用户名: 密码: 验证码:
新型固体氧化物燃料电池的设计及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会,随着人口与经济的迅猛增长,全球的能源消耗也迅猛增加。高效率、低成本及环境友好型的可再生能源转换及存储系统的研究已经越来越成为科研热点。燃料电池是一种通过氧化还原反应过程将气态或液态燃料的化学能直接转化为电能的电化学装置,不经过燃烧,所以它并不受卡诺循环的限制,具有很高的化电转换效率。为了减少对传统燃料的过分依赖、保证能源需求和减少环境污染,广泛的发展燃料电池技术将成为科研研究的重点。固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。传统SOFC的高工作温度促进了电池内部的反应动力学,从而减少了电池对贵金属催化剂的需求。在如此高的温度下,碳氢化合物燃料还可以在电池内重整,使之成为燃料电池优异的燃料气。这些特性决定了燃料电池是非常值得大力研究的。
     目前,从经济学的角度来看,燃料电池还不能够和现在传统的火力和水力发电技术相竞争。一个降低成本的方法就是降低电池的工作温度,然而,电池的电化学性能会随着工作温度的下降而下降,这主要是由于电极的极化电阻增加以及电解质电导率下降造成的。因为传统的电极在燃料电池的中低温下会表现出较高比例的电压损失。因此,开发新的阴极材料或者设计新的燃料电池结构对于中温SOFC至关重要,阴极的研究成为电极发展关注的中心。
     SOFC还远没有达到商业化的要求,还有许多新电池材料和电池结构需要研究。本论文中我们提出了“热电固体氧化物燃料电池”的概念。这个概念的基本思路是,虽然燃料电池本身对燃料的利用效率很高,但是由于燃料电池本身的欧姆电阻和电极的极化,使其在工作过程中将会不可避免的产生大量的废热,而热电材料的特性是在存在温差的环境下,能够实现电能和热能之间直接的转换,从而利用热电转换的原理达到废热发电的目的。我们设想将热电材料和燃料电池联用,具体的操作过程是可以利用热电材料替代燃料电池传统的部件材料,如阴极、阳极或者连接材料,这样就可以使得燃料电池在不增加额外部件的基础上,通过重新设计和制作各部件结构,使热电材料在起到燃料电池原有部件功能的同时通过消耗电池产生的废热来获得额外的电量。这种思路为进一步提高燃料电池的燃料利用效率提供了可能的路径。
     为了更加清楚的验证“热电燃料电池”的设计思路,我们测试了用热电材料做电池的阴极,通过热电电极来消耗电池产生的废热,从而得到额外的热电电压。具体的步骤是:首先设计和制作了具有特殊结构的燃料电池,阳极、缓冲层和电解质都是普通的电池结构,我们制作了新型阴极结构来更加清楚的验证热电阴极可以通过消耗废热来产生热电电压。这一新型热电阴极为长度1.5mm直径1mm的加长多孔圆柱状结构。用一定量的银浆将此圆柱阴极封接于燃料电池的阴极侧,为热电阴极。电池在测试过程中燃料气(如H_2或CH4)分解会放出大量的热(例如,2H_2(g)+O_2(g)=2H_2O (g), H727°C=-236.46kJ mol~(-1))。所以燃料电池将会不可避免的放出大量的热,产生的热将会在电池周围形成温度差。我们利用了p型的半导体热电材料为阴极,其利用废热产生的热电电压是和电池的电压方向是一致的,所以总电压就是电池的电压和热电电压之和。
     第二章中我们验证了p型热电材料NaCo_2O_4可以用作热电燃料电池阴极,测试了其在高温下的热导率以及热电系数。在800℃的测试温度下,热电阴极利用燃料电池产生的废热得到了13.9mV的热电电压,而且电池的开路电压也从1.1497V上升到1.1639V,这验证了我们提出的“热电燃料电池”的概念。操作过程中我们为了解决NaCo_2O_4阴极和电解质附着性不好的问题,采用引入CuCo_2O_4形成(1-x)(NaCo_2O_4)x(CuCo_2O_4)复合热电阴极的方法成功的解决两者匹配性不好的问题。此复合热电材料用作传统燃料电池的薄膜陶瓷阴极时,电池得到非常优异的性能,而且复合阴极的化学性质非常稳定,单电池的耐久性也很优异,这说明了此复合阴极用作燃料电池是合适的。
     第三章中对以Ca_2Co_2O_5作为热电燃料电池电极材料的电池性能和热电性能做了初步的研究。Ca_2Co_2O_5作为热电燃料电池阴极材料,在800°C和750°C的功率密度分别为522和414mW cm2。这说明Ca_2Co_2O_5作为传统燃料电池阴极可以得到较好的电化学性能。以Ca_2Co_2O_5来制作热电燃料电池多孔圆柱状阴极,得到热电阴极两端的电压差为11.5mV,这证明了提升的电压就是由热电阴极通过消耗废热提供的。我们认为在共轴CoO_4八面体内,共同存在的高自旋态Co~(3+)和Co~(4+)将会在CoO_4八面体内产生有利于小极化子跳跃的电子传导结构,电子可以从高自旋态的d6跳跃到同样是高自旋态的d5,从而为Ca_2Co_2O_5提供了电子电导率。CoO_(4/2)四面体亚层内的间隙氧离子可以向材料的三位空间移动,在燃料电池操作温度范围内,这将为Ca_2Co_2O_5热电阴极提供非常好的氧离子迁移路径。
     第四章中我们以Ca_3Co_2O_6做单电池阴极材料,在800°C和750°C下,电池以100μm的LSGM做电解质的功率密度分别达到1.47和1.14W cm2。而且,作为阴极材料,Ca_3Co_2O_6不但可以用做LSGM电解质,还可以广泛的用于SDC和BZCY等其他中温电解质。Ca_3Co_2O_6的ξ是1.54而对于BSCF的是1.21。相比于BSCF,Ca_3Co_2O_6做阴极材料具有更大的ξ值,这意味着其在燃料电池阴极气氛下对氧气的催化反应具有更高的敏感度。对于Ca_3Co_2O_6和BSCF的热力学性能比较,我们测试了其TEC分布、材料的热应力曲线和阴极薄膜的界面剪切应力曲线,三项测试都证明了Ca_3Co_2O_6相比于BSCF与LSGM等中温电解质在界面附着方面更加的匹配。最后证明Ca_3Co_2O_6也可以作为热电燃料电池的阴极材料来利用废热产生热电电压。
     第五章中我们分别以Sr_2Co_(1+x)Mo_(1-x)O_(6-δ)(x=0.1,0.15,0.2)材料作为固体氧化物燃料电池的阴极、阳极和对称电极,测试其在各个部件上的电化学性能。做阳极,当x=0.1电池达到了最高的功率密度。这主要是在阳极气氛下,Mo~(6+)/Mo~(5+)对对材料的电导率等起到了主要作用。做阴极,当x=0.2时电池达到最高的功率密度表现出,和阳极相反的趋势。主要是在空气气氛下钴离子形成的Co_–~(2+)O–Co~(3+)小极化子导电机制起主要作用。当x=0.15时材料在空气和氢气气氛下都表现出了高的稳定性和电导率,以其作为对称电极材料,此对称电池得到了最高的功率密度。
With the rapid growth of population and economy, global energy consumptionincreases strongly, which has stimulated intense research on renewable energy conversionand storage systems with high efficiency, low cost and environmental friendliness. Fuelcells which is an energy conversion device, directly convert the chemical energy ofgaseous or liquid fuels into electrical energy by a highly efficient and cleanelectrochemical oxidation process. The fuel will not need to be fired, so the fuel cell notlimited by the Carnot cycle. Fuel cells offer high chemical-to-electrical conversionefficiency. In order to guarantee future energy requirements and reduce pollutantemissions preclude, the wide spread development of fuel cells technology will becomemost important for staff scientist. Solid oxide fuel cells (SOFCs) are a forward lookingtechnology for a highly efficient,environmental friendly power generation. The traditionalSOFCs are operated at high temperature, the high operating temperature promotes reactionkinetics for gas oxidation or reduction, eliminates the need of precious metal catalysts. Atsuch a high temperature, it allows internal reforming of hydrocarbon fuels into H_2and COto suitable for fuel cells fuel gas. All the above advantages proved that SOFCs are verypromising for further research.
