用户名: 密码: 验证码:
ClC-3氯离子通道在视网膜神经节细胞RGC-5凋亡中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜神经节细胞(retinal ganglion cells, RGCs)的凋亡是青光眼等眼科疾病的重要病理特征之一,也是导致青光眼视野缺损的主要原因。RGC-5细胞系是目前作为青光眼体外实验模型的一个重要细胞系。谷氨酸是视网膜的主要兴奋性递质,正常情况下不引起毒性。但在眼压升高等原因导致视网膜缺血缺氧时,谷氨酸会大量释放,对视网膜神经节细胞产生毒性作用。谷氨酸的过度表达是导致RGCs凋亡的重要原因。因此,利用谷氨酸诱导的RGC-5凋亡可以作为研究视网膜神经节细胞凋亡及视神经保护的模型。
     氯离子是生物体内含量最丰富的阴离子,通过跨膜转运和离子通道参与机体多种生物功能。电压门控性氯通道(voltage-gated chloride channnel,CIC)在哺乳动物细胞中广泛表达,ClC-3氯离子通道作为此家族中的一个亚型,是目前研究较为广泛和明确的一种氯离子通道类型,与多种生理功能的调节有关。关于ClC参与细胞凋亡过程已得到广泛证实。转化生长因子β(transforming growth factorβ, TGF-β)是一种多功能的细胞间信号蛋白,在眼部多个组织中表达,并在多种眼科疾病中发挥作用。TGF-β言号从细胞膜转入细胞核内而发挥调控基因表达的作用,此过程需要依赖Smads家族蛋白的调节。TGF-β/Smads信号通路在许多临床疾病中发挥作用,也参与了多种细胞的凋亡过程。在哺乳动物中发现Smad蛋白共有8种,其中参与TGF-β信号转导的主要有Smad2、Smad3、Smad4及Smad7。
     鉴于此,实验以谷氨酸诱导视网膜神经节细胞凋亡作为研究对象,应用cDNA转染和RNAi方法改变细胞内ClC-3的表达,观察细胞凋亡情况及转化生长因子β2、Smads2、Smads3、Smads4、Smads7的表达变化,以探讨ClC-3及TGF-β/Smads信号转导通路在此过程中的作用。
     实验中首先应用RT-PCR的方法证实了RGC-5细胞中存在ClC-2、ClC-3、ClC-5、TGF-β1及TGF-β2 mRNA的表达,并发现TGF-β2表达含量明显高于TGF-β1;然后应用免疫组织化学染色的方法证实了ClC-3蛋白在RGC-5细胞中存在表达,并定位于细胞浆,为进一步实验提供了基础和依据。
     文献报道当谷氨酸刺激浓度为1mM时,RGC-5细胞的凋亡率大约为20%,是比较适宜的研究浓度,因此我们将传代后的细胞贴壁生长24h后,加入含有1mM谷氨酸的无血清DMEM培养液培养24h,从而得到RGC-5细胞凋亡的模型。
     进一步实验以谷氨酸诱导的RGC-5细胞凋亡为研究对象,应用ClC-3 cDNA技术成功转染细胞,使细胞内ClC-3的mRNA及蛋白质表达均明显升高,应用MTT法、DNA ladder及流式细胞仪检测细胞的凋亡情况。MTT法结果显示细胞的存活率明显上升,DNA ladder及流式细胞仪检测结果表明凋亡率下降,以上结果提示ClC-3的过表达对谷氨酸诱导的RGC-5细胞凋亡具有保护作用。
     随后实验应用RNAi技术转染谷氨酸诱导的RGC-5细胞,RT-PCR及Western blot结果证实ClC-3的mRNA及蛋白质表达均被明显抑制,应用MTT法、DNA ladder及流式细胞仪检测细胞的凋亡情况。MTT法结果显示细胞的存活率明显下降,DNA ladder及流式细胞仪检测结果表明凋亡率明显上升,结果证实了抑制ClC-3的表达可以促进细胞的凋亡。以上两部分实验从正反两方面提示ClC-3氯通道对谷氨酸诱导的RGC-5细胞凋亡具有保护作用。
     应用RNAi技术抑制ClC-3的表达后,细胞的凋亡率增加,为了进一步检测TGF-β/Smads信号转导通路在上述过程中所起的作用,我们应用RT-PCR及Western blot的方法,检测TGF-β2.Smad2.Smad3.Smad4. Smad7 mRNA及蛋白含量的变化情况,发现TGF-β2及Smad2.Smad3. Smad4.Smad7 mRNA及蛋白表达均有不同程度的增加,提示TGF-p/Smads信号转导通路可能在谷氨酸诱导的RGC-5细胞凋亡过程中发挥作用。
     本实验探讨了在谷氨酸诱导的RGC-5细胞凋亡过程中,ClC-3氯离子通道及TGF-p/Smad信号通路的作用,并得出结论:ClC-3氯通道对谷氨酸诱导的RGC-5细胞凋亡具有保护作用,而TGF-p/Smad信号通路可能参与此过程。提示ClC-3氯通道及TGF-p/Smad信号通路可能成为视神经保护一个新靶点,为进一步研究青光眼的发病机制及视神经保护提供了理论基础和实验依据。
Retinal ganglion cells (RGCs) apoptosis is an important pathological feature of glaucoma and other eye diseases. The RGC-5 cell line is currently used as an in vitro model of glaucoma. Glutamate normally functions as the major excitatory amino acid neurotransmitter in the retina,but at high concentrations it becomes neurotoxic after the intraocular pressure increased,Over-expression of glutamate plays a large role in RGCs apoptosis. Therefore, a glutamate-induced RGC-5 apoptosis model can be used to investigate RGC apoptosis and optic neuroprotection.
