用户名: 密码: 验证码:
阳极支撑型固体氧化物燃料电池内多物理场传递过程的机理与数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种工作在600-1000℃,采用固态陶瓷材料作为传导氧离子电解质的能源转换装置。SOFC具有效率高、污染小、输出功率大、适用燃料广泛、只有气固两相介质、工作原理简单等优点,被认为是最有发展前途的燃料电池之一。阳极支撑型平板SOFC具有较厚的阳极,和相对较低的工作温度。本文建立的三维稳态的阳极支撑型SOFC单电池模型,可描述发生在SOFC内的多物理场过程,其中包括:甲烷蒸汽重整(MSR)、水汽转换反应(WGSR)和电化学反应,以及质量、动量、热量、电荷(电子和氧离子)等传递过程。通过商业CFD软件(Ansys/Fluent12.1)的模拟计算,辅以电流密度、电压与功率密度等试验数据验证,得到相对合理的计算结果,并分析和讨论温度、多孔介质参数,燃料种类、气体通道分布等因素对SOFC中宏观气体反应与传热传质过程的影响。此外以42步单向基元反应机理描述了发生在SOFC多孔阳极上催化材料Ni表面的内重整反应,在表面催化反应的层面上分析了SOFC阳极中多物理场之间的耦合关系。
     通过分析发现,如果用单电池的宏观气体反应模型,温度由进口侧沿主流道方向升高,其中出口侧靠近电解质的区域温度最高;阳极中的内重整反应主要发生在阳极顶部靠近气体通道的区域,为电化学反应提供了足够的H2同时消耗了电化学产生的H2O和热量;800℃时CH4的最大转换率只有59.1%,同时H2摩尔分数减少10%,电化学反应较强;电化学反应集中在电解质附近的区域,其中阴极与阳极电化学反应层分别为10um和20um; SOFC中电流密度和电压分布不均匀,受到气体通道、不同区域的温度、气体浓度分布等影响;在给定0.7V的操作电压下,SOFC中总的过电势损失约0.3V,其中阳极和阴极侧的活化过电压分别占70%和20%;操作温度提高50℃,离子和电子电流密度(Iion和Ie)分别提高37.5%和28.6%,电化学和内重整反应加强;多孔介质单位体积表面积提高10倍,电流密度增加53%,电化学反应层厚度减半,活化过电压损失减少40%;如果燃料成分中CH4摩尔分数减少90%, MSR减弱、WGSR增强,温度升高6-10℃;表面催化反应计算结果模型显示Nis(65%)、COS(26%)、Hs(7%)和Os(1%)是几种主要的表面成分;温度增加、多孔介质渗透率增大都会促进Nis增加,HsCOs等下降:不同的基元反应对整个内重整反应的温度、气体分布等会产生不同程度的影响。
Solid oxide fuel cell (SOFC) is one kind of fuel cells with ceramic materials as electrolyte, which can work between600-1000℃. There are many advantages associated with SOFCs which has been recognized as one of the most promising fuel cells in the future, such as high efficiency, low pollution, high power output, flexible fuel supply, simple operational principles. Anode-supported plannar SOFC with thick anode layer can work in relative lower temperature. A3D steady CFD model of a single cell unit has been developed to evaluate the multi-physics processes in SOFCs, including methane steam reforming (MSR), water-gas shift reaction (WGSR) and electrochemical reactions, and the transport processes of mass, momentum, heat and charge (ion/electron). The commercial CFD code Ansys/Fluent12.1has been employed for numerical simulation calculation, and the experimental data of current density, voltage, power density have been used to validate the models and the calculation results. A parameter study is conducted to analyse the effects on the reactions and the transport processes by changing some conditions, such as temperature, porous structures, fuel compositon and gas channel arrangment in SOFCs. Similarly, a3D steady CFD model is developed for the SOFC anode by implementing the42-step elementary reaction mechanism to evaluate the catalytic reactions between the gases and the catalyst (Ni) in the anode porous structure, based on the internal reforming reactions coupled with mass and heat transfer processes.
     According to the prediction of the globle gas reaction model in the single cell, the temperature distribution increases along the main flow direction from the inlet, and a maximum value occurs at the electrolyte near the outlet. The internal reforming reactions, which provide H2and consume H2O and heat from the electrochemical reaction near the electrolyte, are stronger in the anode layer close to the fuel channel. The conversion rate of CH4is about59%, while the molar fraction of hydrogen XH2decreases by10%at800℃, which means that the electrochemical reaction is stronger than internal reforming reactions; Regarding to the electrochemical reaction which occurrs in the active layer near the electrolyte, its thickness is about20um in the anode side and10um in the cathode side. The distribution of the current density and the potential is not even, which has been affected by the gas channel, temperature and gas distribution; The total potential losses is0.3V, in which the active overpotential in the anode and the cathode side is about70%and20%, respectively, when the operational voltage is set to0.7V. The current density Iion and Ic increase37.5%and28.6%, respectively, when the temperature is50℃higher. It means that the reforming and electrochemical reactions are stronger; When the permeability is10times bigger, the current density increases about53%, the active overpotential decreases40%, and the thickness of reaction region decreases, the rate of MSR decreases, working temperature becomes high (6-10℃), and the rate of WGSR increases when the molar fraction of CH4has been decreased to10%; There are four major surface species identified, including Nis(65%), COS(26%), Hs(7%) and Os(1%), as predicted by the catalytic surface reaction model; high operating temperature and permeability can improve the reactions towards to the desperation reactions to release more Nis while consume more Hs and COS; It is also found that the temperature, gas species can be affected by each elementary reaction steps.
引文
[1]毛宗强 编著.燃料电池——可再生能源丛书.北京:化学工业出版社,2005.
    [2]Phillip Hurley. Build your own fuel cells. Wheelock:Wheelock Mountain Publications,2002.
    [3]詹姆斯·拉米尼,安德鲁·迪克斯 著.朱红 译.衣宝廉 校.燃料电池系统第二版.北京:科学出版社,2005.
    [4]Suddhasatwa Basu. Recent trends in fuel cell science and technology. New York:Springer and New Delhi:Anamaya Publishers,2007.
    [5]Gregor Hoogers. Fuel cell technology handbook. Boca Raton. Florida:CRC Press LLC,2003.
    [6]EG&G Technical Services, Inc. Fuel cell handbook (7th edition). Morgantown, West Virginia:U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory,2004.
    [7]James Lanninie., Andrew Dicks. Fuel cell systems explained (2rd edition). The Atrium, Southern gate, Chichester, West Sussex, England:John Wiley & Sons Ltd.2003.
