat Brain in Stereotaxic Coordinates 5th Edition[M]. fifth edition ed:Academic Press,2005, 100.
    [16] Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus[J]. J Comp Neurol, 2001,435(4):406-17.
    [17] Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system[J]. J Neurosci Res, 2004,76(2):223-31.
    [18] Seri B, Garcia-Verdugo JM, McEwen BS, et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus[J]. J Neurosci, 2001,21(18):7153-60.
    [19] Sohur US, Emsley JG, Mitchell BD, et al. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells[J]. Philos Trans R Soc Lond B Biol Sci, 2006,361(1473):1477-97.
    [20] Gould E, Tanapat P, McEwen BS, et al. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress[J]. Proc Natl Acad Sci U S A, 1998,95(6):3168-71.
    [21] Gould E, Reeves AJ, Fallah M, et al. Hippocampal neurogenesis in adult Old World primates[J]. Proc Natl Acad Sci U S A, 1999,96(9):5263-7.
    [22] Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells[J]. J Comp Neurol, 1999,413(1):146-54.
    [23] Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles[J]. J Comp Neurol, 1999,406(4):449-60.
    [24] Cilio MR, Sogawa Y, Cha BH, et al. Long-term effects of status epilepticus in the immature brain are specific for age and model[J]. Epilepsia, 2003,44(4):518-28.
    [25] Haas KZ, Sperber EF, Opanashuk LA, et al. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus orkindling[J]. Hippocampus, 2001,11(6):615-25.
    [26] Seri B, Herrera DG, Gritti A, et al. Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain[J]. Cereb Cortex, 2006,16 Suppl 1:i103-11.
    [27] Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis[J]. J Neurosci, 2000,20(16):6144-58.
    [28] Overstreet-Wadiche LS, Bromberg DA, Bensen AL, et al. Seizures accelerate functional integration of adult-generated granule cells[J]. J Neurosci, 2006,26(15):4095-103.
    [29] Scharfman HE. Functional implications of seizure-induced neurogenesis[J]. Adv Exp Med Biol, 2004,548:192-212.
    [30] Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors[J]. Cell, 2002,110(4):429-41.
    [31] Arsenijevic Y, Villemure JG, Brunet JF, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain[J]. Exp Neurol, 2001,170(1):48-62.
    [32] Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain[J]. Nat Med, 2003,9(4):439-47.
    [33] Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice[J]. Nature, 2000,405(6789):951-5.
    [34] Gould E, Reeves AJ, Graziano MS, et al. Neurogenesis in the neocortex of adult primates[J]. Science, 1999,286(5439):548-52.
    [35] Parent JM, Valentin VV, Lowenstein DH. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway[J]. J Neurosci, 2002,22(8):3174-88.
    [36] Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke[J]. Nat Med, 2002,8(9):963-70.
    [37] Gage FH. Mammalian neural stem cells[J]. Science, 2000,287(5457):1433-8.
    [38] Li T, Jiang L, Chen H, et al. Characterization of excitability and voltage-gated ionchannels of neural progenitor cells in rat hippocampus[J]. J Mol Neurosci, 2008,35(3):289-95.
    [39] Parent JM, Vexler ZS, Gong C, et al. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke[J]. Ann Neurol, 2002,52(6):802-13.
    [40] Bendel O, Bueters T, von Euler M, et al. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory[J]. J Cereb Blood Flow Metab, 2005,25(12):1586-95.
    [41] Schmidt W, Reymann KG. Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia[J]. Neurosci Lett, 2002,334(3):153-6.
    [42] Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke[J]. J Cereb Blood Flow Metab, 2000,20(8):1166-73.
    [43] Jiang W, Gu W, Brannstrom T, et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion[J]. Stroke, 2001,32(5):1201-7.
    [44] Jin K, Sun Y, Xie L, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum[J]. Mol Cell Neurosci, 2003,24(1):171-89.
    [45] Magavi SS, Macklis JD. Manipulation of neural precursors in situ: induction of neurogenesis in the neocortex of adult mice[J]. Neuropsychopharmacology, 2001,25(6):816-35.
    [46]刘振伟.实用膜片钳技术[M].北京:军事医学科学出版社,2006,90-100.
    [47] Isokawa M, McKhann GM 2nd. Electrophysiological and morphological characterization of dentate astrocytes in the hippocampus[J]. J Neurobiol, 2005,65(2):125-34.
    [48] Smith DO, Rosenheimer JL, Kalil RE. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells[J]. PLoS ONE, 2008,3(2):e1604.
    [49] Bahrey HL, Moody WJ. Voltage-gated currents, dye and electrical coupling in the embryonic mouse neocortex[J]. Cereb Cortex, 2003,13(3):239-51.
    [50] Schwab A. Ion channels and transporters on the move[J]. News Physiol Sci, 2001,16:29-33.
    [51] Schwab A, Schuricht B, Seeger P, et al. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume[J]. Pflugers Arch, 1999,438(3):330-7.