     Chloride ion is the most abundant negion, participating in a variety of biological functions through transmembrane transport and ion channels.Chloride channels (ClC) have been shown extensively distributing in mammal's organs, tissues and cells.It plays an important role in many physiological and pathological functions,such as apoptosis.The transforming growth factorβ(TGF-β)is a kind of multifunctional protein of cellular signal transmission,which have been shown extensively distributing in eye and play a role in many ophthalmology disease.The TGF-β/Smad signaling pathways play a role in many clinical diseases and are involved in apoptosis in a variety of cells. TGF-βsignaling transfers from the cell membrane to the nucleus and subsequently regulates Smads family proteins. Eight Smad proteins are expressed in mammals, and Smad2, Smad3, Smad4, and Smad7 participate in signal transduction of TGF-β.
     Reverse transcription (RT)-PCR results revealed ClC-2, ClC-3, and ClC-5,TGF-β1, TGF-β2 mRNA expressed in RGC-5 cells. TGF-p 1 gene expression was significantly less than TGF-β2.Therefore, TGF-β2 represented the detection index in the present study.Immunohistochemical staining suggested that ClC-3 protein expression in RGC-5 cells was localized in the cytoplasm.
     The apoptosis rate of 20% is a suitable for research at a concentration of 1 mmol/L glutamate. The RGC-5 cells were allowed to grow for 24 hours, followed by culture with serum-free DMEM supplemented with 1 mmol/L glutamate for 24 hours.
     The present experiment analyzed glutamate-induced RGC-5 cell apoptosis, showing that ClC-3 mRNA and protein expressions significantly increased with ClC-3 cDNA transfection. MTT、DNA ladder assay and flow cytometry analyses detected the cell viability and apoptosis.After the ClC-3 cDNA transfection,MTT assay results demonstrated significantly increased survival rate,flow cytometry and the DNA ladder assay revealed the apoptosis rate was significantly decreased,which suggests that ClC-3 overexpression exhibited a protective effect on apoptosis.
     Subsequently, ClC-3 mRNA and protein expressions were inhibited by RNAi technology.MTT、DNA ladder assay and flow cytometry analyses detected cell viability and apoptosis.After the ClC-3 expressions were inhibited,MTT assay results demonstrated significantly decreased survival rate,flow cytometry and the DNA ladder assay revealed the apoptosis rate was significantly increased,which suggests that the inhibition of ClC-3 may promote the apoptosis of glutamate-induced RGC-5 cell.
     The apoptosis rate was significantly increased after the ClC-3 mRNA and protein expressions were inhibited by RNAi technology,then Reverse transcription (RT)-PCR and western blot results revealed Smad2, Smad3, Smad4, and Smad7 mRNA and protein expression increased to varying degrees, suggesting that these molecules contribute to cellular apoptosis.
     In the present study, overexpression of ClC-3 chloride channel inhibited apoptosis in glutamate-induced RGC-5 cells. Inhibition of ClC-3 chloride channel expression promoted apoptosis, and TGF-β/Smad signaling pathways could play a role in this process. These results demonstrated a role for the ClC-3 chloride channel in TGF-β/Smad signaling pathways, suggesting a novel target for optic nerve and function protection.
     All my experiments offered new ideas for further study of the pathogenesis of glaucoma and development of neuroprotection.
引文
[1]刘家琦,李凤鸣,吴静安,等.实用眼科学[M].北京:人民卫生出版社,1999:28.