    [8]Frano Barbir. Fuel cell powered utility vehicles. Proceedings of the European fuel cell forum portable fuel cells conference, Lucerne,1999:113-121.
    [9]J. C. Cross. Hydrocarbon reforming for fuel cell application. Proceedings of the European fuel cell forum portable fuel cells conference. Lucerne,1999:205-213.
    [10]S. J. Lee. Effects of nafion impregnation on performance of PEMFC electrodes. Electrochimica Acts, 1998b,43(24):3693-3701.
    [11]Price A., Bartley S., Male S. and Cooley G. Anovel approach to utility scale energy storage. Power Engineering Journal,1999,13(3):122-129.
    [12]C. A. Vincent and B. Scrosati. Modern batteries 2nd,1997:Arnold London.
    [13]J. C. Yang, Y. S. Park, S.H. Seo and J.S. Noh. Development of a 50kw PAFC power generation system, Journal of Power Sources,2002,106(1-2):68-75.
    [14]K. Foger, B. Godfrey and T. Pham. Development of 25kw SOFC system. Fuel cells bulletin No, ISSN 1350-4789, Amsterdam:Elsevier Science,1999,9-11.
    [15]K. Hassman. SOFC power plants, Westinghouse approach. Fuel Cells,2001,1(1):78-84.
    [16]K. D. Pointon. Review of work on internal reforming in the solid oxide fuel cell. Harwell UK:ETSU report F/01/00121/REP, AEA Technology,1997.
    [17]P. J. Kortbeek and R. Ottervanger. Developing advanced DIR-MCFC co-generation for clean and competitive power. California:Abstracts of the fuel cell seminar,1998.
    [18]M. Feng, J. Goodenough, K. Huang, and C. Milliken. Journal of Power Sources,1996,64:47.
    [19]T. Ishihara, H. Matsuda, and Y. Takita. Production line for planar SOFC ceramics:from laboratory to pre-pilot scale manufacturing. Fuel Cell Bulletin No., ISSN-1464-2859, Amsterdam:Elsevier Science,1994, 5-7.
    [20]M. Sahibzada, R. A. Rudkin, B. C. H. Steele, I. Metcalfe, and J. A. Kilner. Evaluation of PEN structures incorporating supported thick film Ce0.9Gd0.1O1.95 electrolytes. Proceedings of the 5th International Symposium on Solid Oxide Fuel Cells (SOFC-V),1997:244-253.
    [21]Subhash C. Singhal. Kevin Kendall著.韩敏芳,蒋先锋译.彭苏萍校.高温固体氧化物燃料电池.ISBN:978-7-030-17751-3.北京:科学出版社,2007.
    [22]Tatsumi Ishihara著.王崇臣,冯利利,汪长征,等译.用于制造固体氧化物燃料电池的钙钛石型氧化物.ISBN:978-7-111-39067-1.北京:机械工业出版社,2012.
    [23]T. X. Ho, P. Kosinski, A. C. Hoffmann, A. Vik. Numerical analysis of a planar anode-supported SOFC with composite electrodes. International Journal of Hydrogen Energy,2009,34:3488-3499.
    [24]H. Minh, A. Anumakonda, B. Chung, R. Doshi, J. Ferall, Lear G. Montgomery K., ong E., L. Schipper and J. Yamanis. High performance, reduced-temperature solid oxide fuel cell technology. Proceedings of the fuel cell seminar, Plam Springs, CA, US,1998,16-19.
    [25]J. M. Ralpoh, A. C. Schoeler, and M. Krumpelt. Materials for lower temperature SOFC, Journal of Materials Science,2001,36:1161-1172.
    [26]Jinliang Yuan, Yuan Huang, Bengt Sunden and Wei Guo Wang. Analysis of parameter effects on chemical reaction coupled transport phenomena in SOFC anodes. Heat Mass Transfer,2009,45:471-484.
    [27]Jinliang Yuan, Bengt Sunden. Analysis of chemically reacting transport phenomena in an anode duct of intermediate temperature SOFCs. Journal of Fuel Cell Science Technology,2006,3:687-701.
    [28]P. Aguiar, C.S. Adjiman, N.P. Brandon. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I:model-based steady-state performance. Journal of Power Sources. 2004,138:120-136.
    [29]Vinod M. Janardhanan, Olaf Deutschmann. Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane. Chemical Engineering Science,2007,62:5473-5486.
    [30]D.A. Noren, M.A. Hussain, W.M. Ashri, W,Daud, M. Soroush, A. Shamiri. Renewable and Sustainable Energy Reviews.2011,15:1893-1917.
    [31]J.O.M. Bockris, A.K.N. Reddy. Modern Electrochemistry. New York:1973, Plenum Publishing Corporation.
    [32]Florian P. Nagel, Tilman J. Schildhauer, Serge M.A. Biollaz, Samuel Stucki. Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases-A sensitivity analysis. Journal of Power Sources.2008,184:129-142.
    [33]Vinod M. Janardhanan, Vincent Heuveline, Olaf Deutschmann. Three-phase boundary length in solid-oxide fuel cells:A mathematical model. Journal of Power Sources,2008,178:368-372.
    [34]M. M. Hussain, X. Li, I. Dincer. Mathematical modeling of transport phenomena in porous SOFC anodes. International Journal of Thermal Sciences.2007,46:48-86.
    [35]W. G. Bessier, S. Gewies, M. Vogler. A new framework for pphysically based modeling of solid oxide fuel cells. Electrochim. Acta.2007,53:1782-1800.
    [36]X. Xue, J. Tang, N. Sammes, Y. Du. Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects. Journal of Power Sources,2005,142:211-222.
    [37]J. R. Izzo, A. A. Peracchio, W. K. S. Chiu. Modeling of gas transport through a tubular solid oxide fuel cell and the porous anode layer. Journal of Power Sources,2008,176:200-206.
    [38]D. L. Damm, A. G. Fedorov. Reduced-order transient thermal modeling for SOFC heating and cooling. Journal of Power Sources,2006,159:956-967.
    [39]P. lora, P. Aguiar, C. S. Adjimanb, N. P. Brandon. Comparison of two IT DIR-SOFC models:impact of variable thermodynamic physical, and flow properties. Steady-state and dynamic analysis. Chemical Engineering Science,2005,60:2963-2975.
    [40]C. Stiller, B. Thorud, S. Seljebo, O. Mathisen, H. Karoliussen, O. Bolland. Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. Journal of Power Sources, 2005,141:227-240.
    [41]J. R. Ferguson, J. M. Fiard, R. Herbin. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources,1996,58:109-122.
