用户名: 密码: 验证码:
氯离子通道在卵巢癌细胞中的表达及其在细胞增殖中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     卵巢癌是女性生殖器官常见的三大恶性肿瘤之一,恶性度高,早期诊断困难,多数患者就诊时已属晚期,死亡率居妇科恶性肿瘤首位。卵巢癌细胞具有高的增殖及转移潜力,然而对其恶性生物学行为机制尚不明确。因此研究卵巢癌的恶性生物学行为机制,寻找新的治疗靶点,成为亟待解决的任务。
     氯离子通道广泛分布于有机体的细胞膜及细胞器膜,其在细胞的容积调节、物质的跨膜转运、细胞电位、细胞器的酸化、细胞增殖分化等多种生理过程中发挥重要作用。氯离子通道在体内的调控受多种因素的的影响,根据功能及门控机制,氯通道可分为:电压门控性氯离子通道(Voltage-gated chloride channels,CLC)、容积调控性氯离子通道(Volume-regulated/sensitive anion/chloride channels,VRAC)、囊性纤维化跨膜传导调节体(Cystic fibrosis transmembrane conductanceregulator,CFTR)、钙激活性氯离子通道(Calcium-activated chloride channels,CLCA)、配体激活的氯离子通道(ligand-activated chloride channels)。配体激活的氯通道主要分布于神经系统。氯离子通道参与多种细胞的增殖,氯通道阻滞剂对诸如肝细胞、肺主动脉内皮细胞、淋巴细胞、血管平滑肌细胞等多种细胞的增殖具有抑制作用。引人瞩目的是:近年多项研究发现氯离子通道在多种肿瘤中表达异常,并且氯通道可能在肿瘤细胞的增殖、侵袭及转移等恶性生物学行为中起着重要作用。例如:CLC氯通道在脑胶质瘤组织和细胞中过表达,这有利于细胞大小和形状的改变,从而导致瘤细胞易于分裂和侵袭狭窄的细胞外脑间隙;容积调控性氯离子通道是调节鼻咽癌细胞通过G_1期限制点,促进细胞增殖的重要因子;还有研究报道其在肿瘤细胞中呈细胞周期依赖性改变。CLC-3是CLC氯离子通道的重要家族成员,并且CLC-3又是容积调控性氯离子通道最有可能的候选蛋白,所以其功能复杂多样,有研究报道前列腺癌细胞中抗凋亡调节因子呈剂量依赖性上调CLC-3蛋白表达水平,使细胞生存能力提高而抗凋亡。另有研究发现抑制CLC-3蛋白表达后,肿瘤细胞的侵袭转移能力降低。
     迄今为止,国内外尚未见氯离子通道在卵巢上皮性癌细胞中的表达情况及其对卵巢上皮性癌细胞增殖及细胞周期的影响。因此我们研究的目的是观察氯通道在卵巢上皮性癌细胞中的表达、探索氯离子通道在卵巢上皮性癌细胞增殖及细胞周期中的作用以及CLC-3单通道改变对卵巢癌细胞增殖的影响。
     第一部分氯离子通道在卵巢上皮性癌细胞中的表达及其在细胞增殖及细胞周期中的作用
     目的:观察氯离子通道在卵巢上皮性癌细胞株A2780中的表达,探讨氯离子通道在卵巢癌细胞株A2780增殖及细胞周期中的作用。
     方法:采用逆转录聚合酶链反应(RT-PCR)检测几种有代表性的氯离子通道mRNA在卵巢上皮性癌细胞中的基因表达;应用免疫细胞化学方法检测氯离子通道蛋白在A2780细胞中的表达。采用四甲基偶氮唑蓝(MTT)法,观察不同浓度及种类的氯离子通道阻滞剂阻断卵巢癌细胞氯离子通道后,卵巢癌细胞株A2780增殖活力的变化;采用流式细胞仪技术检测不同浓度及种类的氯离子通道阻滞剂阻断卵巢癌细胞氯离子通道后,卵巢癌细胞A2780细胞周期的变化。
     结果:RT-PCR检测提示卵巢癌细胞株A2780表达CLC-3及CFTR氯离子通道mRNA;但未检测到hCLCA-2 mRNA表达。免疫细胞化学染色显示卵巢癌细胞A2780表达CLC-3及CFTR氯离子通道蛋白,蛋白表达定位于细胞质膜。MTT检测表明不同浓度的氯通道阻滞剂NPPB、NFA、TAM作用细胞后明显抑制了A2780细胞的增殖活力。25μmol/L、50μmol/L、100μmol/L、200μmol/L的NPPB对A2780细胞的抑制率分别为23.4%、59.2%、90.8%及93.5%,各浓度组与对照组相比差异均有显著性(P<0.05)。25μmol/L、50μmol/L、100μmol/L、200μmol/L的NFA对A2780细胞的抑制率分别为18.3%、40.9%、68.6%及75.1%,各浓度组与对照组相比差异均有显著性(P<0.05)。10μmol/L、20μmol/L及30μmol/L的TAM对A2780细胞的抑制率分别为65.8%、73.4%及77.5%,各浓度组与对照组相比差异均有显著性(P<0.05)。而相对特异性CFTR氯通道阻滞剂Glibenclamide作用细胞后对A2780细胞的增殖活力无明显影响。25μmol/L、50μmol/L、100μmol/L及200μmol/L的Glibenclamide对A2780细胞增殖的抑制率分别为2.1%、2.8%、3.7%及3.9%,各浓度组与对照组相比,差异无显著件(P>0.05)。
     流式细胞仪检测发现不同浓度的氯离子通道阻滞剂NPPB、NFA、TAM作用A2780细胞72 h后,细胞周期的G_0/G_1和S期细胞分布均发生改变,细胞周期停滞于G_0/G_1期。而Glibenclamide作用A2780细胞后,细胞周期的G_0/G_1和S期细胞分布改变无统计学差异。
     1 NPPB对A2780细胞周期的影响50μmol/L、100μmol/L及200μmol/L的NPPB作用于A2780细胞后:细胞周期的G_1/G_1期细胞数由55.4±2.1%分别增加到73.1±3.9%、84.2±2.3%及86.5±2.6%,各浓度组与对照组相比,差异均有显著性(P<0.05)。S期细胞数由34.0±2.5%分别下降至22.3±4.1%、12.1±2.3%及10.7±1.6%,各浓度组与对照组相比,差异均有显著性(P<0.05)。
     2 NFA对A2780细胞周期的影响50μmol/L、100μmol/L及200μmol/L的NFA作用于A2780细胞后:细胞周期的G_0/G_1期细胞数由55.4±2.1%分别增加到69.3±3.5%、74.6±2.1%及79.5±3.6%,各浓度组与对照组相比,差异均有显著性(P<0.05)。S期细胞数由34.0±2.5%分别下降至24.1±1.5%、18.7±1.9%及13.4±2.7%,各浓度组与对照组相比,差异均有显著性(P<0.05)。
     3 TAM对A2780细胞周期的影响10μmol/L、20μmol/L及30μmol/L的TAM作用于A2780细胞后:细胞周期的G_0/G_1期细胞数由55.4±2.1%分别增加到68.7±2.4%、73.8±3.3%及79.4±3.1%,各浓度组与对照组相比,差异均有显著性(P<0.05)。S期细胞数由34.0±2.5%分别下降至24.6±1.9%、20.3±2.2%及15.3±1.6%,各浓度组与对照组相比,差异均有显著性(P<0.05)。
     4 Glibenclamide对A2780细胞周期的影响50μmol/L、100μmol/L及200μmol/L的Glibenclamide作用于A2780细胞后:细胞周期的G_0/G_1期细胞数由55.4±2.1%分别改变为55.8±2.9%、53.1±3.2%及54.2±3.5%,各浓度组与对照组相比差异均无显著性(P>0.05);S期细胞数由34.0±2.5%分别改变为33.7±2.6%、36.9±1.6%及35.6±2.8%,各浓度组与对照组比较差异均无显著性(P>0.05)。
     结论:CLC及CFTR氯离子通道在卵巢癌细胞系A2780中表达。电压门控性氯离子通道及容积调控性氯离子通道可能在卵巢上皮性癌细胞的增殖及细胞周期中起着重要作用。
     第二部分CLC-3反义寡核苷酸对卵巢上皮性癌细胞增殖的抑制作用及其机制
     目的:观察电压门控性氯离子通道-3(CLC-3)反义寡核苷酸转染对卵巢上皮性癌细胞A2780增殖及细胞周期的影响。
     方法:以脂质体Lipofectamine介导的CLC-3反义寡核苷酸转染卵巢上皮性癌细胞株A2780,利用Western blot检测转染CLC-3反义寡核苷酸后A2780细胞CLC-3蛋白表达的变化;通过MTT法、流式细胞仪检测细胞增殖能力及细胞周期的变化。应用Western blot检测CLC-3反义寡核苷酸转染对卵巢癌细胞A2780细胞周期素D1(CyclinD1)表达的影响。
     结果:卵巢上皮性癌细胞A2780转染CLC-3反义寡核苷酸后,CLC-3的蛋白表达明显降低。50μg/ml和100μg/ml CLC-3反义寡核苷酸对CLC-3蛋白表达抑制率分别为62.5%及78.6%。而100μg/ml CLC-3正义寡核苷酸转染对CLC-3蛋白的表达未见明显影响。CLC-3反义寡核苷酸转染48 h后降低了A2780细胞的增殖能力,50μg/ml、100μg/ml反义CLC-3寡核苷酸对A2780细胞增殖的抑制率分别为48.6%及65.3%,与对照组相比差异有显著性(P<0.05);而100μg/ml CLC-3正义寡核苷酸转染对A2780细胞的增殖能力的影响与对照组相比差异无显著性(P>0.05)。流式细胞仪检测结果表明CLC-3反义寡核苷酸转染A2780细胞48 h后,细胞周期分布发生改变,处于G_0/G_1细胞数目上升,S期细胞数下降。50μg/ml、100μg/ml的CLC-3反义寡核苷酸组G_0/G_1期细胞数由49.4±3.1%分别上升至70.3±3.4%和75.8±2.6%,与对照组比较有显著性差异(P<0.05);而S期细胞数由40.3±2.8%分别下降至23.5±2.1%和19.6±1.5%,与对照组比较有显著性差异(P<0.05)。而转染正义寡核苷酸对A2780细胞的细胞周期无明显影响,100μg/ml CLC-3正义寡核苷酸转染A2780细胞后,G_0/G_1期细胞数由49.4±3.1%改变至50.2±3.6%,S期细胞数由40.3±2.8%改变至39.7±2.9%,与对照组相比差异均无显著性(P>0.05)。Western blot检测显示CLC-3反义寡核苷酸抑制了A2780细胞的CyclinD1蛋白表达;而CLC-3正义寡核苷酸对A2780细胞CyclinD1的蛋白表达未见明显影响。
     结论:CLC-3反义寡核苷酸能够抑制卵巢上皮性癌细胞的增殖能力,CLC-3氯离子通道可能成为卵巢癌治疗的新靶点。CLC-3氯离子通道可能通过对CyclinD1的调控发挥其在卵巢上皮性癌细胞增殖及细胞周期中的作用。
[Background]