     So far, from the economics perspective, in energy production, SOFCs cannotcompeted with thermal power generation or hydraulic electro generating. As aconsequence, significant effort has been devoted to the development of intermediatetemperature SOFCs. However,it is still a challenge for SOFCs to reduce the operationtemperature to the intermediate temperature. The over all electrochemical performance ofan SOFC will decrease with the reduction in the operating temperature due to increasedpolarization resistances of the electrode reaction and decreased electrolyte conductivity. Akey obstacle to reduce temperature operation is the poor activity of traditional cathodematerials, which has become the limiting factor in determining the overall cellperformance. Therefore, the developments of new cathode with high catalytic performancefor the oxygen-reduction reaction or design new cell structure are critical for intermediate temperature SOFCs, so cathode is becoming more and more the center of attention.
     The development of practical application of SOFCs has been still hindered by someproblems. New material research and structure design need further study to optimize theSOFCs allocation. In this paper we put forward the concept of―Thermoelectricsolid-oxide fuel cells‖. The basic concept is that: although the operating factor of fuel gasfor SOFCs is high, during the SOFCs operating, it is unavoidable for SOFC to create greatheat by ohmic resistance and electrode polarization. Thermoelectric materials are a kind ofsemiconducting functional materials, which can be used to interconvert heat energy andelectricity energy directly. Thermoelectric materials will convert some waste heat intoelectricity under different temperature condition. This character can be used in SOFCs toconvert heat into electricity. We put forward to unite the SOFCs and thermoelectric powergeneration. The―thermoelectric SOFCs‖performs the follow sequence operations: withsuitable thermoelectric materials as replacement of parts for conventional SOFCs subunitconstruction, such as cathode, anode or connect materials. The SOFCs will work on theassumption that no more additional components was used, by redesigning or reworkingthe new electrode structure, if the thermoelectric materials can be used as SOFC electrode,connection or sealing material with a special structure or shape, it will not only play thesame effect as the original device, but also can be used to reduce the cell temperaturedifference to a certain extent. So the thermoelectric components will be useful for theSOFC thermal system. And then the SOFCs design and flow chart opens up the possibilityof getting a favor for the stack thermal system by using special cell component from thethermoelectric materials.
     For insight into the additional contribution from the thermoelectric voltage producedby the thermoelectric cathode owing to the temperature gradient in the SOFC, a porouscolumned cathode was fabricated for testing. Below are some simple yet specific steps wecan take to test the thermoelectric voltage: first, we fabricate a special structure SOFCswith conventional anode, buffer layer and electrolyte, a new structure cathode was used toverify the thermoelectric voltage can produced by the thermoelectric cathode owing to thetemperature gradient. The new structure cathode was a porous column with1cm indiameter and1.5cm in height. The porous column was used as cathode and attached to the SOFCs cathode side with Ag paste as a binder. In SOFCs, the electrochemical reaction forH_2or CH4oxidation is exothermic in nature (for example,2H_2(g)+O_2(g)=2H_2O (g),
     H727°C=-236.46kJ mol~(-1)). In addition, the ohmage and overpotential will inevitablygive rise to heat loss in the cell. Therefore, the operational SOFCs produce a lot ofadditional heat energy, which provides an appreciable temperature gradient to ambienttemperature. We use the proper P-type thermoelectric semiconductor material as cathode,and the created thermoelectric voltage by waste heat is consistent with the cell voltage, sothe total voltage is the sum of cell voltage and thermoelectric voltage.
     In the second chapter, we proved that the P-type material NaCo_2O_4can be used asthermoelectric cathode, further, the high temperature thermal conductivity and Seebeckcoefficient was tested. The thermoelectric voltage at800°C is13.9mV for NaCo_2O_4, andthe average voltage increase from1.1639V to1.1497V. Indicating that a certain electricvoltage difference was created by the columned cathode. In our experiment, we found thatNaCo_2O_4could not connect well with La0.8Sr0.2Ga0.83Mg0.17O3-(LSGM) or Ce0.8Sm0.2O_2-(SDC) electrolyte after sintering. To solve this problem, CuCo_2O_4with the spinel cubicstructure was introduced between the electrolyte and the cathode. Nominal solidsNa1–xCuxCo2O4(0≤x≤1, NCCO) were employed as cathode materials. The single cellwith this nominal solid as cathode gets a very superior power density, the chemicalstability and cell durability is very well too. This proved that nominal solidsNa1–xCuxCo2O4(0≤x≤1, NCCO) is very suitable for SOFCs thermoelectric cathode.