    [42]C. H. Cheng, Y. W. Chang, C. W. Hong. Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell. Journal of Fuel Cell Science and Technology,2005,2:219-225.
    [43]U. Pasaogullari, C. Y. Wang. Computational fluid dynamics modeling of solid oxide fuel cells. Shanghai:Dokiya editors. Proceedings of SOFC-Ⅷ,2003,1403-1412.
    [44]N. Autissier, D. Larrain, J. Van Herie, D. Favrat. CFD simulation tool for solid oxide fuel cells. Journal of Power Sources,2004,131:131-139.
    [45]Thinh X. Ha, Pawel Kosinski, Alex C. Hoffmann, Arild Vik. Modeling of transport, chemical and electrochemical phenomena in a cathode-supported SOFC. Chemical Engineering Science,2009, 64:3000-3009.
    [46]Thinh X. Ho, Pawel Kosinski, Alex C. Hoffmann. Arild Vik. Numerical modeling of solid oxide fuel cells. Chemical Engineering Science,2008,63:5356-5365.
    [47]Martin Andersson, Jinliang Yuan, Bengt Sunden. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy,2010, 87:1461-1476.
    [48]S. Kakac, A. Pramuanjaroenkij, X. Y. Zhou. A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy,2007,32:761-786.
    [49]D. Bhattacharyya, R. Rengaswarmy. A review of solid oxide fuel cell (SOFC) dynamic models. Industrial and Engineering Chemistry,2009,48:6068-6086.
    [50]M. Bavarian, M. Soroush, I. G. Kevrekidis, J. B. Benziger. Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells:a review. Industrial and Engineering Chemistry Research, 2010.
    [51]S. Ahmad Hajimolana, M. Azlan Hussain, W.M. Ashri Wan Daud, M. Soroush, A. Shamiri. Mathematical modeling of solid oxide fuel cells:A review. Renewable and Sustainable Energy Reviews, 2011,15:1893-1917.
    [52]Martine Andersson, Jinliang Yuan, Bengt Sunden. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy,2010, 87:1461-1476.
    [53]Yongping Yang, Xiaoze Du, Lijun Yang, Yuan Huang, Haizhen Xian. Investigation of methane steam reforming in planar porous support of solid oxide fuel cell. Applied Thermal Engineering,2009, 29:1106-1113.
    [54]Y. Kang, J. Li, G. Cao, H. Tu, J. Li, J. Yang. One-dimensional dynamic modeling and simulation of a planar direct internal reforming solid oxide fuel cell. Chinese Journal of Chemical Engineering,2009, 17:304-317.
    [55]D. Blaylock, W. T. Ogura, W. H. Green, G. J. O. Beran. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions. Journal of Physical Chemistry C,2002,209:265-384.
    [56]Ethan S. Hecht, Gaurav K. Gupta, Huayuan Zhu, Anthony M. Dean, Robert J. Kee, Luba Maier, Olaf Deutschmann. Methane reforming kinetics within a Ni-YSZ SOFC anode support. Applied catalysis A: General,2005,295:40-51.
    [57]Vinod M. Janardhanan, Olaf Deutschmann. CFD analysis of a solid oxide fuel cell with internal reforming:Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources,2006,162:1192-1202.
    [58]P.Hofmann, K.D.Panopoulos, L.E.Fryda, E.Kakaras. Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model. Energy,2009,34:2151-2157.
    [59]D. Wayne Blaylock, Teppei Ogura, William H. Green, Gregory J. O. Beran. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions. Journal of Physical Chemistry C.2009,113(12):4898-4908.
    [60]Yixiang Shi, Chen Li, Ningsheng Cai. Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources,2011,196:5526-5537.
    [61]Yixiang Shi, Ningsheng Cai, Chen Li, Cheng Bao, Eric Croiset, Jiqin Qian, qiang Hu, Shaorong Wang. Modeling of an anode-supported Ni-YSZ/Ni-ScSZ/ScSZ/LSM-ScSZ multiple layers SOFC cell Part II. Simulations and discussion. Journal of Power Sources,2007,172:246-252.
    [62]Yixiang Shi, Ningsheng Cai, Chen Li. Numerical modeling of an anode-supported SOFC button cell considering anodeic surface diffusion. Journal of Power Sources,2007,164:639-648.
    [63]Florian P. Nagel, Tilman J. Schildhauer, Serge M.A. Biollaz, Samuel Stucki. Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases-A sensitivity analysis. Journal of Power Sources,2008,184:129-142.
    [64]D.Mogensen, J.D. Grunwaldt, P.V. Hendriksen, K. Dam-Johansen, J.U. Nielsen. Internal steam reforming in solid oxide fuel cells:Status and opportunities of kinetic studies and their impact on modeling. Journal of Power Sources,2011,196:25-38.
    [65]B.C.H. Steele, K..M. Hori, S. Uchino. Kinetic parameters influencing the performance of IT-SOFC composite electrodes. Solid State Ionics,2000,135:445-450.
    [66]Hajimolana S Ahmad, M. Soroush. Dynamics and control of a tubular solid-oxide fuel cell. Industrial & Engineering Chemistry,2009,48:6112-6125.
    [67]M. Ni, D. Y. C. Leung, M. K. H. Leung. Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. Energy Conversion and Management,2009,50:268-278.
    [68]Y. Qi, B. Huang, J. Luo. Dynamic modeling of a finite volume of solid oxide fuel cell:the effect of transport dynamics. Chemical Engineering Science,2006,61:6057-6076.
    [69]K. Nikooyeh, J. M. Hill.3D modeling of anode-supported planar SOFC with internal reforming of methane. Journal of Power Sources 2007,171:601-609.
    [70]R. Suwanwarangkul, E. Croiset, M. D. Pritzker, M. W. Fowler, P. L. Douglas, E. Entchev. Modeling of a cathode-supported bubular solid oxide fuel cell operating with biomass-derived synthesis gas. Journal of Power Sources,2007,166:386-399.
    [71]R. Suanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, M. A. Douglas. Performance comparison of Fick's, dusty-gas and Stefan-maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources,2003,122:9-18.
    [72]W. Lehnert, J. Meusinger, F. Thorn. Modeling of gas transport phenomena in SOFC anodes. Journal of Power Sources,2000,87:57-63.
    [73]V. M. Janardhanan. O. Deutschmann. Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane. Chemical Engineering Science,2007,62:5473-5486.
    [74]T. Aloui, K. Halouani. Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel. Applied Thermal Engineering,2007,27:731-731.
    [75]L. Wang, H. Zhang, S. Weng. Modeling and simulation of solid oxide fuel cell based on the volume-resistance characteristic modeling technique. Journal of Power Sources,2008,177:304-317.