     Ovarian cancer,one of the three common gynecological malignant genital tumors,is the leading cause of gynecological cancer deaths.Due to the lack of effective earlier diagnosis of ovarian cancer,most of patients are diagnosed with advanced-stage,with a resultant poor prognosis.Ovarian cancer cell is characterized by its high potential for unlimited proliferation and metastasis.The factors correlated with the malignant biological behavior of ovarian cancer,however,are poorly understood.There is an imperative need to explore new therapeutic targets and a better understanding of the mechanisms involved in the malignant biological behavior of ovarian cancer.
     Chloride(Cl~-) channels are ubiquitous transmembrane proteins which have been implicated in cell volume regulation,salt and fluid movements across epithelia, stabilization of membrane potential,intracellular organelle acidification,cell proliferation and differentiation.Chloride channels are regulated by various factors. According to their gating mechanisms,there are,from the functional point of view, five classes of chloride channel,including voltage-gated chloride channels(CLC), volume/swell-regulated/sensitive anion/chloride channels(VRAC),cystic fibrosis transmembrane conductance regulator(CFTR),calcium-activated chloride channels (CLCA) and ligand-activated chloride channels which mainly forms synaptic channels.Chloride channels have been found in control of cell proliferation.Cl~- channel blockers inhibit cell proliferation in many types of cells,including liver cells, pulmonary artery endothelial cells,lymphoctes,vascular smooth muscle cells.Most attractively,recent studies indicate Cl~-channels express in a variety of tumor cells and support the essential role of plasma membrane chloride channels in the proliferation, invasion and migration of tumor cells.For example,CLC has been found to be specifically up-regulated in human glioma membranes,which in turn facilitate rapid changes in cell size and shapes and contribute to glioma cell division or invasion into narrow extracellular brain spaces.VRAC is one of the important factors that modttlate the passage of nasopharyngeal carcinoma cells through the G_1 restriction point and endow nasopharyngeal carcinoma cells with an enhanced proliferation ability.In addition,it is reported that VRAC displays cell cycle-dependent expression in tumor cells.CLC-3,an important member of the CLC superfamily,plays a crucial role in a variety of cellular processes.Moreover,CLC-3 has been considered the most likely molecular candidate of the VRAC.It is implicated that the antiapoptotic protein could up-regulate CLC-3 protein in a dose-dependent manner in the human prostatic carcinoma cells,which thereby protects cells against apoptotic stimuli and increases cell viability.Additionally,the present study demonstrates that inhibition of CLC-3 protein expression down-regulates invasion and migration ability of tumor cell.
     Up to date,there are no data available as to the expression of Cl~-channels and whether Cl~-channels are related to the cell proliferation and cell cycle progression in ovarian cancer cell.In this study,we aimed to observe the representative Cl~-channels expression,investigate the role of Cl~-channels in proliferation and cell cycle of ovarian cancer cells and study the effect of CLC-3 on human ovarian cancer cell proliferation.
     Objective:To investigate the expression and the roles of chloride channels in cell proliferation and cell cycle in human epithelial ovarian cancer cell line A2780.
     Methods:The expression of several representative chloride channels was detected by employing RT-PCR and immunocytochemical methods.The effects of chloride channels on proliferation and cell cycle of human ovarian cancer cell line A2780 were observed by means of MTT assay and flow cytometry.A variety of chloride channel blockers were used in order to observe the effects of chloride channels on human ovarian cancer cell line A2780.
     Results:CLC-3 and CFTR mRNA was detected by RT-PCR assay,and CLC-3 and CFTR proteins were found to express in A2780 cell plasma membrane by using immunocytochemical assay.The hCLCA mRNA,however,could not be detected in A2780 cells by using RT-PCR.Chloride channel blockers(NPPB,NFA and TAM) significantly inhibited the proliferation of A2780 cells as measured by MTT assay. Treatments with 25μmol/L,50μmol/L,100μmol/L and 200μmol/L NPPB caused inhibitory effects on A2780 cell proliferation potential,and the inhibitory rate was 23.4%,59.2%,90.8%,93.5%,respectively(vs control,P<0.05).After NFA-treatment, A2780 cell proliferation was greatly inhibited in the presence of 25μmol/L,50μmol/L, 100μmol/L and 200μmol/L NFA,and the inhibitory rate was 18.3%,40.9%,68.6% and 75.1%,respectively(vs control,P<0.05).TAM,a relatively specific blocker of volume-regulated chloride channels,also produced inhibitory effects on A2780 cell proliferation ability,and the inhibitory rate was 65.8%,73.4%,77.5%after treatment of A2780 cells with 10μmol/L,20μmol/L,30μmol/L TAM,respectively(vs control, P<0.05).In contrast,Glibenclamide,a relatively specific CFTR blocker,had no inhibitory effects on A2780 cell proliferation.The inhibitory rate was 2.1%,28%, 3.7%and 3.9%after treatment of A2780 cells with 25μmol/L,50μmol/L,100μmol/L and 200μmol/L Glibenclamide,respectively(vs control,P>0.05).