     In the third chapter, the power density and thermoelectric performance was testedwhen Ca_2Co_2O_5was used as thermoelectric cathode. The maximum power density reached522mW cm-2at800°C and415mW cm-2at750°C. As previously reported, the highpower density demonstrates that Ca_2Co_2O_5is an excellent cathode candidate for a SOFC.The difference in average voltage between the two ends of the columned cathode is11.5mV, which proves the existence of a thermoelectric voltage generated between the twoends of the elongated cathode. The coexistence of high-spin Co4+:t3e2and Co3+:t4e2onoctahedral sites sharing common edges would give facile polaron hopping along theoctahedral-site ribbons in analogy from hopping of elections from d6to d5high-spinconfigurations across shared octahedral-site edges. Finally, the excess oxygen ion allows the interstitial oxygen of a double-well potential to move in three dimensions to give goodoxide-ion mobility at the operating temperature of the thermoelectric SOFC.
     In the fourth chapter, the maximum power density Pmaxfor Ca_3Co_2O_6as SOFCsthermoelectric cathode reached to1.47W/cm2at800oC and1.14W/cm2at750oC with100μm LSGM as electrolyte. Ca_3Co_2O_6cathode not only can be used for LSGMelectrolyte, but also with intermediate-temperature (IT) SDC and BaZr0.1Ce0.7Y0.2O3(BZCY) as electrolytes. The ξ is1.54for Ca_3Co_2O_6and1.21for BSCF. The bigger ξindicates that Ca_3Co_2O_6is more sensitive than BSCF for oxygen catalyzing reaction asSOFC cathode. For the thermodynamic testing, we test the TEC distribution,thermal-stress curves and the interfacial shearing stress. All the three testing proved thatCa_3Co_2O_6can match better with LSGM than BSCF. Finally, it is proved that Ca_3Co_2O_6also can be used as thermoelectric cathode to produce thermoelectric voltage owing to thetemperature gradient.
     In the fifth chapter, Sr_2Co_(1+x)Mo_(1-x)O_(6-δ)(x=0.1,0.15,0.2) were used as anode, cathodeand symmetric electrodes for SOFCs, respectively. When x=0.1was used as anode whichexhibits the maximum power density (Pmax) approximately660mWcm-2among all the9cells. The conductivity for SCMO in H_2is dominated by electrons from the Mo~(6+)/Mo~(5+)couple. When x=0.2was used as cathode, the Pmaxis540mW cm-2. The cobalt-basedcathode materials, the main contribution of catalytic activity for oxygen decompositioncomes from Co ions, and the Co~(3+)–O–Co2+couples provide small polarizationconductivity. When x=0.15was used as symmetric electrode, which exhibit both highstability and conductivity both in air and hydrogen atmosphere. Cell with x=0.15assymmetric electrode shows the power density as high as460mW cm-2at800°C.
引文
[1]江泽民.对中国能源问题的思考[j].上海交通大学学报,2008,42(3)345-359.
    [2]付融冰张.中国能源的现状[j].能源环境保护,2005,19(1),8-12.
    [3]周凌云.世界能源危机与我国的能源安全[j].中国能源,2001,1,12-13.
    [4] Hall D. O. Biomass: Solar energy through biology—fuels now and in the future.in Studies in environmental science, AndréB-L, Editor.1982, Elsevier. p.411-429.
    [5] Kalogirou S. A. Chapter seven-industrial process heat, chemistry applications,and solar dryers. in Solar energy engineering.2009, Academic Press: Boston. p.391-420.
    [6] Pandit A., Frese R. N. artificial leaves: Towards bio-inspired solar energyconverters. in Comprehensive renewable energy, Editor-in-Chief: Ali S, Editor.2012, Elsevier: Oxford. p.657-677.
    [7]程新群.化学能源[m].北京:化学工业出版社,2008.
    [8]刘雁.燃料电池—人类未来的能源终极解决方案[j].资源与人居环境,2007,5,28-31.
    [9] Neville R. C. Chapter x-concluding thoughts. in Solar energy conversion (secondedition).1995, Elsevier Science: Amsterdam. p.363-396.
    [10] Neville R. C. Chapter i-energy needs—energy sources. in Solar energyconversion (second edition).1995, Elsevier Science: Amsterdam. p.1-38.
    [11]拉米尼詹.,迪克斯等.燃料电池系统:原理设计应用.科学出版社,,2006.
    [12]毛宗强..燃料电池[m].北京:化学工业出版社,第一版,2005.
    [13]韩敏芳彭.固体氧化物燃料电池材料及制备[m].北京:科学出版社,2003.
    [14]黄镇江刘.燃料电池及其应用.电子工业出版社,2005.
    [15] Stein W., Edwards J., Hinkley J., etc. Fuels–hydrogen production|natural gas:Solar-thermal steam reforming. in Encyclopedia of electrochemical power sources,Editor-in-Chief: Jürgen G, Editor.2009, Elsevier: Amsterdam. p.300-312.
    [16] Steinfeld A., Meier A. Solar fuels and materials. in Encyclopedia of energy,Editor-in-Chief: Cutler J C, Editor.2004, Elsevier: New York. p.623-637.
    [17] Blum L., Riensche E. Fuel cells–solid oxide fuel cells|systems. in Encyclopediaof electrochemical power sources, Editor-in-Chief: Jürgen G, Editor.2009,Elsevier: Amsterdam. p.99-119.
    [18] Larrain D., Maréchal F., Autissier N., etc. Multi-scale modeling methodology forcomputer aided design of a solid oxide fuel cell stack. in Computer aided chemicalengineering, Barbosa-Póvoa A,Matos H, Editors.2004, Elsevier. p.1081-1086.
    [19] Turner C. H., Wang X., Lau K. C., etc. Chapter11-atomistic modeling of solidoxide fuel cells. in Annual reports in computational chemistry, Ralph A W, Editor.2010, Elsevier. p.201-234.