    [76]P. Aguiar, C. S. Adjiman, N. P. Brandon. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. Ⅰ:model-based steady-state performance. Journal of Power Sources,2004, 138:120-136.
    [77]D. Sanchez, R. Chacartegui, A. Munoz, T. Sanchez. Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry. Journal of Power Sources,2006,154:145-152.
    [78]K. Ahmed, K. Foger. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells. Catalysis Today,2000,63:479-487.
    [79]P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou. Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics,2000,135:425-431.
    [80]P. Costamagna, P. Costa, V. Antonucci. Micro-modeling of solid oxide fuel cell electrodes. Electrochimica Acta,1998,43:375-394.
    [81]T. X. Ho, P. Kosinski, A. C. Hoffmann, A. Vik. Numerical analysis of a planar anode-supported SOFC with composite electrodes. International Journal of Hydrogen Energy,2009,34:3488-3499.
    [82]B. A. Haberman, J. B. Young. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer,2004,47:3617-3629.
    [83]U. Doraswami, N. Droushiotis, G. H. Kelsall. Modeling effects of current distributions on performance of micro-tubular hollow fiber solid oxide fuel cells. Electrochimica Acta,2010,55:3799-3778.
    [84]F. P. Nagel, T. J. Schildhauer, Sma Biollaz, S. Stucki. Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases-a sensitivity analysis. Journal of Power Sources, 2008,184:143-164.
    [85]N. F. Bessette, W. J. Wepfer. Prediction of on-design and off-design performance for a solid oxide fuel cell power module. Energy Conversion and Management,1996,37:281-293.
    [86]A. P. C. Salogni. Modeling of solid oxide fuel cells for dynamic simulations of integrated systems. Applied Thermal Engineering,2009,30:464-477.
    [87]M. M. Hussain, X. Li, I. Dincer. Mathematical modeling of planar solid oxide fuel cells. Journal of Power Sources,2006,161:1012-1022.
    [88]K. P. Recknagle, E. M. Ryan, B. J. Koeppel, L. A. Mahoney, M. A. Khaleel. Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks. Journal of Power Sources,2010,195:6637-6644.
    [89]N. Akhtar, S. P. Decent, K. Kendall. Numerical modeling of methane-powered micro-tubular, single-chamber solid oxide fuel cell. Journal of Power Sources,2010,195:7796-7807.
    [90]S. H. Chan, K. A. Khor, Z. T. Xia. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources,2001,93:130-140.
    [91]A. V. Virkar. Low-temperature anode-supported high power density solid oxide fuel cells with nano-structured electrodes. University of Utah,2000.
    [92]D. Sanchez, A. Munoz, T. Sanchez. On the effect of methane internal reforming modeling in solid oxide fuel cells. International Journal of Hydrogen Energy,2008,33:1834-1844.
    [93]H. Zhu, R. J. Kee. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources,2003,117:61-74.
    [94]D. H. Jeon. A comprehensive CFD model of anode-supported solid oxide fuel cells. Electrochimica Acta,2009,54:2727-2736.
    [95]J. H. Nam, D. H. Jeon, A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta,2006,51:3446-3460.
    [96]Y. Shi, N. Cai, C. Li, C. Bao, E. Croiset. Modeling of an anode-supported Ni-YSZ/Ni-ScSZ/ScSZ/ LSM-ScSZ multiple layers SOFC cell Part Ⅰ. Experiments, model development and validation. Journal of Power Sources,2007,172:235-245.
    [97]Y. Xie, X. Xue. Transient modeling of anode-supported solid oxide fuel cells. International Journal of Hydrogen Energy,2009,34:6882-6891.
    [98]J. M. Klein, Y. Bultel, S. Georges, M. Pons. Modeling of a SOFC fuelled by methane:from direct internal reforming to gradual internal reforming. Chemical Engineering Science,2007,62:1636-1649.
    [99]W. Jing, R. Fang, J. A. Khan, R. A. Dougal. Parameter setting and analysis of a dynamic tubular SOFC model. Journal of Power Sources,2006,162:316-326.
    [100]C. W. Tanner, A. V. Virkar. A simple model for interconnect design of planar solid oxide fuel cells. Journal of Power Sources,2003,113:44-56.
    [101]H.Y. Jung, W.S. Kim, H. Choi, H.C. Kim, J. Kim, H.W. Lee, J.H. Lee. Effect of cathode current-collecting layer on unit-cell performance of anode-supported solid oxide fuel cells. Journal of Power Sources,2006,155:145-151.
    [102]Vinod M. Janardhanan, Vincent Heuveline, Olaf Deutschmann. Three-phase boundary length in solid-oxide fuel cells:A mathematical model. Journal of Power Sources,2008,178:368-372.
    [103]D. F. Young, B. R. Munson, T. H. Okiishi. A brief introduction to fluid mechanics. New York, Chichester, Brisbane, Toronto, Singapore, Weinheim:Wiley; 1996.
    [104]X. Zhang, G. Li, J. Li, Z. Feng. Numerical study on electric characteristics of solid oxide fuel cells. Energy Conversion and Management,2007,48:977-989.
    [105]N. Q. Minh, T. Takahashi. Science and technology of ceramic fuel cells. Amsterdam:Elsevier,1995.
    [106]Junxiang Shi, Xingjian Xue. CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties. Electrochimica Acta,2010,55:5263-5273.
    [107]M.M. Hussain, X. Li, I. Dincer. Mathematical modeling of planar solid oxide fuel cells. Journal of Power Sources,2006,161:1012-1022.
    [108]S. G. Neophytides. The reversed flow operation of a crossflow solid oxide fuel cell monolith. Chemical Engineering Science,1999,54:4603-4613.
    [109]Larminie James, Dicks Andrew. Fuel cell systerms explained.3rd ed. Chichester, West Sussex:John Wiley & Sons Inc,2003.
    [110]Yihong Li, Randall Gemmen, Xingbo Liu. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. Journal of Power Sources,2010,195:3345-3358.
    [111]H. Mahcene, H. B. Moussa, H. Bouguettaia, D. Bechki, S. Babay, M. Meftah. Study of species, temperature distributions and the solid oxide fuel cells performance in a 2D model. International Journal of Hydrogen Energy, in press.
    [112]Y. Qi, B. Huang, K. Chuang. Dynamic modeling of solid oxide fuel cell:the effect of diffusion and inherent impedance. Journal of Power Sources,2005,150:32-47.