     In addition,chloride channel blockers(NPPB,NFA,TAM) also obviously affected the A2780 cell cycle,which increased the percentage of cells in G_0/G_1 phase,and reduced the percentage of cells in S phase.Glibenclamide,however,had no effect on the A2780 cell cycle.After treatment with 50μmol/L,100μmol/L and 200μmol/L NPPB,the proportion of G_0/G_1 phase of A2780 cells increased from 55.4±2.1%to 73.1±3.9%,84.2±2.3%and 86.5±2.6%respectively(vs control,P<0.35); Surprisingly,the proportion of S phase reduced from 34.0±2.5%to 22.3±4.1%, 12.1±2.3%and 10.7±1.6%,respectively(vs control,P<0.05).Effects of NFA on A2780 cell cycle progression were similar to those of NPPB.The proportion of G_0/G_1 phase increased from 55.4±2.1%to 69.3±3.5%,74.6±2.1%and 79.5±3.,5%, when 50μmol/L,100μmol/L and 200μmol/L NFA were used,respectively(vs control, P<0.05).Interestingly,the proportion of S phase reduced from 34.0±2.5%to 24 1±1.5%,18.7±1.9%and 13.4±2.7%,respectively(vs control,P<0.05).10μmol/L, 20μmol/L and 30μmol/L TAM also affected A2780 cell cycle progression,and the proportion of G_0/G_1 phase went up significantly from 55.4±2.1%to 68.7±2.4%, 73.8±3.3%and 79.4±3.1%,respectively(vs control,P<0.05).Whereas the proportion of S phase decreased from 34.0±2.5%to 24.6±1.9%,20.3±2.2%and 15.3±1.6%,respectively(vs control,P<0.05).After treatment with 50μmol/L, 100μmol/L and 200μmol/L Glibenclamide,the proportion of G_0/G_1 phase cells changed from 55.4±2.1%to 55.8±2.9%,53.1±3.2%and 54.2±3.5%,respectively (vs control,P>0.05);and the proportion of S phase cells changed from 34.0±2.5% to 33.7±2.6%,36.9±1.6%and 35.6±2.8%,respectively(vs control,P>0.05).
     Conclusions:Our results suggest that CLC-3 and CFTR are markedly expressed in human epithelial ovarian cancer cells.Chloride channels,CLC and VRAC especially, could play an important role in the proliferation and cell cycle of ovarian cancer cell.
     Objective:The aim of the present study was to observe the effect of CLC-3 antisense oligonucleotide on proliferation of human ovarian cancer cell line A2780.
     Methods:CLC-3 antisense oligonucleotides were transfected by lipofectamine into human epithelial ovarian cancer cell line A2780.Western blot was used to detect CLC-3 protein expression.The ability of cell proliferation was determined by using MTT assay,and the cell cycle was measured by employing flow cytometry(FCM). Western blot were performed to detect the cyclinD1 protein expression in A2780 cells.
     Results:Western blot assay showed that CLC-3 antisense oligonucleotides inhibited the CLC-3 protein expression.Compared with the control group,the inhibitory rates of 50μg/ml,100μg/ml CLC-3 antisense oligonucleotides were 62.5%、78.6%, respectively;however,the CLC-3 sense oligonucleotides had no effects on CLC-3 protein expression of A2780 cells.MTT assay revealed that A2780 cell proliferation could be inhibited by CLC-3 antisense oligonucleotides.The inhibitory rates of 50μg/ml and 100μg/ml CLC-3 antisense oligonucleotides were 48.6%,65.3%, respectively(vs control,P<0.05).In contrast,the 100μg/ml CLC-3 sense oligonucleotides had no significant effect on cell proliferation(vs control,P>0.05). Moreover,transfection of A2780 cells with CLC-3 antisense oligonucleotides obviously arrested the progression of cell cycle,which increased the percentage of cells in G_0/G_1 phase,and reduced the percentage of cells in S phase.In 50μg/ml, 100μg/ml CLC-3 antisense-treatment groups,the proportion of G_0/G_1 cells increased from 49.4±3.1%to 70.3±3.4%,75.8±2.6%,respectively(vs control,P<0.05); while it decreased significantly from 40.3±2.8%to 23.5±2.1%,19.6±1.5%, respectively(vs control,P<0.05) in the S phase.In contrast,CLC-3 sense oligonucleotides had no significant effects on cell cycle.After transfection with CLC-3 sense oligonucleotides,the cell population changed from 49.4±3.1%to 50.2±3.6%in the G_0/G_1 phase,from 40.3±2.8%to 39.7±2.9%in the S phase, respectively(vs control,P>0.05).Western blot assays indicated that CLC-3 antisense oligonucleotides inhibited cyclinD1 protein expression in A2780 cell line.However in cells treated with sense oligonucleotides,there exhibited no interference effects on cyclinD1 protein expression in A2780 cells.
     Conclusions:These results strongly indicate that CLC-3 may get involved in proliferation of human epithelial ovarian cancer cell and thus may be a useful therapeutic target.It is likely that the effects of CLC-3 on A2780 cell proliferation and cell cycle is mediated through downregulation of cyclinD1.
引文
1. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand, 2003,177(2):119-147.
    