    [20] Yang Z., Singhal S. C. Fuel cells–solid oxide fuel cells|cell interconnection. inEncyclopedia of electrochemical power sources, Editor-in-Chief: Jürgen G, Editor.2009, Elsevier: Amsterdam. p.63-76.
    [21] Zhou X. D., Singhal S. C. Fuel cells–solid oxide fuel cells|overview. inEncyclopedia of electrochemical power sources, Editor-in-Chief: Jürgen G, Editor.2009, Elsevier: Amsterdam. p.1-16.
    [22] Tietz F. Solid oxide fuel cells. in Encyclopedia of materials: Science andtechnology (second edition), Editors-in-Chief: K H J B,Robert W C,Merton CF,Bernard I,Edward J K,Subhash M,Patrick V, Editors.2008, Elsevier: Oxford. p.1-8.
    [23] Sammes N. M., Roy B. R. Fuel cells–solid oxide fuel cells|cathodes. inEncyclopedia of electrochemical power sources, Editor-in-Chief: Jürgen G, Editor.2009, Elsevier: Amsterdam. p.25-33.
    [24] Ormerod R. M. Internal reforming in solid oxide fuel cells. in Studies in surfacescience and catalysis, Froment G F,Waugh K C, Editors.1999, Elsevier. p.35-46.
    [25] Steele B. C. H., Heinzel A. Materials for fuel-cell technologies. Nature,2001,414(6861),345-352.
    [26] Kusnezoff M. Fuel cells–solid oxide fuel cells|membranes. in Encyclopedia ofelectrochemical power sources, Editor-in-Chief: Jürgen G, Editor.2009, Elsevier:Amsterdam. p.34-50.
    [27] Steele B. C. H. Fuel-cell technology: Running on natural gas. Nature,1999,400(6745),619-621.
    [28] Oliva-Ramírez M., Huamán-Mamani F. A., Jiménez-Melendo M. Microstructuraland high-temperature mechanical characteristics of Nickel oxide/zirconiacomposites for solid oxide fuel cells. Fuel Processing Technology,2012,103,45-50.
    [29] Punbusayakul N., Boonsiri K., Charojrochkul S., etc. Assessment on hermeticproperty and mechanical compatibility of various groove-gasket sealing designsfor solid oxide fuel cell stack. Journal of Power Sources,2012,213,186-202.
    [30] Akanda S. R., Walter M. E., Kidner N. J., etc. Mechanical characterization of oxidecoating–interconnect interfaces for solid oxide fuel cells. Journal of Power Sources,2012,210,254-262.
    [31] Nakajo A., Mueller F., Brouwer J., etc. Mechanical reliability and durability ofSOFC stacks. Part I: Modelling of the effect of operating conditions and designalternatives on the reliability. International Journal of Hydrogen Energy,2012,37(11),9249-9268.
    [32] Huang B. X., Vasechko V., Ma Q. L., etc. Thermo-mechanical properties of(Sr,Y)TiO3as anode material for solid oxide fuel cells. Journal of Power Sources,2012,206,204-209.
    [33] Peng S., Zhou D., Wei Y., etc. A novel u-shaped anode-supported hollow fibersolid oxide fuel cell with considerable thermal cycling performance and stability.Journal of Membrane Science,2012,417–418,80-86.
    [34] Wang Y., Zhang Y., Xia C. A novel method to determine the particle–particlefracture of yttria stabilized zirconia. Journal of Power Sources,2012,211,77-83.
    [35] Liu L., Sun K., Zhou X., etc. Sulfur tolerance improvement of Ni-YSZ anode byalkaline earth metal oxide BaO for solid oxide fuel cells. ElectrochemistryCommunications,2012,19,63-66.
    [36] Itagaki Y., Watanabe S., Yamaji T., etc. Electrophoretic deposition of Bi-layeredLSM/LSM-YSZ cathodes for solid oxide fuel cell. Journal of Power Sources,2012,214(0),153-158.
    [37] Shen Z., Zhu X., Le S., etc. Co-sintering anode and Y2O3stabilized ZrO2thinelectrolyte film for solid oxide fuel cell fabricated by co-tape casting. InternationalJournal of Hydrogen Energy,2012,37(13),10337-10345.
    [38] Su P.-C., Prinz F. B. Nanoscale membrane electrolyte array for solid oxide fuelcells. Electrochemistry Communications,2012,16(1),77-79.
    [39] Mayén-Mondragón R., Falk G., Clasen R. Electrophoretic impregnation/depositioncomplemented with polymeric templating for the fabrication offunctionalized-porosity layered-ceramics: A solid-oxide-fuel-cells approach.Journal of the American Ceramic Society,2012,95(2),593-599.
    [40] Sun W., Zhang N., Mao Y., etc. Fabrication of anode-supportedSc2O3-stabilized-ZrO2electrolyte micro-tubular solid oxide fuel cell byphase-inversion and dip-coating. Electrochemistry Communications,2012,20,117-120.
    [41] Timurkutluk B., Celik S., Toros S., etc. Effects of electrolyte pattern on mechanicaland electrochemical properties of solid oxide fuel cells. Ceramics International,2012,38(7),5651-5659.
    [42] Park H. J., Kwak C., Kim J. S., etc. Electrochemical properties of pureBa0.5Sr0.5Co0.8Fe0.2O3and Ba0.5Sr0.5Co0.8Fe0.2O3-based composite cathodes for anintermediate temperature solid oxide fuel cell with Sc-doped Zirconia solidelectrolyte. Journal of Power Sources,2012,213,31-39.
    [43] Lee J., Park I., Lee H., etc. Effects of embossing structure on the performance ofintermediate-temperature solid oxide fuel cells with gadolinium-doped ceriaelectrolyte. Journal of Power Sources,2012,212,35-42.
    [44] Zhou Q., Xu L., Guo Y., etc. La0.6Sr0.4Fe0.8Cu0.2O3perovskite oxide as cathodefor IT-SOFC. International Journal of Hydrogen Energy,2012,37(16),11963-11968.
    [45] Soares H. S., Zhang X., Antunes I., etc. Effect of phosphorus additions on thesintering and transport properties of proton conducting BaZr0.85Y0.15O3. Journalof Solid State Chemistry,2012,191,27-32.
    [46] Li Y., Xu M. W., Goodenough J. B. Electrochemical performance ofBa2Co9O14+SDC composite cathode for intermediate-temperature solid oxide fuelcells. Journal of Power Sources,2012,209,40-43.