    [113]N. Autissier, D. Larrain, J. Van Herle, D. Favrat. CFD simulation tool for solid oxide fuel cells. Journal of Power Sources,2004,131:313-319.
    [114]T. X. Ho, P. Kosinski, A. C. Hoffmann, A. Vik. Numerical modeling of solid oxide fuel cells. Chemical engineering science,2008,63:5356-5365.
    [115]D. Bhattacharyya, R. Rengaswamy, C. Finnerty. Isothermal models for anode=supported tubular solid oxide fuel cells. Chemical Engineering Science,2007,62:4250-4267.
    [116]V. A. Danilov, M. O. Tade. A CFD-based model of a planar SOFC for anode flow field design. International Journal of Hydrogen Energy,2009,34:8998-9006.
    [117]M. A. Khaleel, Z. Lin, P. Singh, W. Surdoval, D. Collin. A finite element analysis modeling tool for solid oxide fuel cell development:coupled electrochemistry, thermal and flow analysis in MARC. Journal of Power Sources,2004,130:136-148.
    [118]A. K. Sleiti. Performance of tubular solid oxide fuel cell at reduced temperature and cathode porosity. Journal of power sources,2010,195:5719-5725.
    [119]R. Mauri. A new application of the reciprocity relations to the study of fluid flows through fixed beds. Engineering Mathematics,1998,33:103-112.
    [120]P. Hofmann, K. D. Panopoulos, L. E. Fryda, E. Kakaras. Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model. Energy,2009, 34:2151-2157.
    [121]P. Li, M. Chyu. Electrochemical and transport phenomena in solid oxide fuel cells. Heat Transfer Transactions ASME,2005,127:1344-1362.
    [122]T. X. Ho, P. Kosinski, A. C. Hoffmann, A. Vik. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy,2010,35:4276-4284.
    [123]F. N. Cayan, S. R. Pakalapati, F. Elizald-Blancas, I. Celik. On modeling multi-component diffusion inside the porous anode of solid oxide fuel cells using Fick's model. Journal of Power Sources,2009, 192:467-474.
    [124]H. Yakabe, M. Hishinuma, M. Uratani, Y. Matsuzaki, I. Yasuda. Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources,2000,86:423-431.
    [125]R. Suwanwarangkul, E. Croiset, M. D. Pritzker, M. W. Fowler, P. L. Douglas, E. Entchev. Mechanistic modeling of a cathode-supported tubular solid oxide fuel cell. Journal of Power Sources,2006, 154:74-85.
    [126]R. Suwanwarangkul, E. Croiset, E. Entchev, et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. Journal of Power Sources,2006,161:308-322.
    [127]F. P. Nagel, T. J. Schildhauer, S. Biollaz, S. Stucki. Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases-a sensitivity analysis. Journal of Power Sources, 2008,184:129-142.
    [128]E. Achenbach. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. Journal of Power Sources,1994,49:333-348.
    [129]M. Ni. Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis. Chemical Engineering Journal,2010,164:246-254.
    [130]Y. Tang, J. Liu. Effect of anode and boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. International Journal of Hydrogen Energy,2010,35:11188-11193.
    [131]L. Petruzzi, S. Cocchi, F. Fineschi. A global thermo-electrochemical model for SOFC systems design and engineering. Journal of Power Sources,2003,118:96-107.
    [132]Marcel Vogler, Anja Bieberle-Hutter, Ludwig Gauckler, Jurgen Warnatz, Wolfgang G. Bessler. Modeling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode. Journal of the Electrochemical Society,2009,156(5):B663-B672.
    [133]Wolfgang G. Bessler, Jurgen Warnatz, David G. Goodwin. The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes. Solid State Ionics,2007,177:3371-3383.
    [134]Sangho Sohn, Jin Hyun Nam, Dong Hyup Jeon, Charn-Jung Kim. A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels. International Journal of Hydrogen Energy,2010,35:11890-11907.
    [135]Vitaliy Yurkiv, Annika Utz, Andre Weber, Ellen Ivers-Tiffee, Hans-Robert Volpp, Wolfgang G. Bessler. Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes. Electrochimica Acta,2012,59:573-580.
    [136]U. Doraswami, P. Shearing, N. Droushiotis, K. Li, N.P. Brandon, G.H. Kelsall. Modeling the effects of measured anode triple-phase boundary densities on the performance of micro-tubular hollow fiber SOFCs. Solid State Ionics,2011,192:494-500.
    [137]Wolfgang G. Bessler, Stefan Gewies, Marcel Vogler. A new framework for physically based modeling of solid oxide fuel cells. Electrochimica Acta,2007,53:1782-1800.
    [138]Dong Hyup Jeon. A comprehensive CFD model of anode-supported solid oxide fuel cells. Electrochimica Acta,2009,54:2727-2736.
    [139]Wolfgang G. Bessler. A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models. Solid State Ionics,2005,176:997-1011.
    [140]Yixiang Shi, Ningsheng Cai, Zongqiang Mao. Simulation of EIS spectra and polarization curves based on Ni/YSZ patterned anode elementary reaction models. International Journal of Hydrogen Energy, 2012,37:1037-1043.
    [141]H.Y. Jung, W.S. Kim, S.H. Choi, H.C. Kim, J.Kim. H.W. Lee, J.H. Lee. Effect of cathode current-collecting layer on unit-cell performance of anode-supported solid oxide fuel cells. Journal of Power Sources,2006,155:145-151.
    [142]C. Frayret, A. Villesuzanne, M. Pouchard, S. Matar. Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials. International Journal of Quantum Chemistry,2005,101:826-839.
    [143]A.U. Modak AU, M. T. Lusk. Kinetic Monte Carlo simulation of a solid-oxide fuel cell. Solid State Ionics,2005,176:1281-1291.
    [144]Yanxiang Zhang, Changrong Xia, Meng Ni. Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes. International Journal of Hydrogen Energy,2012, 37:3392-3402.
    [145]Kyle N. Grew, Abhijit S. Joshi, Aldo A. Peracchio, Wilson K.S. Chiu. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode. Journal of Power Sources,2010, 195:2331-2345.
    [146]Abhijit S. Joshi, Kyle N. Grew, John R. Izzo, Jr. Aldo A. Peracchio, Wilson K.S. Chiu. Lattice boltzmann modeling of three-dimensional, multicomponent mass diffusion in a solid oxide fuel cell anode. Journal of Fuel Cell Science and Technology, ASME,2010,7:011006-1-8.
    [147]Abhijit S. Joshi, Aldo A. Peracchio, Kyle N. Grew, Wilson K.S. Chiu. Lattice boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries. Journal of Physics D:Applied Physics,2007,40:2961-2971.