    2. Wondergem R, Gong W, Monen SH, et al. Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J Physiol, 2001, 532(Pt3): 661-672.
    
    3. Voets T, Szucs G, Droogmans G, et al. Blockers of volume-activated Cl- currents inhibit endothelial cell proliferation. Pflugers Arch, 1995,431(1): 132-134.
    
    4. Maertens C, Droogmans G, Chakraborty P, et al. Inhibition of volume-regulated anion channels in cultured endothelial cells by the anti-oestrogens clomiphene and nafoxidine. Br J Pharmacol, 2001,132(1):135-142.
    
    5. Duffy SM, Lawley WJ, Kaur D, et al. Inhibition of human mast cell proliferation and survival by tamoxifen in association with ion channel modulation. J Allergy Clin Immunol, 2003,112(5): 965-972.
    
    6. Phipps DJ, Branch DR, Schlichter LC. Chloride-channel block inhibits T lymphocyte activation and signalling. Cell Signal, 1996, 8(2): 141-149.
    
    7. Zheng YJ, Furukawa T, Tajimi K, et al. Cl- channel blockers inhibit transition of quiescent (GO) fibroblasts into the cell cycle. J Cell Physiol, 2003, 194(3):376-383.
    
    8. Olsen ML, Schade S, Lyons SA, et al. Expression of voltage-gated chloride channels in human glioma cells. J Neurosci, 2003, 23(13):5572-5582.
    
    9. Wang LW, Chen LX, Jacob T. CLC-3 expression in the cell cycle of nasopharyngeal carcinoma cells. Acta Physiologica Sinica, 2004, 56(2):230-236.
    
    10. Assef YA, Damiano AE, Zotta E, et al. CFTR in K562 human leukemic cells. Am J Physiol Cell Physiol, 2003,285(2):C480-C488.
    
    11. Chen LX, Zhu LY, Jacob TJ, et al. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif, 2007,40(2):253-267.
    12.杨翔云,赖小刚,张勇,等.SiRNA干扰CLC-2表达对人胶质瘤U-87细胞增殖的抑制作用.癌症,2006,25(7):805-810.
    13.田晶,陶凌,曹云新,等.尼氟灭酸对肝癌细胞增殖的影响.生理学报,2003,55(2):160-164.
    14.Klausen TK,Bergdahl A,Hougaard C,et al.Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells.J Cell Physiol,2007,210(3):831-842.
    15.Duffy SM,Leyland ML,Conley EC,et al.Voltage-dependent and calcium-activated ion channels in the human mast cell line HMC-1.J Leukoc Biol.2001,70(2):233-240.
    16.Fong P,Argent BE,Guggino WB,et al.Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF.Am J Physiol Cell Physiol,2003,285(2):C433-C445.
    17.Accardi A,Pusch M.Fast and slow gating relaxations in the muscle chloride channel CLC-1.J Gen Physiol,2000,116(3):433-444.
    18.Accardi A,Ferrera L,Pusch M.Drastic reduction of the slow gate of human muscle chloride channel(C1C-1) by mutation C277S.J Physiol,2001,534(Pt 3):745-752.
    19.Sardini A,Amey JS,Weylandt KH,et al.Cell volume regulation and swelling-activated chloride channels.Biochim Biophys Acta,2003,1618(2):153-162.
    20.Li C,Breton S,Morrison R,et al.Recombinant plCln forms highly cation-selective channels when reconstituted into artificial and biological membranes.J Gen Physiol,1998,112(6):727-736.
    21.Duan D,Zhong J,Hermoso M,et al.Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-CIC-3 antibody.J Physiol,2001,531(Pt 2):437-444.
    22.Hermoso M,Satterwhite CM,Andrade YN,et al.C1C-3 is a fundamental molecular component of volume-sensitive outwardly rectifying C1- channels and volume regulation in HeLa cells and Xenopus laevis oocytes.J Biol Chem,2002, 277(42):40066 -40074.
    23.Zhou JG;Ren JL,Qiu QY,et al.Regulation of intracellular C1- concentration through volume-regulated C1C-3 chloride channels in A10 vascular smooth muscle cells.J Biol Chem,2005,280(8):7301-7308.
    24.Wang GX,Hatton WJ,Wang GL,et al.Functional effects of novel anti-C1C-3antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells.Am J Physiol Heart Circ Physiol 2003;285(4):H1453-H1463.
    25.Yamamoto-Mizuma S,Wang GX,Liu LL,et al.Altered properties of volume-sensitive osmolyte and anion channels(VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3-/- mice.J Physiol,2004,557(Pt2):439-456.
    26.Cunningham SA,Awayda MS,Bubien JK,et al.Cloning of an epithelial chloride channel from bovine trachea.J Biol Chem,1995,270(52):31016-31026.
    27.Loewen ME,Forsyth GW.Structure and function of CLCA proteins.Physiol Rev,2005,85(3):1061-1092
    28.Gruber AD,Pauli BU.Molecular cloning and biochemical characterization of a truncated,secreted member of the human family of Ca~(2+)-activated Cl- channels.Biochim Biophys Acta,1999,1444(3):418-423.
    29.Lang F,F(o|¨)ller M,Lang KS,et al.Ion channels in cell proliferation and apoptotic cell death.J Membr Biol,2005,205(3):147-157.
    30.Block ML,Moody WJ.A voltage-dependent chloride current linked to the cell cycle in ascidian embryos.Science,1990,247(4946):1090-1092.
    31.Voets T,Wei L,De Smet P,et al.Downregulation of volume-activated Cl- currents during muscle differentiation.Am J Physiol,1997,272(2Pt 1):C667-C674.
    32.Wang GL,Wang XR,Lin M J,et al.Deficiency in C1C-3 chloride channels prevents rat aortic smooth muscle cell proliferation.Circ Res,2002,91(10):E28-32.
    33.Zheng YJ,Furukawa T,Ogura T,et al.M phase-specific expression and phosphorylation-dependent ubiquitination of the C1C-2 channel.J Biol Chem, 2002,277(35):32268-32273.
    34.Cheng G,Kim MJ,Jia G,et al.Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells.Cardiovasc Res,2007,73(1):198-207.
    35.Koch MC,Steinmeyer K,Lorenz C,et al.The skeletal muscle chloride channel in dominant and recessive human myotonia.Science,1992,257(5071):797-800.
    36.Kunzelmann K,Mall M,Briel M,et al.The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca~(2+) activated Cl- conductance of Xenopus oocytes.Pflugers Arch.1997,435(1):178-181.
    37.Chen L,Wang L,Zhu L,et al.Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells.Am J Physiol Cell Physiol,2002,283(4):C1313-C1323.
    38.Kim JA,Kang YS,Lee SH,et al.Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator(CFTR) Cl(-)channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells.Biochem Biophys Res Commun,1999,261(3):682-688.
    39.Chou CY,Shen MR,Wu SN.Volume-sensitive chloride channels associated with human cervical carcinogenesis.Cancer Res,1995,55(24):6077-6083.
    40.Shen MR,Droogmans G,Eggermont J,et al.Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells.J Physiol,2000,529(Pt 2):385-394.
    41.Gruber AD,Pauli BU.Tumorigenicity of human breast cancer is associated with loss of the Ca~(2+)-activated chloride channel CLCA2.Cancer Res,1999,59(21):5488-5491.
    42.陈艳明,杨俊,胡玉珍,等.容量调控氯通道在人胃癌细胞系SGC7910增殖中的作用.第四军医大学学报,2004,25(6):489-491.
    43.马建军,周士胜,保庭毅,等.氯通道阻断剂NPPB对肾癌细胞系GRC-1生长的抑制作用.第四军医大学学报,2003,24(9):822-824.
    44.Schultz BD,Singh AK,Devor DC,et al.Pharmacology of CFTR chloride channel activity.Physiol Rev,1999,79(1 Suppl):S109-S144.
    45. Suzuki M,Morita T, Iwamoto T. Diversity of Cl(-) channels. Cell Mol Life Sci, 2006,63(1):12-24.
    46. Jaiyesimi IA, Buzdar AU, Decker DA, et al. Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol, 1995,13(2):513-529.
    47. Mabuchi S, Ohmichi M, Kimura A, et al. Tamoxifen inhibits cell proliferation via mitogen-activated protein kinase cascades in human ovarian cancer cell lines in a manner not dependent on the expression of estrogen receptor or the sensitivity to cisplatin. Endocrinology, 2004,145(3):1302-1313.
    48. Mandlekar S, Kong AN. Mechanisms of tamoxifen-induced apoptosis. Apoptosis, 2001,6(6):469-477.
    49. Manolopoulos VG, Liekens S, Koolwijk P, et al. Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen Pharmacol, 2000, 34(2): 107-116.
    50. Ransom CB, O'Neal JT, Sontheimer H. Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. JNeurosci., 2001,21(19):7674-7683.
    51. Ferlini C, Scambia G, Marone M, et al. Tamoxifen induces oxidative stress and apoptosis in oestrogen receptor-negative human cancer cell lines. Br J Cancer, 1999, 79(2):257-263.
    52. Wang L, Chen L, Zhu L, et al. Regulatory volume decrease is actively modulated during the cell cycle. J Cell Physiol, 2002,193(1):110-119.
    53. Hara-Chikuma M, Yang B, Sonawane ND, et al. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem, 2005, 280(2):1241-1247.
    54. Li X, Wang T, Zhao Z, et al. The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am J Physiol Cell Physiol, 2002, 282(6):C1483-C1491.
    55. Pappas CA, Ullrich N, Sontheimer H, et al. Reduction of glial proliferation by K~+ channel blockers is mediated by changes in pHi. Neuroreport, 1994, 6(1): 193-196.
    1. O'Grady SM, Jiang X, Ingbar DH, et al. Cl-channel activation is necessary for stimulation of Na transport in adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2000,278(2): L239-L244.
    