    [52] Schlichter LC, Sakellaropoulos G, Ballyk B, et al. Properties of K+ and Cl- channels and their involvement in proliferation of rat microglial cells[J]. Glia, 1996,17(3):225-36.
    [53] Pardo LA. Voltage-gated potassium channels in cell proliferation[J]. Physiology (Bethesda), 2004,19:285-92.
    [54] Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development[J]. Neurotherapeutics, 2007,4(1):18-61.
    [55] Thoenen H. Neurotrophins and activity-dependent plasticity[J]. Prog Brain Res, 2000,128:183-91.
    [56] Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects[J]. Prog Neurobiol, 2003,69(5):341-74.
    [57] Goodman LJ, Valverde J, Lim F, et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons[J]. Mol Cell Neurosci, 1996,7(3):222-38.
    [58] Kohara K, Kitamura A, Morishima M, et al. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons[J]. Science, 2001,291(5512):2419-23.
    [59] Gartner A, Staiger V. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimulation patterns[J]. Proc Natl Acad Sci U S A, 2002,99(9):6386-91.
    [60] Tucker K, Fadool DA. Neurotrophin modulation of voltage-gated potassium channels in rat through TrkB receptors is time and sensory experience dependent[J]. J Physiol, 2002,542(Pt 2):413-29.
    [61] Stewart RR, Zigova T, Luskin MB. Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain[J]. J Neurophysiol, 1999,81(1):95-102.
    [62] Meis S, Deitmer JW. Developmental changes of potassium currents of embryonic leech ganglion cells in primary culture[J]. J Neurosci Res, 1997,50(6):967-78.
    [63] McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity[J]. Annu Rev Neurosci, 1999,22:295-318.
    [64] Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system[J]. Genes Dev, 2000,14(23):2919-37.
    [65] Scheffler B, Walton NM, Lin DD, et al. Phenotypic and functional characterizationof adult brain neuropoiesis[J]. Proc Natl Acad Sci U S A, 2005,102(26):9353-8.
    [66] Baker H, Liu N, Chun HS, et al. Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb[J]. J Neurosci, 2001,21(21):8505-13.
    [67] Coskun V, Luskin MB. Intrinsic and extrinsic regulation of the proliferation and differentiation of cells in the rodent rostral migratory stream[J]. J Neurosci Res, 2002,69(6):795-802.
    [68] Fujisawa S, Yamada MK, Nishiyama N, et al. BDNF boosts spike fidelity in chaotic neural oscillations[J]. Biophys J, 2004,86(3):1820-8.
    [69] Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function[J]. Annu Rev Neurosci, 2001,24:677-736.
    [70] Tasch E, Cendes F, Li LM, et al. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy[J]. Ann Neurol, 1999,45(5):568-76.
    [71] Itami C, Kimura F, Nakamura S. Brain-derived neurotrophic factor regulates the maturation of layer 4 fast-spiking cells after the second postnatal week in the developing barrel cortex[J]. J Neurosci, 2007,27(9):2241-52.
    [72] Katoh-Semba R, Asano T, Ueda H, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus[J]. FASEB J, 2002,16(10):1328-30.
    [73] Ahn M, Beacham D, Westenbroek RE, et al. Regulation of Na(v)1.2 channels by brain-derived neurotrophic factor, TrkB, and associated Fyn kinase[J]. J Neurosci, 2007,27(43):11533-42.
    [74] O'Dowd DK, Ribera AB, Spitzer NC. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons[J]. J Neurosci, 1988,8(3):792-805.
    [75] Ribera AB, Spitzer NC. Differentiation of delayed rectifier potassium current in embryonic amphibian myocytes[J]. Dev Biol, 1991,144(1):119-28.
    [76] Feldman DH, Thinschmidt JS, Peel AL, et al. Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor[J]. Exp Neurol, 1996,140(2):206-17.
    [77] Moody WJ, Lansman JB. Developmental regulation of Ca2+ and K+ currents during hormone-induced maturation of starfish oocytes[J]. Proc Natl Acad Sci U S A, 1983,80(10):3096-100.
    [1] Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats[J]. J Comp Neurol, 1965,124(3):319-35.
    [2] Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992,255(5052):1707-10.
    [3] McKay R. Stem cells in the central nervous system[J]. Science, 1997,276(5309):66-71.
    [4] Gage FH. Mammalian neural stem cells[J]. Science, 2000,287(5457):1433-8.
    [5] Harzsch S, Dawirs RR. Neurogenesis in the developing crab brain: postembryonic generation of neurons persists beyond metamorphosis[J]. J Neurobiol, 1996,29(3):384-98.
    [6] Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus[J]. Nat Med, 1998,4(11):1313-7.
    [7] Taupin P. Adult neurogenesis in the mammalian central nervous system: functionality and potential clinical interest[J]. Med Sci Monit, 2005,11(7):RA247-252.
    [8] Palmer TD, Schwartz PH, Taupin P, et al. Cell culture. Progenitor cells from human brain after death[J]. Nature, 2001,411(6833):42-3.