    [148]Abhijit S. Joshi, Aldo A. Peracchio, Kyle N. Grew, Wilson K.S. Chiu. Lattice boltzmann methode for multi-component, non-continuum mass diffusion. Journal of Physics D:Applied Physics,2007, 40:7593-7600.
    [149]Abhijit S. Joshi, Kyle N. Grew, Aldo A. Peracchio, Wilson K.S. Chiu. Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode. Journal of Power Sources,2007,164:631-638.
    [150]Eric S. Greene, Wilson K.S. Chiu, Maria G. Medeiros. Mass transfer in graded microstructure solid oxide fuel cell electrodes. Journal of Power Sources,2006,161:225-231.
    [151]T.E. Karakasidis, C.A. Charitidis. Multiscale modeling in nanomaterials science. Materials Science and Engineering C,2007,27:1082-1089.
    [152]N. Asproulis, M. Kalweit, D. Drikakis. Hybrid molecular-continuum methods for micro- and nanoscale liquid flows. In:2nd Micro and nano flows conference, West London, UK,2009.
    [153]M. A. Khaleel, D. R. Rector, Z. Lin. K. Johnson, K. Recknagle. Multiscale electrochemistry modeling of solid oxide fuel cells. International Journal for Multiscale Computational Engineering.2005, 3:33-47.
    [154]R. Bove, P. Lunghi, N. M. Sammes.. SOFC mathematical model for systems simulation. Part one: from a micro-detailed to macro-black-box model. Internation Journal of Hydrogen Energy,2005, 30:181-187.
    [155]T. Karakasidis, C. Charitidis. Multiscale modeling in nanomaterials science. Materials Science and Engineering,2007, C27:1082-1089.
    [156]C. Nicotella, A. Bertei, M. Viviani, A. Barbucci. Morphology and electrochemical activity of SOFC composite cathodes:Ⅱ. Mathematical modeling. Journal of Applied Electrochemistry,2009,39:503-511.
    [157]M. Peksen, R. Peters, L. blum, D. Stolten. Numerical modeling and experimental validation of a planar type pre-reformer in SOFC technology. International Journal of Hydrogen Energy,2009, 34:6425-6436.
    [158]Torgeir Suther, Alan Fung, Murat Koksal, Farshid Zabihian. Macro level modeling of a tubular solid oxide fuel cell. Sustainability,2010,2:3549-3560.
    [159]W.B. Guan, H.J. Zhai, L. Jin, C. Xu, W.G. Wang. Temperature measurement and distribution inside planar SOFC stacks. Fuel Cells,2012,12(1):24-31.
    [160]Wanbing Guan, Huijuan Zhai, Fanghu Li, Zhi Li, Cheng Xu, Wei Guo Wang. Development and performance of planar SOFC stacks. The Electrochemical Society, ECS Transactions,2009,25(2):485-488.
    [161]Jing Shao, Youkun Tao, Jianxin Wang, Cheng Xu, Wei Guo Wang. Investigation of precursors in the preparation of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ via a modified combined complexign methode. Journal of Alloys and Compounds,2009,484:263-267.
    [162]Jian Xin Wang, Jing Shao, You kun Tao, Wei Guo Wang. SOFC powders and unit cell research at NIMTE. The Electrochemical Society, ECS Transactions,2009,25(2):595-600.
    [163]W.B. Guan, H.J. Zhai, L. Jin, T.S. Li, W.G. Wang. Effect of contact between electrode and interconnect on performance of SOFC stacks. Fuel Cells,2011,11(3):445-450.
    [164]He Miao, Wei Guo Wang, Ting Shuai Li, Tao Chen, Shan Shan Sun, Cheng Xu. Effects of coal syngas major compostions on Ni/YSZ anode-supported solid oxide fuel cells. Journal of Power Sources. 2010,195:2230-2235.
    [165]Youkun Tao, Jing Shao, Wei Guo Wang, Jiaxin Wang. Optimisation and evaluation of La0.6,Sr0.4Co0.2O3-δ cathode for intermediate temperature solid oxide fuel cells. Fuel Cells,2009, 9(5):679-683.
    [166]ling Shuai Li, Wei Guo Wang. Sulfur-poisoned Ni-based solid oxide fuel cell anode characterization by varying water content. Journal of Power Sources,2011,196:2066-2069.
    [167]Yixiang Shi, Chen Li, Ningsheng Cai. Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources,2011,196:5526-5537.
    [168]Suwanwarangkul R, Croiset E, Fowler MW, Douglas PL, Entchev E, Douglas MA, et al. Dusty-gas and Stefan-maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources,2003,122:9-18.
    [169]Evgenij Barsoukov,J. Ross Macdonald. Impedance spectroscopy theory, experiment, and applications 2nd. Hoboken, New Jersey:2005, John Wiley & Sons, Inc., Publication.
    [170]曹楚南,张鉴清 著.电化学阻抗谱导论.北京:科学出版社,2002.
    [171]藤岛昭,等著,陈震,姚建年译.电化学测定方法.北京:北京大学出版社,1989.
    [172]努丽燕娜,等著.实验电化学.北京:化学工业出版社,2007.
    [173]Brian C.H. Steele, Angelika Heinzel. Materials for fuel-cell technologies. Nature,2001,414:345-352.
    [174]S. P. S. Badwal, K. Foger. Solid oxide electrolyte fuel cell review. Ceramics International,1996, 22:257-265.
    [175]W. Z. Zhu, S. Deevi. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A,2003,362:228-239.
    [176]C.R. He, W.G. Wang. Alumina doped Ni/YSZ anode materials for solid oxide fuel cells. Fuel Cells, 2009,9(5):630-635.
    [177]Chang Rong He, Wei Guo Wang, Jianxin Wang, Yejian Xue. Effect of alumina on the curvature, Young's modulus, thermal expansion coefficient and residual stress of planar solid oxide fuel cells. Journal of Power Sources,2011,196:7639-7644.
    [178]V. Lawlor, S. Griesser, G. Buchinger, A. G. Olabi, S. Cordiner, D. Meissner. Review of the micro-tubular solid oxide fuel cell:Part Ⅰ. Stack design issues and research activities. Journal of Power Sources,2009,193:387-399.
    [179]V. Lawlor, S. Griesser, G. Buchinger, A. G. Olabi, S. Cordiner, D. Meissner. Review of the micro-tubular solid oxide fuel cell:Part Ⅰ. Stack design issues and research activities. Journal of Power Sources,2009,195:936-1036.