    [47] Ishihara T., Furutani H., Yamada T., etc. Oxide ion conductivity of double dopedlanthanum gallate perovskite type oxide. Ionics,1997,3(3),209-213.
    [48] Slater P. R., Irvine J. T. S., Ishihara T., etc. The structure of the oxide ion conductorLa0.9Sr0.1Ga0.8Mg0.2O2.85by powder neutron diffraction. Solid State Ionics,1998,107(3–4),319-323.
    [49] Yan J., Matsumoto H., Enoki M., etc. High-power SOFC usingLa0.9Sr0.1Ga0.8Mg0.2O3∕Ce0.8Sm0.2O2composite film. Electrochemical andSolid-State Letters,2005,8(8), A389-A391.
    [50] Yamada T., Chitose N., Akikusa J., etc. Development of intermediate-temperaturesofc module using doped lanthanum gallate. Journal of The ElectrochemicalSociety,2004,151(10), A1712-A1714.
    [51] Kuroda K., Hashimoto I., Adachi K., etc. Characterization of solid oxide fuel cellusing doped lanthanum gallate. Solid State Ionics,2000,132(3–4),199-208.
    [52] Tan M. Y., Tan K. B., Zainal Z., etc. Subsolidus formation and impedancespectroscopy studies of materials in the (Bi2O3)1x(Y2O3)xbinary system. CeramicsInternational,2012,38(4),3403-3409.
    [53] Zhao W., An S., Ma L. Processing and characterization of Bi2O3and Sm2O3codoped CeO2electrolyte for intermediate-temperature solid oxide fuel cell.Journal of the American Ceramic Society,2011,94(5),1496-1502.
    [54] Huang J., Mao Z., Liu Z., etc. Development of novel low-temperature SOFCs withCo-ionic conducting SDC-carbonate composite electrolytes. ElectrochemistryCommunications,2007,9(10),2601-2605.
    [55] Ning Z., Milin Z., Fucheng X., etc. Fabrication and characterization of anodesupport low-temperature solid oxide fuel cell based on the samaria-doped ceriaelectrolyte. International Journal of Hydrogen Energy,2012,37(1),797-801.
    [56] Zhang X., Robertson M., De es-Petit C., etc. Internal shorting and fuel loss of alow temperature solid oxide fuel cell with sdc electrolyte. Journal of PowerSources,2007,164(2),668-677.
    [57] Lin T.-N., Lee M.-C., Yang R.-J., etc. Chemical state identification of Ce3+/Ce4+inthe Sm0.2Ce0.8O2electrolyte for an anode-supported solid oxide fuel cell afterlong-term operation. Materials Letters,2012,81,185-188.
    [58] Yang R.-J., Lee M.-C., Chang J.-C., etc. Fabrication and characterization of aSm0.2Ce0.8O1.9electrolyte film by the spin-coating method for a low-temperatureanode-supported solid oxide fuel cells. Journal of Power Sources,2012,206,111-118.
    [59] Ma Y., Wang X., Li S., etc. Samarium-doped ceria nanowires: Novel synthesis andapplication in low-temperature solid oxide fuel cells. Advanced Materials,2010,22(14),1640-1644.
    [60] Li S., Xian C., Yang K., etc. Feasibility and mechanism of lithium oxide assintering aid for Ce0.8Sm0.2O2-electrolyte. Journal of Power Sources,2012,205,57-62.
    [61] Yun J. W., Yoon S. P., Park S., etc. Analysis of the regenerative H2S poisoningmechanism in Ce0.8Sm0.2O2-coated Ni/YSZ anodes for intermediate temperaturesolid oxide fuel cells. International Journal of Hydrogen Energy,2011,36(1),787-796.
    [62] Fergus J. W. Oxide anode materials for solid oxide fuel cells. Solid State Ionics,2006,177(17–18),1529-1541.
    [63] Madsen B. D., Barnett S. A. Effect of fuel composition on the performance ofceramic-based solid oxide fuel cell anodes. Solid State Ionics,2005,176(35–36),2545-2553.
    [64] Pudmich G., Boukamp B. A., Gonzalez-Cuenca M., etc. Chromite/Titanate basedperovskites for application as anodes in solid oxide fuel cells. Solid State Ionics,2000,135(1–4),433-438.
    [65] Wang S., Jiang Y., Zhang Y., etc. Electrochemical performance of mixedionic–electronic conducting oxides as anodes for solid oxide fuel cell. Solid StateIonics,1999,120(1–4),75-84.
    [66] Goodenough J. B., Huang Y.-H. Alternative anode materials for solid oxide fuelcells. Journal of Power Sources,2007,173(1),1-10.
    [67] Wan J., Goodenough J. B., Zhu J. H. Nd2-xLaxNiO4+, a mixed ionic/electronicconductor with interstitial oxygen, as a cathode material. Solid State Ionics,2007,178(3–4),281-286.
    [68] Chen K., Jiang S. P. Failure mechanism of (La,Sr)MnO3oxygen electrodes of solidoxide electrolysis cells. International Journal of Hydrogen Energy,2011,36(17),10541-10549.
    [69] Van den Bossche M., Matthews R., Lichtenberger A., etc. Insights into the fueloxidation mechanism of La0.75Sr0.25Cr0.5Mn0.5O3SOFC anodes. Journal of TheElectrochemical Society,2010,157(3), B392-B399.
    [70] Shao Z., Haile S. M. A high-performance cathode for the next generation ofsolid-oxide fuel cells. Nature,2004,431(7005),170-173.
    [71] Shao Z., Haile S. M., Ahn J., etc. A thermally self-sustained micro solid-oxidefuel-cell stack with high power density. Nature,2005,435(7043),795-798.
    [72] Lee C.-W., Behera R. K., Wachsman E. D., etc. Stoichiometry of the LaFeO3(010)surface determined from first-principles and thermodynamic calculations. PhysicalReview B,2011,83(11),115418.
    [73] Hajimolana S. A., Soroush M. Dynamics and control of a tubular solid-oxide fuelcell. Industrial&Engineering Chemistry Research,2009,48(13),6112-6125.
    [74] Slack G. A. In crc handbook of thermoelectrics ch.(ed. Rowe, D. M.),(CRC,1995).34.