    [2]Varma R, Peeples P, Walt JG, et al. Disease progression and the need for neuroprotection in glaucoma management[J]. Am J Manage Care,2008,14(1 Suppl):S15-S19.
    [3]Levin LA. Neuroprotection and regeneration in glaucoma[J]. Ophthalmol Clin North Am,2005,18(4):585-596.
    [4]Nickells RW.Ganglion cell death in glaucoma:from mice to men[J]. Vet Ohthalmol,2007,Suppl 1:S88-S94.
    [5]Kumar DM, Perez E, Cai ZY, et al. Role of nonfeminizing estrogen analogues in neuroprotection of rat retinal ganglion cells against glutamate-induced cytotoxicity[J]. Free Radical Biology and Medicine,2005, 38(9):1152-1163.
    [6]Fan W, Agarwal N, Kumar MD, et al. Retinal ganglion cell death and neuroprotection:Involvement of the CaMKII α gene[J]. Brain Res Mol Brain Res,2005,139(2):306-316.
    [7]Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells[J]. Vision Research,1997,37(24):3483-3493.
    [8]Jentsch TJ, Friedrich T, Schriever A,et al. The CLC chloride channel family [J].Pflugers Arch,1999,437(6):783-795.
    [9]Cheng G, Shao Z, Chaudhari B. Involvement of chloride channels in TGF-betal-induced apoptosis of human bronchial epithelial cells[J]. Physiol Lung Cell Mol Physiol,2007,293(5):L1339-1347.
    [10]Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest,apoptosis,and epithelial-mesenchymal transition[J]. Curr Opin Cell Biol,2009,1(2):166-176.
    [11]Rabacchi SA, Bonfanti L, Liu XH,et al.Apoptotic cell death induced by optic nerve lesion in the neonatal rat[J]. Neurosci,1994,14:5292-5301.
    [12]Krishnamoorthy, Agarwal, Prasanna, et al.Characterization of a transformed rat retinal ganglion cell line[J].Molecular Brain Research,2001, 86:1-12.
    [13]Govindaiah BS,Shankaranarayana R,Raju TR.Enhanced metabolic activity coincides with survial and differentiation of cultured rat retinal ganglion cells exposed to glutamate[J].Neuroscience,2002,113(3):547.
    [14]Lagreze WA,Knorle R,Bach M,et al.Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia[J].Invest Ophthalmol Vis SCI,1998,39:1063.
    [15]Sucher NJ,Lipton SA,Dreyer EB.Molecular basis of glutamate toxicity in retinal ganglion cells[J].Vision Research,1997,37:3483.
    [16]Naskar R,Vorwerk CK,Dreyer EB.Concurrent downregulation of a glutamate transporter and receptor in glaucoma[J].Invest Ophthalmol Vis Sci,2000,41:1940.
    [17]Lucas DR,Newhouse JP.The toxic effect of sodium L-glutamate on the inner layers of the retina[J].Arch Ophthalmol,1957,58:193-201.
    [18]Azuma N,Kawamura M,Kohsaka S.Morphological and immunohistochemical studies on denegerative changes of the retina and the optic nerve in neonatal rats injected with monosodium-L-glutamate[J].Acta Soc Opthalmol Jpn,1989,93:72-79.
    [19]Olney JW.Glutamate-induced retinal degeneration in neonatal mice:electron microscopy of the acutely evolving lession[J].J Neuropathol Exp Neurol,1969,28:455-474.
    [20]Ohguro H, Katsushima H,Maruyama I,et al.A high dietary intake of sodium glutamate as flavoring(ajinomoto) causes gross changes in tetinal morphology and function[J].Exp Eye Res,2002,75:307-315.
    [21]Pan IH,Wexler EM,Nawy S,et al.Protection by eliprodil against excitotoxicity in cultured retinal ganglion cells[J].Invest Ophthalmol Vis Sci,1999,40:1170-1176.
    [22]Kapin MA,Doshi R, Scatton B, et al.Neuroprotective effects of eliprodil in retinal excitotoxicity and ischemia[J].Invest Ophthalmol Vis Sci,1999,40:1177-1182.
    [23]Hare W,Wlode Mussie E,Lai R,et al.Efficacy and safety of mematine,an NMDA-type open-channel blocker,for reduction of retinal injury associated with experimental glaucoma in rat and monkey [J].Surv Ophthalmol,2001,45 Suppl:s284-s289.
    [24]Peinado-Ramon P,Salvador M,Villegas-Perez MP,et al.Effects of axotomy and intraocular administration of NT-4,NT-3,And brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells:A auantitative in vivo study[J].Invest Ophthalmol Vis Sci,1996,37:489.