    [180]A. Mitterdorfer, L.J. Gauckler. Identification of the reaction mechanism of the Pt, O2(g)/yttria-stabilized zirconia system PartⅡ:Model implementation, parameter estimation, and validation. Solid State Ionics,1999,117:203-217.
    [181]Jan von rickenbach, Majid Nabavi, Igor Zinovik, Nico Hotz, Dimos Poulikakos. A detailed surface reaction model for syngas production from butane over Rhodium catalyst. International Journal of Hydrogen Energy,2011,36:12238-12248.
    [182]Daniel Chatterjee, Olaf Deutschmann, Jurgen Warnatz. Detailed surface reaction mechanism in a three-way catalyst. The Royal Society of Chemistry,2001,119:371-384.
    [183]N.A. Koryabkina, A.A. Phatak, W.F. Ruettinger, R.J. Farrauto, F.H. Ribeiro. Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications. Journal of Catalysis,2003,217:233-239.
    [184]San Ping Jiang. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. International Journal of Hydrogen Energy,2012,37:449-470.
    [185]Vinod M. Janardhanan, Vincent Heuveline, Olaf Deutschmann. Three-phase boundary length in solid-oxide fuel cells:A mathematical model. Journal of Power Souces,2008,178:368-372.
    [186]Ting Shuai Li, Cheng Xu, Tao Chen, He Miao, Wei Guo Wang. Chlorine contaminants poisoning of solid oxide fuel cells. Journal of Solid State Electrochemistry,2011,15:1077-1085.
    [187]Ting Shuai Li, Wei Guo Wang. The mechanism of H2S poisoning Ni/YSZ electrode studied by impedance spectroscopy. Electrochemical and Solid-State Letters,2011,14(3):B35-B37.
    [188]C.R. He, W.G. Wang. Alumina doped Ni/YSZ anode materials for solid oxide fuel cells. Fuel Cells, 2009,9:630-635.
    [189]O. Deutschmann, R. Schmidt, F. Behrendt, J. Warnatz. Proceedings of the Combustion Institute.1996, 26:1747-1754.
    [190]O. Deutschmann, R. Schwiedernoch, L.I. Maier, D. Chatterjee. Natural Gas Conversion Ⅵ, Studies in Surface Science and Catalysis 136, E. Iglesia, J.J. Spivey, T.H. Fleisch (eds.), p.215-258, Elsevier,2001
    [191]R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann. Chemical Engineering Science.2003,58: 633-642.
    [192]D. Chatterjee, O. Deutschmann, J. Warnatz. Faraday Discussions,2011,119:371-384.
    [193]D.K. Zerkle, M.D. Allendorf, M. Wolf, O. Deutschmann. Journal of Catalysis,2000,196:18-39.
    [194]L. Maier, B. Schaedel, S. Tischer, O. Deutschmann, Catalysis Letters. In press.
    [195]E. Hecht, G.K. Gupta, H. Zhu. A.M. Dean, R.J. Kee, L. Maier, O. Deutschmann. Applied Catalysis A: General 2005,295:40-51.
    [196]V.M. Janardhanan, O. Deutschmann. Journal of Power Sources 2006,162:1192-1202.
    [197]K. Norinaga, O. Deutschmann, Proc. EUROCVD-15, Bochum, September 4-9,2005.
    [198]R. Quiceno, O. Deutschmann, J. Warnatz, European Combustion Meeting 2005. Louvain-la-Neuve, 3-6 April 2005, Belgian Section of the Combustion Institute paper. Chemical kinetics section, paper 29.
    [199]R. Quiceno, J. Perez-Ramirez, J. Warnatz, O. Deutschmann. Applied Catalysis A:General,303 (2006) 166-176
    [200]J. Koop, O. Deutschmann. Detailed surface reaction mechanism for Pt-catalyzed abatment of automotive exhaust gases. Applied Catalysis B:Environmental 2009,91:47-58.
    [201]M. Hartmann, L. Maier, O. Deutschmann. Catalytic Partial Oxidation of Iso-Octane over Rhodium Catalysts:An Experimental, Modeling, and Simulation Study. Combustion and Flame.2010, 157:1771-1782.
    [202]J. Thormann, L. Maier, P. Pfeifer, U. Kunz, K. Schubert, O. Deutschmann. International Journal of Hydrogen Energy 2009,34:5108-5120.
    [203]Nestor Perez. Electrochemistry and corrosion science. New York, Boston:Kluwer Academic Publishers,2004.
    [204]Christopher M.A. Brett, Ana Maria Oliveira Brett. Electrochemistry principles, methods, and applications. New York:Oxford University Press Inc.,1993.
    [205]S. Durand Vidal, J. P. Simonin, P. Turq. Electrolytes at interfaces. New York:Kluwer Academic Publishers,2002.
    [206]J.O'M. Bockris, Ralph E. White. Modern aspects of electrochemistry No.32. New York:Kluwer Academic Publishers,2002.
    [207]J.O'M. Bockris. Amulya K.N. Reddy. Modern Elecrochemistry Vol.1 Ionics 2nd. New York:Kluwer Academic Publishers,2002.
    [208]J.O'M. Bockris. Amulya K.N. Reddy, Maria Gamboa Aldeco. Modern Elecrochemistry Vol.2A Fundamentals of Electrodics 2nd. New York:Kluwer Academic Publishers,2002.
    [209]P.A. Christensen, A. Hamnett. Techniques and mechanisms in electrochemistry. Glasgow:Kluwer Academic Publishers,1994.
    [210]小久见善八 著,郭成言 译,王风华校.电化学.北京:科学出版社,2002.
    [211]A.J.巴德,L.R.福克纳著.谷林镁,吕鸣祥,宋诗哲,许淳淳 译.电化学方法原理及应用.北京:化学工业出版社,1986.
    [212]高颖,邬冰 著.电化学基础.北京:化学工业出版社,2004.
    [213]J.O M.伯克利斯,D.M.德拉奇克著.夏熙译,叶世源 校.电化学科学.北京:人民教育出版社,1980.
    [214]李荻主编.电化学原理(修订版).北京:北京航空航天大学出版社,1999.
    [215]查全性,等著.电极过程动力学导论.北京:科学出版社,2002.
    [216]L.I.安特罗波夫著,吴仲达,朱耀斌,吴万伟译,胡志彬校.理论电化学.北京:高等教育出版社,1982.
    [217]Bruce A. Finlayson. Introduction to chemical engineering computing. Hoboken, New Jersey:John Wiley & Sons, Inc.,2006.
    [218]江体乾著.近代传递过程原理.北京:化学工业出版社,2002.
    [219]许文编著.高等化工热力学.天津:天津大学出版社,2004.