    2. Nilius B, Eggermont J, Voets T, et al. Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol, 1997,68(1): 69-119.
    
    3. Valverde MA. ClC channels: leaving the dark ages on the verge of a new millennium. Curr Opin Cell Biol, 1999, 11(4):509-516.
    
    4. Li X, Wang T, Zhao Z, et al. The CLC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am J Physiol Cell Physiol, 2002, 282(6):C1483-C1491.
    
    5. Chen LX, Zhu LY, Jacob TJ, et al. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells. Cell Prolif, 2007,40(2):253-267.
    
    6. Mao J, Chen L, Xu B, et al. Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol, 2008, 75(9):1706-1716.
    
    7. Chou CY, Shen MR, Wu SN. Volume-sensitive chloride channels associated with human cervical carcinogenesis. Cancer Res, 1995, 55(24):6077-6083.
    
    8. Kim JA, Kang YS, Lee SH, et al. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells. Biochem Biophys Res Commun, 1999,261(3):682-688.
    
    9. Ransom CB, O'Neal JT, Sontheimer H. Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci, 2001,21(19):7674-7683.
    
    10. Ise T, Shimizu T, Lee EL, et al. Roles of volume-sensitive Cl~- channel in cisplatin-induced apoptosis in human epidermoid cancer cells. J Membr Biol, 2005,205(3):139-145.
    11. Wang L, Chen L, Jacob TJ. The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition. J Physiol, 2000, 524(Pt1):63-75.
    
    12. Zhou JG, Ren JL, Qiu QY, et al. Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem, 2005, 280(8):7301-7308.
    
    13. Jentsch TJ, Steinmeyer K, Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature, 1990,348(6301):510-514.
    
    14. Jentsch TJ, Stein V, Weinreich F, et al. Molecular structure and physiological function of chloride channels. Physiol Rev, 2002, 82(2):503-568.
    
    15. Accardi A, Pusch M. Fast and slow gating relaxations in the muscle chloride channel CLC-1. J Gen Physiol, 2000,116(3): 433-444.
    
    16. Accardi A, Ferrera L, Pusch M. Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S. J Physiol, 2001, 534(Pt 3):745-752.
    
    17. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand,2003,177(2): 119-147.
    
    18. Hermoso M, Satterwhite CM, Andrade YN, et al. ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl- channels and volume regulation in HeLa cells and Xenopus laevis oocytes. J Biol Chem, 2002, 277(42):40066-40074.
    
    19. Salazar G, Love R, Styers ML, et al. AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem, 2004, 279(24):25430-25439.
    
    20. Li X, Wang T, Zhao Z, et al. The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am J Physiol Cell Physiol, 2002, 282(6):C1483-C1491.
    
    21. Guan YY, Wang GL, Zhou JG. The ClC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells.Trends Pharmacol Sci,2006,27(6):290-296.
    22.Dai YP,Bongalon S,Hatton WJ,et al.ClC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery.Br J Pharmacol,2005,145(1):5-14.
    23.钱艳,关永源,王冠蕾,等.CLC-3反义寡核苷酸对ConA诱导的T淋巴细胞增殖的影响.中国药理学通报,2004,20(3):314-317.
    24.Wang GL,Wang XR,Lin MJ,et al.Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation.Cite Res,2002,91(10):E28-32.
    25.周园,周家国,丘钦英,等.氯通道CLC-3反义寡核苷酸对过氧化氢诱导的大鼠主动脉平滑肌细胞凋亡的影响.中国动脉硬化杂志,2006,14(5):369-373.
    26.杨翔云,赖小刚,张勇,等.SiRNA干扰CLC-2表达对人胶质瘤U-87细胞增殖的抑制作用。癌症,2006,25(7):805-810.
    27.Olsen ML,Schade S,Lyons SA,et al.Expression of voltage-gated chloride channels in human glioma cells.J Neurosci,2003,23(13):5572-5582.
    28.Zhang HN,Zhou JG,Qiu QY,et al.ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells.Apoptosis,2006,11(3):327-336.
    29.Lemonnier L,Shuba Y,Crepin A,et al.Bcl-2-dependent modulation of swelling-activated Cl- current and ClC-3 expression in human prostate cancer epithelial cells.Cancer Res,2004,64(14):4841-4848.
    30.Wang LW,Chen LX,Jacob T.CLC-3 expression in the cell cycle of nasopharyngeal carcinoma cells.Acta Physiologiea Sinica,2004,56(2):230-236.
    31.Mao J,Chen L,Xu B,et al.Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells.Biochem Pharmacol,2008,75(9):1706-1716.
    32.Lemonnier L,Lazarenko R,Shuba Y,et al.Alterations in the regulatory volume decrease(RVD) and swelling-activated Cl- current associated with neuroendocrine differentiation of prostate cancer epithelial ceils.Endocr Relat Cancer, 2005,12(2):335-349
    
    33. Weylandt KH, Nebrig M, Jansen-Rosseck N, et al. ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment. Mol Cancer Ther, 2007,6(3):979-986.
    
    34. Nesterova M, Cho-Chung YS. Killing the messenger: antisense DNA and siRNA. Curr Drug Targets, 2004, 5(8):683-689.
    
    35. Klausen TK, Bergdahl A, Hougaard C, et al. Cell cycle-dependent activity of the volume- and Ca~(2+)-activated anion currents in Ehrlich lettre ascites cells.J Cell Physiol, 2007,210(3):831-842.
    
    36. Shen MR, Droogmans G, Eggermont J, et al. Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J Physiol, 2000, 529(Pt 2):385-394.
    
    37. Duan D, Zhong J, Hermoso M, et al. Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody. J Physiol, 2001, 531(Pt 2):437-444.
    
    38. Zhou JG, Ren JL, Qiu QY, et al. Regulation of intracellular Cl~- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells. J Biol Chem, 2005,280(8):7301-7308.
    