    [75] Dubey N., Leclerc M. Conducting polymers: Efficient thermoelectric materials.Journal of Polymer Science Part B: Polymer Physics,2011,49(7),467-475.
    [76] Vining C. B. An inconvenient truth about thermoelectrics. Nature Materials,2009,8(2),83-85.
    [77] Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nature Materials,2008,7(2),105-114.
    [78] Majumdar A. Thermoelectric devices: Helping chips to keep their cool. NatureNanotechnology,2009,4(4),214-215.
    [79] Desai C., Jani M., SoniP., etc. Vicker’s microhardness of Bi1xSbx(x=0.05–0.30)crystals. Journal of Materials Science,2009,44(13),3504-3507.
    [80] Ashida M., Hamachiyo T., Hasezaki K., etc. Texture of bismuth telluride-basedthermoelectric semiconductors processed by high-pressure torsion. Journal ofPhysics and Chemistry of Solids,2009,70(7),1089-1092.
    [81] Sugiura K., Iwata T., Nakano H., etc.[Zr0.72Y0.28]Al4C4: A new member of thehomologous series (MC)/(T4C3)m(M=Zr, Y and Hf, T=Al, Si and Ge). Journal ofSolid State Chemistry,2009,182(7),1619-1623.
    [82] Sotelo A., Torres M. A., Constantinescu G., etc. Effect of Ag addition on themechanical and thermoelectric performances of annealed Bi2Sr2Co1.8Oxtexturedceramics. Journal of the European Ceramic Society,2012,32(14),3745-3751.
    [83] Tishchenko A., Sukhoruchko O. Metal-monocrystal BiSb point contact detector formm wave range. International Journal of Infrared and Millimeter Waves,2005,26(1),71-78.
    [84] Wang Y., Rogado N. S., Cava R. J., etc. Spin entropy as the likely source ofenhanced thermopower in NaxCo2O4. Nature,2003,423(6938),425-428.
    [85] Phapale S., Mishra R., Mishra P. K. Standard enthalpy of formation of NaxCoO2system. Journal of Alloys and Compounds,2012,540,62-66.
    [86] Song Y., Nan C.-W. High temperature transport properties of Ag-added(Ca0.975La0.025)3Co4O9ceramics. Physica B: Condensed Matter,2011,406(14),2919-2923.
    [87] Zhang F. P., Zhang X., Lu Q. M., etc. Effects of Pr doping on thermoelectrictransport properties of Ca3xPrxCo4O9. Solid State Sciences,2011,13(7),1443-1447.
    [88] Van Nong N., Pryds N., Linderoth S., etc. Enhancement of the thermoelectricperformance of p-type layered oxide Ca3Co4O9+through heavy doping andmetallic nanoinclusions. Advanced Materials,2011,23(21),2484-2490.
    [89] Kleinke H. New bulk materials for thermoelectric power generation: Clathratesand complex antimonides. Chemistry of Materials,2009,22(3),604-611.
    [90] Zheng J.-c. Recent advances on thermoelectric materials. Frontiers of Physics inChina,2008,3(3),269-279.
    [91] Xi H., Luo L., Fraisse G. Development and applications of solar-basedthermoelectric technologies. Renewable and Sustainable Energy Reviews,2007,11(5),923-936.
    [92] Maciá E. Theoretical prospective of quasicrystals as thermoelectric materials.Physical Review B,2001,64(9),094206.
    [93] Huang Y.-H., Dass R. I., Xing Z.-L., etc. Double perovskites as anode materials forsolid-oxide fuel cells. Science,2006,312(5771),254-257.
    [94] Huang Y.-H., Dass R. I., Denyszyn J. C., etc. Synthesis and characterization ofSr2MgMoO6. Journal of The Electrochemical Society,2006,153(7),A1266-A1272.
    [95] Wang W., Jiang Y., Niu M., etc. Auto-ignition route to thermoelectric oxideNaxCo2O4powder with high compactibility. Powder Technology,2008,184(1),25-30.
    [96] Li N., Jiang Y., Li G., etc. Self-ignition route to ag-doped Na1.7Co2O4and itsthermoelectric properties. Journal of Alloys and Compounds,2009,467(1–2),444-449.
    [97] Iwasaki K., Yamane H., Kubota S., etc. Power factors of Ca3Co2O6andCa3Co2O6-based solid solutions. Journal of Alloys and Compounds,2003,358(1–2),210-215.
    [98] Goncalves L. M., Couto C., Alpuim P., etc. Thermoelectric microstructures ofBi2Te3/Sb2Te3for a self-calibrated micro-pyrometer. Sensors and Actuators A:Physical,2006,130–131,346-351.
    [99] Kim T.-S., Chun B. S., Lee J. K., etc. Thermoelectric properties of gas atomizedp-type Sb2Te3–25%Bi2Te3alloys. Journal of Alloys and Compounds,2007,434–435,710-713.
    [100] Kim T.-S., Kim I.-S., Kim T.-K., etc. Thermoelectric properties of p-type25%Bi2Te3+75%Sb2Te3alloys manufactured by rapid solidification and hotpressing. Materials Science and Engineering: B,2002,90(1–2),42-46.
    [101] Moon C., Shin S., Kim D., etc. Microstructure and thermoelectric properties ofp-type Bi2Te3–Sb2Te3alloys produced by rapid solidification and spark plasmasintering. Journal of Alloys and Compounds,2010,504, Supplement1,S504-S507.
    [102] Zhao L. D., Zhang B. P., Li J. F., etc. Enhanced thermoelectric and mechanicalproperties in textured n-type Bi2Te3prepared by spark plasma sintering. Solid StateSciences,2008,10(5),651-658.
    [103] Navrátil J., Laufek F., Plechá ek T., etc. Synthesis, crystal structure andthermoelectric properties of the ternary skutterudite Fe2Pd2Sb12. Journal of Alloysand Compounds,2010,493(1–2),50-54.
    [104] Peng J., Yang J., Song X., etc. Effect of Fe substitution on the thermoelectrictransport properties of CoSb3-based skutterudite compound. Journal of Alloys andCompounds,2006,426(1–2),7-11.
    [105] Caillat T., Fleurial J. P., Borshchevsky A. Bridgman-solution crystal growth andcharacterization of the skutterudite compounds CoSb3and RhSb3. Journal ofCrystal Growth,1996,166(1–4),722-726.