    [220]Stanley I. Sandler.化学和工程热力学.北京:化学工业出版社,1999.
    [221]马沛生,常贺英,夏淑倩,陈明鸣编著.化工热力学(通用型).北京:化学工业出版社,2005.
    [222]郭汉贤著.应用化工动力学.北京:化学工业出版社,2003.
    [223]P. Aguiar, D. Chadwick, L. Kershenbaum. Modeling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science,2002,57:1665-1677.
    [224]Y. M. Barzi, M. Ghassemi, M. H. Hamedi, E. Afshari. Numerical analysis of output characteristics of a tubular SOFC with different fuel compositions and mass flow rates. In:K. Eguchi, S. C. Singhal, H. Yokokawa, J. Mizusaki.(eds) Proceedings of solid oxide fuel cells 10(SOFC-X). ECS Transactions 2007, 7(1):1919-1928.
    [225]Jinliang Yuan, M. Faghri, B. Sunden. On heat and mass transfer phenomena in PEMFC and SOFC and modeling approaches. In:Sunden B, Faghri M (eds) Transport phenomena in fuel cells. WIT Press, 2005.
    [226]P. Aguiar, C.S. Adjiman, N.P. Brandon. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. Ⅰ:model-based steady-state performance. Journal of Power Sources,2004, 138:120-136.
    [227]J. M. Klein, Y. Bultel, S. Georges, M. Pons. Modeling of a SOFC fuelled by Methane:From Direct Internal Reforming of Gradual Internal Reforming, Chemical Engineering Science,2007,62:1636-1649.
    [228]E. Achenbach, E. Riensche. Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells, Journal of Power Sources,1994,52:283-288.
    [229]E. Achenbach. Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack, Journal of Power Sources,1994,49:333-348
    [230]R. Leinfelder, Kinetic Studies on The Reaction of the Methane Steam Reforming and the Shift Reaction at Solid Oxide Fuel Cells Anodes, Doctoral Thesis, Faculty of Engineering, University of Erlangen-Nurnberg, Germany,2004.
    [231]Martin Andersson. Solid oxide fuel cell modeling at the cell scale:[Doctoral dissertation]. Sweden: Lund University,2012.
    [232]Vinod M Janardhanan, Olaf Deutschmann. CFD analysis of a solid oxide fuel cell with internal reforming:Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources,2006,162:1192-1202.
    [233]B. A. Haberman, J. B. Young. Three-dimensional simulation of chemically rreacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat Mass Tranfer,2004,47:3617-3629.
    [234]Bengt Sunden, Jinliang Yuan. Development of multi-scale models for transport processes involving catalytic reactions in SOFCs. Int. J. Micro-Nano Scale Transport,2010,1(1):37-42.
    [235]R. J. Kee, M. E. Coltrin, P. Blarborg. Chemically Reacting Flow, Hoboken NJ:John Wiley & Sons. Inc.,2003.
    [236]C. H. Cheng, Y. W. Chang, C. W. Hong. Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell. J. Fuel Cell Sci. Technol.2005,2:219-225.
    [237]Y. Patcharavorachor, A. Arpornwichanop, A. Chuachuebsuk. Electrochemical study of a planar solid oxide fuel cell:role of support structures. Journal of Power Sources,2001,93:130-140.
    [238]Chen Li, Yixiang Shi, Ningsheng Cai, Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas, Journal of Power Sources,2010,195:2266-2282.
    [239]Junxiang Shi, Xingjian Xue, CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties, Electrochimica Acta,2010,95:5263-5273;
    [240]Marcel Vogler, Anja Bieberle-Hutter, Ludwig Gauckler, Jurgen Warnatz, Wolfgang G. Bessler, Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode. Journal of the Electrochemical Society,2009,156(5):B663-B672.
    [241]Yuanyuan Xie, Xingjian Xue, Multi-scale electrochemical reaction anode model for solid oxide fuel cells. Journal of Power Sources,2012,209:81-89.
    [242]Vitaliy Yurkiv, Annika Utz, Andre Weber, Ellen Ivers-Tiffee, Hans-Robert Volpp, Wolgang G. Bessler, Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes. Electrochimica Acta,2012,59:573-580.
    [243]Wolfgang G. Bessler, Jurgen Warnatz, David G. Goodwin, The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes. Solid State Ionics,2007,177:3371-3383.
    [244]Wolfgang G. Bessler, Stefan Gewies, Marcel Vogler, A new framework for physically based modeling of solid oxide fuel cells. Electrochimica Acta,2007,53:1782-1800.
    [245]H. Zhu, R.J. Kee, V.M. Janardhanan, O. Deutschmann, D.G. Goodwin, Journal of Electrochemical Society,2005,152:A2427.
    [246]R. Bove, S. Ubertini. Modeling solid oxide fuel cell operation:approaches, techniques and results. Journal of Power Sources 2006,159:543-559.
    [247]H. C. Tien, K. C. Chiang. Non-Darcy flow and heat transfer in a porous insulation with infiltration and natural convection. Marine Science & Technology,1999,7:125-131.
    [248]H. Yakabe, M. Hishinuma, M. Uratani, Y. Matsuzaki, I. Yasuda. Evaluation and modeling of performance of anode-supported solid oxide fuel cell, Journal of Power Sources 2000,86:423-431.
    [249]R. Taylor, R. Krishna. Multicomponent mass transfer. New York:John Wiley & Sons Inc.,1993.
    [250]R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev, M.A. Douglas, Journal of Power Sources,2003,122:9-18.
    [251]Nagel F., Schildhauer T., Biollaz S., Stucki S. Charge, mass and heat transfer interactions in solid oxide fuel cells eperated with different fuel gases-A sensitivity analysis. Journal of Power Sources,2008, 184:129-142.
    [252]http://zh.wikipedia.org/wiki/ANSYS.
    [253]Martin Andersson, Jinliang Yuan, Bengt Sunden, Ting Shuai Li, Wei Guo Wang. Modeling validation and simulation of an anode supported SOFC including mass and heat transport, fluid flow and chemical reactions. Proceeding of the ASME 9th International Fuel Cell Science, Engineering & Technology Conference, Washington, DC. USA, ASME ESFuelCell2011-54006,2011.
    [254]Martin Andersson, Jinliang Yuan, Bengt Sunden. SOFC modeling considering electrochemical reactions at the active three phase boundaries. International Journal of Heat and Mass Transfer.2011, in press
    [255]Martin Andersson, Hedvig Paradis, Jinliang Yuan, Bengt Sunden, Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC, ASME J.Fuel Cell Science and Technology,2011, 8(031013):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700