    39. Wang GX, Hatton WJ, Wang GL, et al. Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am J Physiol Heart Circ Physiol 2003, 285(4): H1453-H1463.
    
    40. Hara-Chikuma M, Yang B, Sonawane ND, et al. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem, 2005, 280(2): 1241-1247.
    
    41. Pappas CA, Ullrich N, Sontheimer H, et al. Reduction of glial proliferation by K~+ channel blockers is mediated by changes in pHi. Neuroreport, 1994, 6(1):193-196.
    
    42. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994, 79(4):573-582.
    43. Prall OW, Sarcevic B, Musgrove EA, et al. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin Dl expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem, 1997,272(16):10882-10894.
    
    44. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999,13(12):1501-1512.
    1.Hatta S,Sakamoto J,Horio Y.Ion channels and diseases.Med Electron Microsc,2002,35(3):117-126.
    2.Waldegger S,Jentsch TJ.Functional and structural analysis of ClC-K chloride channels involved in renal disease.J Biol Chem,2000,275(32):24527-24533.
    3.Abbott GW,Butler MH,Bendahhou S,et al.MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis.Cell,2001,104(2):217-231.
    4.Jurkat-Rott K,Mitrovic N,Hang C,et al.Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current.Proc Natl Acad Sci U S A,2000,97(17):9549-9554.
    5.O'Grady SM,Jiang X,Ingbar DH,et al.Cl-channel activation is necessary for stimulation of Na transport in adult alveolar epithelial cells.Am J Physiol Lung Cell Mol Physiol,2000,278(2):L239-L244.
    6.Nilius B,Eggermont J,Voets T,et al.Properties of volume-regulated anion channels in mammalian cells.Prog Biophys Mol Biol,1997,68(1):69-119.
    7.Valverde MA.ClC channels:leaving the dark ages on the verge of a new millennium.Curr Opin Cell Biol,1999,11(4):509-516.
    8.Salazar G,Love R,Styers ML,et al.AP-3-dependent mechanisms control the targeting of a chloride channel(ClC-3) in neuronal and non-neuronal cells.J Biol Chem,2004,279(24):25430-25439.
    9.Jentsch TJ,Stein V,Weinreich F,et al.Molecular structure and physiological function of chloride channels.Physiol Rev,2002,82(2):503-568.
    10.Lang F,F(o|¨)ller M,Lang KS,et al.Ion channels in cell proliferation and apoptotic cell death.J Membr Biol,2005,205(3):147-157.
    11.Rychkov GY,Pusch M,Astill DS,et al.Concentration and pH dependence of skeletal muscle chloride channel CIC-1.J Physiol,1996,497(Pt 2):423-435.
    12.焦军东,李哲,艾维,等.容量敏感外向整流性氯通道参与氧化应激介导的 系膜细胞凋亡.中华肾脏病杂志,2006,22(7):416-420.
    13.刘剑波,张珍祥,徐永健,等.白细胞介素13对小鼠支气管哮喘模型肺组织钙激活的氯通道gob-5和黏蛋白基因MUC5AC表达的作用.中华结核和呼吸杂志,2004,27(12):837-840.
    14.Chou CY,Shen MR,Wu SN.Volume-sensitive chloride channels associated with human cervical carcinogenesis.Cancer Res,1995,55(24):6077-6083.
    15.马建军,周士胜,保庭毅,等.氯通道阻断剂NPPB对肾癌细胞系GRC-1生长的抑制作用.第四军医大学学报,2003,24(9):822-824.
    16.田晶,陶凌,曹云新,等.尼氟灭酸对肝癌细胞增殖的影响.生理学报,2003,55(2):160-164.
    17.Soroceanu L,Manning TJ Jr,Sontheimer H.Modulation of glioma cell migration and invasion using Cl(-) and K(+) ion channel blockers.J Neurosci,1999,19(14):5942-5954.
    18.Mao JW,Wang LW,Sun XR,et al.Volume-activated Cl- current in migrated nasopharyngeal carcinoma cells.Acta Physiologica Sinica,2004,56(4):525-530.
    19.Jirsch J,Deeley RG,Cole SP,et al.Inwardly rectifying K~+ channels and volume-regulated anion channels in multidrug-resistant small cell lung cancer cells.Cancer Res,1993,53(18):4156-4160.
    20.Jentsch TJ,Steinmeyer K,Schwarz G.Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes.Nature,1990,348(6301):510-514.
    21.Accardi A,Pusch M.Fast and slow gating relaxations in the muscle chloride channel CLC-1.J Gen Physiol,2000,116(3):433-444.
    22.Accardi A,Ferrera L,Pusch M.Drastic reduction of the slow gate of human muscle chloride channel(ClC-1) by mutation C277S.J Physiol,2001,534(Pt 3):745-752.
    23.Nilius B,Droogmans G.Amazing chloride channels:an overview.Acta Physiol Stand,2003,177(2):119-147.
    24.Koch MC,Steiumeyer K,Lorenz C,et al.The skeletal muscle chloride channel in dominant and recessive human myotonia.Science,1992,257(5071):797-800.
    25.Wang L,Chen L,Jacob TJ.The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition.J Physiol,2000,524 Pt 1:63-75.
    26.Hermoso M,Satterwhite CM,Andrade YN,et al.ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl~- channels and volume regulation in HeLa cells and Xenopus laevis oocytes.J Biol Chem,2002,277(42):40066-40074.
    27.Hara-Chikuma M,Yang B,Sonawane ND,et al.ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation.J Biol Chem,2005,280(2):1241-1247.
    28.Li X,Wang T,Zhao Z,et al.The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells.Am J Physiol Cell Physiol,2002,282(6):C1483-C1491.
    29.Guan YY,Wang GL,Zhou JG.The ClC-3 Cl~- channel in cell volume regulation,proliferation and apoptosis in vascular smooth muscle cells.Trends Pharmacol Sci,2006,27(6):290-296.
    30.Duffy SM,Lawley WJ,Kaur D,et al.Inhibition of human mast cell proliferation and survival by tamoxifen in association with ion channel modulation.J Allergy Clin Immunol,2003,112(5):965-972.
    31.Block ML,Moody WJ.A voltage-dependent chloride current linked to the cell cycle in ascidian embryos.Science,1990,247(4946):1090-1092.
    32.钱艳,关永源,王冠蕾,等.CLC-3反义寡核苷酸对ConA诱导的T淋巴细胞增殖的影响.中国药理学通报,2004,20(3):314-317.
    33.Wang GL,Wang XR,Lin MJ,et al.Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation.Circ Res,2002,91(10):E28-E32.
    34.Cheng G,Kim MJ,Jia G,et al.Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells.Cardiovasc Res,2007,73(1):198-207.
    35.Jiang B,Hattori N,Liu B,et al.Expression and roles of Cl- channel ClC-5 in cell cycles of myeloid cells.Biochem Biophys Res Commun,2004,317(1):192-197.
    36.Zheng YJ,Furukawa T,Ogura T,et al.M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel.J Biol Chem,2002,277(35):32268-32273.
    37.Olsen ML,Schade S,Lyons SA,et al.Expression of voltage-gated chloride channels in human glioma cells.J Neurosci,2003,23(13):5572-5582.