    [106] Ito M., Nagai H., Katsuyama S., etc. Effects of Ti, Nb and Zr doping onthermoelectric performance of β-FeSi2. Journal of Alloys and Compounds,2001,315(1–2),251-258.
    [107] Qu X., Wang W., Liu W., etc. Antioxidation and thermoelectric properties of ZnOnanoparticles-coated β-FeSi2. Materials Chemistry and Physics,2011,129(1–2),331-336.
    [108] St hrer U., Voggesberger R., Wagner G., etc. Sintered FeSi2for thermoelectricpower generation. Energy Conversion and Management,1990,30(2),143-147.
    [109] Terasaki I.1.09-thermal conductivity and thermoelectric power ofsemiconductors. in Comprehensive semiconductor science and technology,Editors-in-Chief: Pallab B,Roberto F,Hiroshi K, Editors.2011, Elsevier:Amsterdam. p.326-358.
    [110] Park K., Jang K. U., Kwon H. C., etc. Influence of partial substitution of Cu for Coon the thermoelectric properties of NaCo2O4. Journal of Alloys and Compounds,2006,419(1–2),213-219.
    [111] Kurosaki K., Muta H., Uno M., etc. Thermoelectric properties of NaCo2O4. Journalof Alloys and Compounds,2001,315(1–2),234-236.
    [112] Sales B. C., Jin R., Affholter K. A., etc. Magnetic, thermodynamic, and transportcharacterization of Na0.75CoO2single crystals. Physical Review B,2004,70(17),174419.
    [113] Liu C. J., Liao J. Y., Wu T. W., etc. Preparation and transport properties of aqueoussol-gel synthesized NaCo2O4. Journal of Materials Science,2004,39(14),4569-4573.
    [114] Sugiyama J., Brewer J. H., Ansaldo E. J., etc. Electron correlation in thetwo-dimensional triangle lattice of NaxCoO2. Physical Review B,2004,69(21),214423.
    [115] Rivadulla F., Zhou J. S., Goodenough J. B. Chemical, structural, and transportproperties of Na1-xCoO2. Physical Review B,2003,68(7),075108.
    [116] Nagira T., Ito M., Katsuyama S., etc. Thermoelectric properties of(Na1yMy)xCo2O4(m=K, Sr, Y, Nd, Sm and Yb; y=0.01~0.35). Journal of Alloysand Compounds,2003,348(1–2),263-269.
    [117] Itoh M., Nagawatari M.59Co NMR study of two-dimensional cobalt oxide withlarge thermoelectric power NaCo2O4. Physica B: Condensed Matter,2000,281–282,516-517.
    [118] Gautier J. L., Trollund E., Ríos E., etc. Characterization of thin CuCo2O4filmsprepared by chemical spray pyrolysis. Study of their electrochemical stability byex situ spectroscopic analysis. Journal of Electroanalytical Chemistry,1997,428(1–2),47-56.
    [119] Stoyanova D., Christova M., Dimitrova P., etc. Copper–Cobalt oxide spinelsupported on high-temperature aluminosilicate carriers as catalyst for Co–O2andCO–NO reactions. Applied Catalysis B: Environmental,1998,17(3),233-244.
    [120] Saadi S., Bouguelia A., Trari M. Photoassisted hydrogen evolution over spinelCuM2O4(m=Al, Cr, Mn, Fe and Co). Renewable Energy,2006,31(14),2245-2256.
    [121] Sharma Y., Sharma N., Rao G. V. S., etc. Lithium recycling behaviour ofnano-phase-CuCo2O4as anode for lithium-ion batteries. Journal of Power Sources,2007,173(1),495-501.
    [122] Yan J., Yang H., Tang Y., etc. Synthesis and photocatalytic activity ofCuyFe2yO4–CuCo2O4nanocomposites for H2evolution under visible lightirradiation. Renewable Energy,2009,34(11),2399-2403.
    [123] Pei J., Chen G., Li X., etc. Molten salt synthesis and thermoelectric properties ofCa2Co2O5. Materials Letters,2009,63(17),1459-1461.
    [124] Zhang Y., Zhang J., Lu Q. Rapid synthesis of Ca2Co2O5textured ceramics bycoprecipitation method and spark plasma sintering. Journal of Alloys andCompounds,2005,399(1–2),64-68.
    [125] Li S., Funahashi R., Matsubara I., etc. Synthesis and thermoelectric properties ofthe new oxide materials Ca3-xBixCo4O9+(0.0    [126] Dong Z., Kennedy S. J., Wu Y. Electrospinning materials for energy-relatedapplications and devices. Journal of Power Sources,2011,196(11),4886-4904.
    [127] Fu Y., Zhao B., Huang Y., etc. Spin-glass and spin-fluctuation in Mo-dopedCa3Co4O9system. Solid State Communications,2011,151(13),933-937.
    [128] Miyazaki Y. Crystal structure and thermoelectric properties of the misfit-layeredcobalt oxides. Solid State Ionics,2004,172(1–4),463-467.
    [129] An J., Nan C. W. Electronic structure and transport of Ca3Co2O6and Ca3CONiO6.Solid State Communications,2004,129(1),51-56.
    [130] Broto J. M., Raquet B., Baibich M. N., etc. Electronic transport in one-dimensionalCa3Co2O6single crystal. Microelectronics Journal,2005,36(10),900-906.
    [131] Chang T.-R., Jeng H.-T., Hsue C.-S. Electronic structures of quasi-one-dimensionalferrimagnetic insulator Ca3Co2O6. Computer Physics Communications,2011,182(1),93-95.
    [132] Eyert V., Laschinger C., Kopp T., etc. Extended moment formation and magneticordering in the trigonal chain compound Ca3Co2O6. Chemical Physics Letters,2004,385(3–4),249-254.
    [133] Fouad O. A., Hassan A. M., Abd El-Wahab H., etc. Synthesis, characterization andapplication of some nanosized mixed metal oxides as high heat resistant pigments:Ca2CuO3, Ca3Co2O6, and NiSb2O6. Journal of Alloys and Compounds,2012,537,165-170.
    [134] Goko T., Nomura N., Takeshita S., etc. Pressure effect on magnetic transitions inone-dimensional Ca3Co2O6. Journal of Magnetism and Magnetic Materials,2004,272–276, Supplement(0), E633-E634.