    [25]Castillo B Jr,del Cerro M,Breakefield XO,et al.Retinal ganglion cell survial is promoted by genetically modifield astrocytes designed to secret brain-derived neurotrophic factor(BDNF)[J].Brain Research,1994,647(1):30-36.
    [26]Yip HK,So KF.Axonal regeneration of retinal ganglion cells:effect of trophic factors[J].Prog Retin Eye Res,2000,19:559-579.
    [27]Gao H,Qiao X,Hefti F,et al.Elevated mRNA expression of brain-derived neurotrophic factor in retinal ganglion cell layer after optic nerve injury [J].Invest Ophthalmol Vis Sci,1997,38(9):1840.
    '[28]Honjo M,Tanihara H,Kido N,et al.Expression of ciliary neurotrophic factor activated by retinal Muller cells in eyes with NMDA and kainic acid-induced neuronal death [J]. In vest Ophthalmol Vis Sci,2000,41:552.
    [29]Weber M,Mohand SS,Hicks D,et al. Mjonosialoganglionside GMI reduces ischemia-reperfusion-induced injury in the rat retina[J].Invest Ophthalmol Vis Sci,1996,37:267-273.
    [30]Choi JS,Kim JA,Joo CK.Activation of MAPK and CREB by GMI induces survival of RGCs in the retina with axotomized nerve[J].Invest Ophthalmol Vis Sci,2003,44:1747-1752.
    [31]Cheon EW, Park CH, Kang SS, et al.Change in endothelial nitric oxide synthase in the rat retina following transient ischemia[J].Neuroreport,2003,14(3): 329-333.
    [32]Neufeld AH,Sawada A,Bedker B.Inhibition of nitric-oxide synthase 2 by a minoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma[J].Proc Natl Acad Sci USA,1999,96(17):9944-9948.
    [33]Kaya M,Tune M,Ozdemir T,et al.Calcium antagonists in N-methyl-d-aspartate-induced retinal injury[J].Graefes Arch Clini Exp Ophthalmol,2003, 241(5):418-422.
    [34]Orgul S,Zawinka C,Flammer J,et al.Therapeutic strategies for normal-tension glaucoma[J].Ophthalmologica,2005,219(6):317-323.
    [35]Wilson RP,Chang WJ,Sergott RC,et al.A color Doppler analysis of nife dipine-induced posterior ocular blood flow changes in open angle-glaucoma[J].J Glaucoma,1997,6(4):231-236.
    [36]Tomita G,Niwa Y,Shinohara H,et al.Changs in optic nerve head blood flow and retrobular hemodynamics following calcium-channel blocker treatment of normal-tension glaucoma[J].IAm J Ophthalmol,2001,131(1):154.
    [37]Fabian M,Georg M,Joanna H.Single-dose nimodipine normalizes impaired retinal circulation in normal Tension Glaucoma[J].J Glaucoma, 2004,13(2):158-162.
    [38]Patil K,Sharma SC.Broad spectrum caspase inhibitor rescues retinal ganglion cells after ischemia[J].NeuroReport,2004,15(6):981-984.
    [39]Huang X,Wu DY,Chen G,et al.Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism[J].Invest Ophthalmol Vis Sci,2003,44(1):347-354.
    [40]Cenni MC,Bonfanti L,Martinou JC,et al.Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice[J].Eur J Neurosci,1996,8(8):1735.
    [41]Bonfanti L,Strettoi E,Chierzi S,et al.Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2[J].Neurosci,1996,16(13):4186-4194.
    [42]Nickells RW.Apoptosis of retinal ganglion cells in glaucoma:an update of the molecular pathways involved in cell death[J].Surv Ophthalmol,1999, 43(S1):151-161.
    [43]骆荣江,葛坚,卓业鸿,等.实验性青光眼视网膜神经节细胞P53基因表达的检测[J].眼科研究,2001,19(3):208-210.
    [44]Li Y,Schlamp CL,Poulsen GL,et al.P53 regulates apoptotic retinal ganglion cell death involved in cell death induced by N-methyl-D-aspartate[J]. Mol Vis,2001,8(9):341-350.
    [45]Yamasaki M,Mishima HK,Yamashita H.Neuroprotective effects of erythmpoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells[J].Brain Res,2005,1050(1-2):15-26.
    [46]Inomata Y,Hirata A,Takahashi E,et al.Elevated erythropoietin invitreous with ischemic retinal diseases[J].Neuroreport,2004,15(5):877-879.
    [47]戴毅.红细胞生成素研究新进展[J].国外医学-临床生化与检验分册[J].2002,23(3):144-146.