    38.Wang LW,Chen LX,Jacob T.CLC-3 expression in the cell cycle of nasopharyngeal carcinoma cells.Acta Physiologica Sinica,2004,56(2):230-2:16.
    39.杨翔云,赖小刚,张勇等.SiRNA干扰CLC-2表达对人胶质瘤U-87细胞增殖的抑制作用。癌症,2006,25(7):805-810.
    40.Jiang B,Hattori N,Liu B,et al.Suppression of cell proliferation with induction of p21 by Cl(-) channel blockers in human leukemic cells.Eur J Pharmacol,2004,488(1-3):27-34.
    41.Lemonnier L,Shuba Y,Crepin A,et al.Bcl-2-dependent modulation of swelling-activated Cl~- current and ClC-3 expression in human prostate cancer epithelial cells.Cancer Res,2004,64(14):4841-4848.
    42.Zhang HN,Zhou JG,Qiu QY,et al.ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells.Apoptosis,2006,11(3):327-336.
    43.Mao J,Chen L,Xu B,et al.Suppression of ClC-3 channel expression reduces migration of nasopharyngeal carcinoma cells.Biochem Pharmacol,2008,75(9):1706-1716.
    44.Gill DR,Hyde SC,Higgins CF,et al.Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein.Cell,1992,71(1):23-32.
    45.Valverde MA,Diaz M,Sepulveda FV,et al.Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein.Nature,1992,355(6363):830-833.
    46.Gerard V,Rouzaire-Dubois B,Dilda P,et al.Alterations of ionic membrane permeabilities in multidrug-resistant neuroblastoma x glioma hybrid cells.J Exp Biol,1998,201(Pt 1):21-31.
    47. Weylandt KH, Nebrig M, Jansen-Rosseck N, et al. ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment. Mol Cancer Ther, 2007, 6(3):979-986.
    48. Suzuki M, Morita T, Iwamoto T. Diversity of Cl(-) channels. Cell Mol Life Sci, 2006,63(1): 12-24.
    49. Stutzin A, Hoffmann EK. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol, 2006,187(1-2):27-42.
    50. Rasola A, Galietta LJ, Gruenert DC, et al. Volume-sensitive chloride currents in four epithelial cell lines are not directly correlated to the expression of the MDR-1 gene. J Biol Chem, 1994, 269(2): 1432-1436.
    51. Morin XK, Bond TD, Loo TW, et al. Failure of P-glycoprotein (MDR1) expressed in Xenopus oocytes to produce swelling-activated chloride channel activity. J Physiol, 1995,486 (Pt3):707-714.
    52. Sardini A, Amey JS, Weylandt KH, et al. Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta, 2003, 1618(2):153-162.
    53. Paulmichl M, Li Y, Wickman K, et al. New mammalian chloride channel identified by expression cloning. Nature, 1992, 356(6366):238-241.
    54. Li C, Breton S, Morrison R, et al. Recombinant pICln forms highly cation-selective channels when reconstituted into artificial and biological membranes. J Gen Physiol, 1998,112(6):727-736.
    55. Zhou JG, Ren JL, Qiu QY, et al. Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells.J Biol Chem, 2005,280(8):7301 -7308.
    56. Weylandt KH, Valverde MA, Nobles M,et al. Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation. J Biol Chem, 2001, 276(20): 17461-17467.
    57. Duan D, Zhong J, Hermoso M, et al. Functional inhibition of native volume-sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti-ClC-3 antibody. J Physiol, 2001, 531(Pt 2):437-444.
    58.Wang GX,Hatton WJ,Wang GL,et al.Functional effects of novel anti-ClC-3antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells.Am J Physiol Heart Circ Physiol 2003,285(4):H1453-H1463.
    59.Voets T,Sz(u|¨)cs G,Droogrnans G,et al.Blockers of volume-activated Cl-currents inhibit endothelial cell proliferation.Pflugers Arch,1995,431(1):132-134.
    60.Wondergem R,Gong W,Monen SH,et al.Blocking swelling-activated chloride current inhibits mouse liver cell proliferation.J Physiol,2001,532(P13):661-672.
    61.Jiao JD,Xu CQ,Yue P,et al.Volume-sensitive outwardly rectifying chloride channels are involved in oxidative stress-induced apoptosis of mesangial cells.Biochem Biophys Res Commun,2006,340(1):277-285.
    62.Wei L,Xiao AY,Jin C,et al.Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons.Pflugers Arch,2004,448(3):325-334.
    63.Souktani R,Ghaleh B,Tissier R,et al.Inhibitors of swelling-activated chloride channels increase infarct size and apoptosis in rabbit myocardium.Fundam Clin Pharmacol,2003,17(5):555-561.
    64.Li M,Wang B,Lin W.Cl-channel blockers inhibit cell proliferation and arrest the cell cycle of human ovarian cancer cells.Eur J Gynaecol Oncol,2008,29(3):267-271.
    65.陈艳明,杨俊,胡玉珍,等.容量调控氯通道在人胃癌细胞系SGC7910增殖中的作用.第四军医大学学报,2004,25(6):489-491.
    66.Chen LX,Zhu LY,Jacob TJ,et al.Roles of volume-activated Cl-currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells.Cell Prolif,2007,40(2):253-267.
    67.Klausen TK,Bergdahl A,Hougaard C,et al.Cell cycle-dependent activity of the volume- and Ca~(2+)-activated anion currents in Ehrlich lettre ascites cells.J Cell Physiol,2007,210(3):831-842.
    68.Chen L,Wang L,Zhu L,et al.Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol, 2002,283(4):C1313-C1323.
    69. Shen MR, Droogmans G, Eggermont J, et al. Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J Physiol, 2000, 529(Pt 2):385-394.
    70. Ransom CB, O'Neal JT, Sontheimer H.Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. JNeurosci, 2001,21(19):7674-7683.
    71. Mao J, Wang L, Fan A, et al. Blockage of volume-activated chloride channels inhibits migration of nasopharyngeal carcinoma cells. Cell Physiol Biochem, 2007,19(5-6):249-258.
    72. Schneider L, Klausen TK, Stock C,et al. H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts. Pflugers Arch, 2008,455(6):1055-1062.
    73. Mao J, Chen L, Xu B, et al. Volume-activated chloride channels contribute to cell-cycle-dependent regulation of HeLa cell migration. Biochem Pharmacol, 2009, 77(2):159-168.
    74. Mao JW, Wang LW, Jacob T,et al. Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells. Cell Res, 2005,15(5):371-378.
    75. Klausen TK, Hougaard C, Hoffmann EK, et al. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol Cell Physiol, 2006,291(4):C757-C771.
    76. Lemonnier L, Lazarenko R, Shuba Y, et al. Alterations in the regulatory volume decrease (RVD) and swelling-activated Cl- current associated with neuroendocrine differentiation of prostate cancer epithelial cells. Endocr Relat Cancer, 2005,12(2):335-349.
    