    [9] Rakic P. Adult neurogenesis in mammals: an identity crisis[J]. J Neurosci, 2002,22(3):614-8.
    [10] Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone[J]. J Neurosci, 2002,22(3):629-34.
    [11] Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis[J]. Curr Opin Neurobiol, 2004,14(2):186-91.
    [12] Horner PJ, Palmer TD. New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca![J]. Trends Neurosci, 2003,26(11):597-603.
    [13] Arlotta P, Magavi SS, Macklis JD. Molecular manipulation of neural precursors in situ: induction of adult cortical neurogenesis[J]. Exp Gerontol, 2003,38(1-2):173-82.
    [14] Lehmann K, Butz M, Teuchert-Noodt G. Offer and demand: proliferation and survival of neurons in the dentate gyrus[J]. Eur J Neurosci, 2005,21(12):3205-16.
    [15] Deisseroth K, Singla S, Toda H, et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells[J]. Neuron, 2004,42(4):535-52.
    [16] Tooyama I, Bellier JP, Park M, et al. Morphologic study of neuronal death, glial activation, and progenitor cell division in the hippocampus of rat models of epilepsy[J]. Epilepsia, 2002,43 Suppl 9:39-43.
    [17] Hastings NB, Seth MI, Tanapat P, et al. Granule neurons generated during development extend divergent axon collaterals to hippocampal area CA3[J]. J Comp Neurol, 2002,452(4):324-33.
    [18] Snyder JS, Hong NS, McDonald RJ, et al. A role for adult neurogenesis in spatial long-term memory[J]. Neuroscience, 2005,130(4):843-52.
    [19] Guidi S, Ciani E, Severi S, et al. Postnatal neurogenesis in the dentate gyrus of the guinea pig[J]. Hippocampus, 2005,15(3):285-301.
    [20] Shors TJ, Townsend DA, Zhao M, et al. Neurogenesis may relate to some but not all types of hippocampal-dependent learning[J]. Hippocampus, 2002,12(5):578-84.
    [21] Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus[J]. J Comp Neurol, 2001,435(4):406-17.
    [22] Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation[J]. J Neurosci, 1996,16(6):2027-33.
    [23] Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles[J]. J Comp Neurol, 1999,406(4):449-60.
    [24] Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells[J]. Nat Rev Neurosci, 2001,2(4):287-93.
    [25] Bielas S, Higginbotham H, Koizumi H, et al. Cortical neuronal migration mutants suggest separate but intersecting pathways[J]. Annu Rev Cell Dev Biol, 2004,20:593-618.
    [26] Jessberger S, Kempermann G. Adult-born hippocampal neurons mature intoactivity-dependent responsiveness[J]. Eur J Neurosci, 2003,18(10):2707-12.
    [27] van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus[J]. Nature, 2002,415(6875):1030-4.
    [28] Zhao C, Teng EM, Summers RG Jr, et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus[J]. J Neurosci, 2006,26(1):3-11.
    [29] Petreanu L, Alvarez-Buylla A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction[J]. J Neurosci, 2002,22(14):6106-13.
    [30] Belluzzi O, Benedusi M, Ackman J, et al. Electrophysiological differentiation of new neurons in the olfactory bulb[J]. J Neurosci, 2003,23(32):10411-8.
    [31] Wang LP, Kempermann G, Kettenmann H. A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input[J]. Mol Cell Neurosci, 2005,29(2):181-9.
    [32] Tozuka Y, Fukuda S, Namba T, et al. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells[J]. Neuron, 2005,47(6):803-15.
    [33] Overstreet LS, Hentges ST, Bumaschny VF, et al. A transgenic marker for newly born granule cells in dentate gyrus[J]. J Neurosci, 2004,24(13):3251-9.
    [34] Bruel-Jungerman E, Laroche S, Rampon C. New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment[J]. Eur J Neurosci, 2005,21(2):513-21.
    [35] Shingo T, Gregg C, Enwere E, et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin[J]. Science, 2003,299(5603):117-20.
    [36] Marr D. Simple memory: a theory for archicortex[J]. Philos Trans R Soc Lond B Biol Sci, 1971,262(841):23-81.
    [37] Feng R, Rampon C, Tang YP, et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces[J]. Neuron, 2001,32(5):911-26.
    [38] Saxe MD, Malleret G, Vronskaya S, et al. Paradoxical influence of hippocampal neurogenesis on working memory[J]. Proc Natl Acad Sci U S A, 2007,104(11):4642-6.
    [39] Shors TJ, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories[J]. Nature, 2001,410(6826):372-6.
    [40] Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus[J]. Nature, 2004,429(6988):184-7.
    [41]李听松,郭艺,蒋莉,等.惊厥后大鼠海马神经再生与凋亡的动态变化[J].细胞生物学杂志, 2007,29(3): 444-448.
    [42] Scharfman HE, Hen R. Neuroscience. Is more neurogenesis always better?[J]. Science, 2007,315(5810):336-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700