    [135] Hervoches C. H., Fjellv g H., Kjekshus A., etc. Structure and magnetism ofrare-earth-substituted Ca3Co2O6. Journal of Solid State Chemistry,2007,180(2),628-635.
    [136] Iwasaki K., Yamane H., Takahashi J., etc. Influences of Bi and Cu substitutions onthe power factor of Ca3Co2O6. Journal of Physics and Chemistry of Solids,2005,66(2–4),303-307.
    [137] Laschinger C., Kopp T., Eyert V., etc. Microscopic derivation of magnetic couplingin Ca3Co2O6. Journal of Magnetism and Magnetic Materials,2004,272–276, Part2,974-975.
    [138] Lu D., Chen G., Pei J., etc. Effect of erbium substitution on thermoelectricproperties of complex oxide Ca3Co2O6at high temperatures. Journal of RareEarths,2008,26(2),168-172.
    [139] Maignan A., Hébert S., Martin C., etc. One dimensional compounds with largethermoelectric power: Ca3Co2O6and Ca3CoMoO6with M=Ir4+and Rh4+.Materials Science and Engineering: B,2003,104(3),121-125.
    [140] Mikami M., Funahashi R. The effect of element substitution on high-temperaturethermoelectric properties of Ca3Co2O6compounds. Journal of Solid StateChemistry,2005,178(5),1670-1674.
    [141] Moubah R., Colis S., Gallart M., etc. Thickness-dependent optical band gap inone-dimensional Ca3Co2O6nanometric films. Journal of Luminescence,2012,132(2),457-460.
    [142] Mukherjee K., Sampathkumaran E. V. Synthesis of fine particles of a geometricallyfrustrated spin-chain system Ca3Co2O6through a pyrophoric route and its magneticbehavior. Journal of Alloys and Compounds,2010,498(1),1-4.
    [143] Sampathkumaran E. V., Hiroi Z., Rayaprol S., etc. Heat-capacity anomalies in thepresence of high magnetic fields in the spin-chain compound, Ca3Co2O6. Journalof Magnetism and Magnetic Materials,2004,284, L7-L11.
    [144] Yamada K., Honda Z., Luo J., etc. Field induced spin transitions and largemagnetoresistance in the quasi-one-dimensional magnet Ca3Co2O6. Journal ofAlloys and Compounds,2006,423(1–2),188-190.
    [145] Marrony M. Fuel cells–overview|lifetime prediction. in Encyclopedia ofelectrochemical power sources, Editor-in-Chief: Jürgen G, Editor.2009, Elsevier:Amsterdam. p.297-308.
    [146] Stoynov Z. B., Vladikova D. E. Measurement methods|electrochemical:Impedance spectroscopy. in Encyclopedia of electrochemical power sources,Editor-in-Chief: Jürgen G, Editor.2009, Elsevier: Amsterdam. p.632-642.
    [147] Chan S. H., Khor K. A., Xia Z. T. A complete polarization model of a solid oxidefuel cell and its sensitivity to the change of cell component thickness. Journal ofPower Sources,2001,93(1–2),130-140.
    [148] Demircan O., Zhang W., Xu C., etc. The effect of overpotential on performancedegradation of the solid oxide fuel cell Ni/YSZ anode during exposure to syngaswith phosphine contaminant. Journal of Power Sources,2010,195(10),3091-3096.
    [149] Feng M., Goodenough J. B., Huang K., etc. Fuel cells with doped lanthanumgallate electrolyte. Journal of Power Sources,1996,63(1),47-51.
    [150] Fukunaga H., Ihara M., Sakaki K., etc. The relationship between overpotential andthe three phase boundary length. Solid State Ionics,1996,86–88, Part2,1179-1185.
    [151] Nam J. H., Jeon D. H. A comprehensive micro-scale model for transport andreaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta,2006,51(17),3446-3460.
    [152] Riess I., G dickemeier M., Gauckler L. J. Characterization of solid oxide fuel cellsbased on solid electrolytes or mixed ionic electronic conductors. Solid State Ionics,1996,90(1–4),91-104.
    [153] Sales B. C., Chakoumakos B. C., Mandrus D., etc. Atomic displacementparameters and the lattice thermal conductivity of clathrate-like thermoelectriccompounds. Journal of Solid State Chemistry,1999,146(2),528-532.
    [154] Xu C. Effects of particle size and matrix grain size and volume fraction of particleson the toughening of ceramic composite by thermal residual stress. CeramicsInternational,2005,31(4),537-542.
    [155] Valle R., Lévêque D., Parlier M. Optimizing substrate and intermediate layersgeometry to reduce internal thermal stresses and prevent surface crack formation in2-d multilayered ceramic coatings. Journal of the European Ceramic Society,2008,28(4),711-716.
    [156] Noda N.-A., Yamada M., Sano Y., etc. Thermal stress for all-ceramics rolls used inmolten metal to produce stable high quality galvanized steel sheet. EngineeringFailure Analysis,2008,15(4),261-274.
    [157] Jun Z., Xing A., Chuanzhen H., etc. An analysis of unsteady thermal stresses in afunctionally gradient ceramic plate with symmetrical structure. CeramicsInternational,2003,29(3),279-285.
    [158] Hattali M. L., Mesrati N., Tréheux D. Electric charge trapping, residual stressesand properties of ceramics after metal/ceramics bonding. Journal of the EuropeanCeramic Society,2012,32(4),717-725.
    [159] Suhir E. Approximate evaluation of the elastic interfacial stresses in thin films withapplication to high-Tcsuperconducting ceramics. International Journal of Solidsand Structures,1991,27(8),1025-1034.
    [160] Withers P. J., Bennett J. A., Kuroda M. Interfacial shear strength behaviour ofTi/SiC metal matrix composites at room and elevated temperature. Acta Materialia,2010,58(18),6090-6103.
    [161] Stevenson J. W., Armstrong T. R., McCready D. E., etc. Processing and electricalproperties of alkaline earth‐doped lanthanum gallate. Journal of TheElectrochemical Society,1997,144(10),3613-3620.
    [162] Datta P., Majewski P., Aldinger F. Thermal expansion behaviour of Sr-andMg-doped LaGaO3solid electrolyte. Journal of the European Ceramic Society,2009,29(8),1463-1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700