    77. Shimizu T, Numata T, Okada YA,et al. role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proc Natl Acad Sci U S A, 2004, 101(17):6770-6773.
    
    78. Ise T, Shimizu T, Lee EL, et al. Roles of volume-sensitive Cl- channel in cisplatin-induced apoptosis in human epidermoid cancer cells. J Membr Biol, 2005,205(3): 139-145.
    79. Lee EL, Shimizu T, Ise T,et al. Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells. J Cell Physiol, 2007, 211(2):513-521.
    80. Jeong JW, Lee KY, Lydon JP, et al. Steroid hormone regulation of Clca3 expression in the murine uterus. J Endocrinol, 2006,189(3):473-484.
    81. Qu Z, Hartzell HC. Functional geometry of the permeation pathway of Ca~(2+)-activated Cl-channels inferred from analysis of voltage-dependent block. J Biol Chem, 2001,276(21):18423-18429.
    82. Greenwood IA, Leblanc N, Gordienko DV, et al. Modulation of ICl(Ca) in vascular smooth muscle cells by oxidizing and cysteine-reactive reagents. Pflugers Arch, 2002,443(3):473-482.
    83. Cunningham SA, Awayda MS, Bubien JK, et al. Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem, 1995,270(52):31016-31026.
    84. Loewen ME, Forsyth GW. Structure and function of CLCA proteins. Physiol Rev, 2005,85(3):1061-1092.
    85. Frings S, Reuter D, Kleene SJ. Neuronal Ca~(2+) -activated Cl~- channels-homing in on an elusive channel species. Prog Neurobiol, 2000,60(3):247-289.
    86. Hauber HP, Tsicopoulos A, Wallaert B, et al. Expression of HCLCA1 in cystic fibrosis lungs is associated with mucus overproduction. Eur Respir J, 20C4, 23(6):846-850.
    87. Hauber HP, Daigneault P, Frenkiel S, et al. Niflumic acid and MSI-2216 reduce TNF-alpha-induced mucin expression in human airway mucosa. J Allergy Clin Immunol, 2005, 115(2):266-271.
    88. Hegab AE, Sakamoto T, Nomura A, et al. Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: the role of hCLCA1. Chest, 2007, 131(4):1149-1156.
    89. Loewen ME, Bekar LK, Gabriel SE, et al. pCLCAl becomes a cAMP-dependent chloride conductance mediator in Caco-2 cells. Biochem Biophys Res Commun, 2002,298(4):531-536.
    90. Loewen ME, Bekar LK, Walz W, et al. pCLCAl lacks inherent chloride channel activity in an epithelial colon carcinoma cell line. Am J Physiol Gastrointest Liver Physiol, 2004,287(1):G33-G41.
    91. Elble RC, Pauli BU. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J Biol Chem, 2001, 276(44): 40510-40517.
    92. Beckley JR, Pauli BU, Elble RC. Re-expression of detachment-inducible chloride channel mCLCA5 suppresses growth of metastatic breast cancer cells. J Biol Chem, 2004,279(40):41634-41641.
    93. Abdel-Ghany M, Cheng HC, Elble RC, et al. Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. J Biol Chem, 2002,277(37):34391-34400.
    94. Kim JA, Kang YS, Lee YS. Role of Ca~(2+)-activated Cl~- channels in the mechanism of apoptosis induced by cyclosporin A in a human hepatoma cell line. Biochem Biophys Res Commun, 2003, 309(2):291-297.
    95. Segal MS, Beem E. Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol Cell Physiol, 2001, 281(4):C1196-C1204.
    96. Gruber AD, Pauli BU. Tumorigenicity of human breast cancer is associated with loss of the Ca~(2+)-activated chloride channel CLCA2. Cancer Res, 1999, 59(21):5488-5491.
    97. Li X, Cowell JK, Sossey-Alaoui K. CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene, 2004, 23(7): 1474-1480.
    98. Zhu D, Pauli BU. Correlation between the lung distribution patterns of Lu-ECAM-1 and melanoma experimental metastases. Int J Cancer, 1993, 53(4):628-633.
    99. Goetz DJ, el-Sabban ME, Hammer DA, et al. Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow. Int J Cancer, 1996, 65(2): 192-199.
    100. Elble RC, Widom J, Gruber AD, et al. Cloning and characterization of lung-endothelial cell adhesion molecule-1 suggest it is an endothelial chloride channel. J Biol Chem, 1997, 272(44):27853-27861.
    101. Pauli BU, Abdel-Ghany M, Cheng HC, et al. Molecular characteristics and functional diversity of CLCA family members. Clin Exp Pharmacol Physiol, 2000,27(11):901-905.
    102. Abdel-Ghany M, Cheng HC, Elble RC, et al. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem, 2001, 276(27):25438-25446.
    103. Abdel-Ghany M, Cheng HC, Elble RC, et al. The interacting binding domains of the beta(4) integrin and calcium-activated chloride channels (CLCAs) in metastasis. J Biol Chem, 2003, 278(49):49406-49416.
    104. Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev, 1999, 79(1 Suppl):S23-S45.
    105. Wright AM, Gong X, Verdon B, et al. Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by external chloride.J Biol Chem, 2004,279(40):41658-41663.
    106. Schultz BD, Singh AK, Devor DC, et al. Pharmacology of CFTR chloride channel activity. Physiol Rev, 1999,79(1 Suppl):S109-S144.
    107. Fuller MD, Zhang ZR, Cui G, et al. Inhibition of CFTR channels by a peptide toxin of scorpion venom. Am J Physiol Cell Physiol, 2004, 287(5):C1328-C1341.
    108. Kunzelmann K, Mall M, Briel M, et al. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca~(2+) activated Cl~- conductance of Xenopus oocytes. Pflugers Arch. 1997,435(1):178-181.
    109. Wei L, Vankeerberghen A, Cuppens H, et al. The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca(2+)-activated Cl- channels. Pflugers Arch, 2001,442(2):280-285.
    110. Horisberger JD. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model. Pflugers Arch, 2003, 445(4):522-528.
    111. Mehta A. CFTR: more than just a chloride channel. Pediatr Pulmonol, 2005, 39(4):292-298.
    112. Burghardt B, Elkaer ML, Kwon TH, et al. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut, 2003, 52(7):1008-1016.
    113. Mall M, Kreda SM, Mengos A, et al. The DeltaF508 mutation results in loss of CFTR function and mature protein in native human colon. Gastroenterology, 2004,126(1):32-41.
    114. Yoshimura K, Nakamura H, Trapnell BC, et al. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res, 1991, 19(19):5417-5423.
    115. Yoshimura K, Nakamura H, Trapnell BC, et al. The cystic fibrosis gene has a "housekeeping"-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem, 1991, 266(14):9140-9144.
    116. Trapnell BC, Zeitlin PL, Chu CS, et al. Down-regulation of cystic fibrosis gene mRNA transcript levels and induction of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J Biol Chem, 1991, 266(16):10319-10323.
    117. Assef YA, Damiano AE, Zotta E, et al. CFTR in K562 human leukemic cells. Am J Physiol Cell Physiol, 2003, 285(2):C480-488.
    118. Mouchel N, Henstra SA, McCarthy VA, et al. HNFlalpha is involved in tissue-specific regulation of CFTR gene expression. Biochem J, 2004, 378(Pt 3):909-918.
    119. Piepoli A, Gentile A, Valvano MR, et al. Lack of association between UGT1A7, UGT1A9, ARP, SPINK1 and CFTR gene polymorphisms and pancreatic cancer in Italian patients. World J Gastroenterol, 2006, 12(39):6343-6348.
    120. Kim JA, Kang YS, Lee SH, et al. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells. Biochem Biophys Res Commun, 1999, 261(3):682-688.
    121. Kim JA, Kang YS, Lee SH, et al. Role of pertussis toxin-sensitive G-proteins in intracellular Ca2+ release and apoptosis induced by inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels in HepG2 human hepatoblastoma cells. J Cell Biochem, 2001, 81(1):93-101.
    122. Barriere H, Poujeol C, Tauc M, et al. CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am J Physiol Cell Physiol, 2001,281(3):C810-C824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700