    [48]Maneesh Kumar,Evelyn Perez,Zu Yun Cai,et al.Role of nonfeminizing estrogen analogues in neuroprotection of rat retinal ganglion cells against glutamate-induced cytotoxicity[J].Free Radical Biology & Medicine,2005, 38(9):1152-1163.
    [49]Whitlock NA,Lindsey K,Agarwal N,et al.Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and -independent manner in rat retinal ganglion cells[J].Invest Ophthalmol Vis Sci,2005,46(3):1085-1091.
    [50]Aktas Z,Gurelik G,Akyurek N,et al.Neroprotective effect of topically applied brimonidine tartrate 0.2% in endothelin-1-induced optic nerve ischaemia model[J].Clin Experiment Opthalmol,2007,35(5):527-534.
    [51]Schlieve CR, Tam A,Nilsson BL,et al.Synthesis and characterization of a novel class of reducing agents that are highly neuroprotective for retinal ganglion cells[J].Exp Eye Res 2006,83(5):1252-1259.
    [52]Wood JP, Schmidt KG,Melena J,et al.The beta-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants:comparison with betaxolo1[J]. Exp Eye Res,2003,76(4):505-516.
    [53]Fuchsjger-Mayrl G,Wally B,Rainer G,et al.Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension[J].Br J Opthalmol,2005,89(10):1293-1297.
    [54]Lin ZP,Zhu YL,Johnson DR,et al.Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma[J].Invest Ophthalmol Vis Sci,2005,46(11):4164-4169.
    [55]Chidlow G,Wood JP,Casson RJ.Pharmacological neuroprotection for glaucoma[J].Drugs,2007,67(5):725-759.
    [56]Lsiz N,Sahaboglu A,Yildiz MZ,et al.Protective effects of various antioxidants during ischemia-reperfusion in the rat retina[J].Graefes Arch Clin Exp Ophthalmol,2006,244(5):627-633.
    [57]Cellini M,Caramazza N,Mangiafico P,et al.Fatty acid use in glaucomatous optic neuropathy treament[J].Acta Ophthalmol Scand Suppl,1998, 227:41-42.
    [58]Jentsch TJ,STein V, Weinreich F,et al.Molecular structure and physiological function of chloride channels[J].Physiol Rev,2002,82(2):503-568.
    [59]Jentsch TJ, Gunther W, Pusch M, et al.Properties of voltage-gated chloride channels of the ClC gene family[J].J Physiol (Lond) 1995,482:S19-S25.
    [60]Middleton RE, Pheasant DJ, Miller C. Homodimeric architecture of a CLC-type chloride ion channel[J]. Nature,1996,383(6598):337-340.
    [61]Weinreich F, Jentsch TJ.Pores formed by single subunits in mixed dimers of different ClC chloride channels[J].J Biol Chem 2001,276(4):2347- 2353.
    [62]Ludewig U, Pusch M, Jentsch TJ.Two physically distinct pores in the dimeric ClC-0 chloride channel[J]. Nature,1996,383(6598):340-343.
    [63]Schmidt-Rose T, Jentsch TJ. Transmembrane topology of a CLC cholride channel[J]. Proc Natl Acad Sci USA,1997,94(14):7633-7638.
    [64]Accardi A, Ferrera L, Pusch M, et al. Drastic reduction of the slow gate of human muscle chloride channel(ClC-1) by mutation C277S[J].J Physiol,2001, 534(pt3):745-752.
    [65]Maduke M, Miller C, Mindell JA. A decade of CLC chloride channels: structure, mechanism, and many unsettled questions[J]. Annu Rev Biophys Biomol Struct,2000,29:411-438.
    [66]Mindell JA, Maduke M, Miller C,et al. Projection structure of a CIC-type chloride channel at 6.5A resolution[J]. Nature,2001,409(6817): 219-223.
    [67]Estevez R, Jentsch TJ. CLC chloride channels:correlating structure with function[J]. Curr Opin Struct Biol,2002,12(4):531-539.
    [68]Bauer CK, Steinmeyer K, Schwarz JR, et al. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA[J]. Proc Natl Acad Sci USA,1991,88(24):11052-11056.
    [69]Jentsch TJ,Steinmeyer K,Schwarz G. Primary structure of Torpedo Marmorata chloride channel isolated by expression cloning in Xenpusoocytes[J]. Nature,1990,348(6301):510-514.
    [70]Pusch M, Ludewig U, Rehfeldt A, Jentsch TJ.Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion[J]. Nature,1995, 373(6514):527-531.
    [71]Jentsch TJ.Molecular physiology of anion channels[J]. Curt Opin Cell Biol,1994,6(4):600-606.
    [72]Jentsch TJ, Poet M, Fuhrmann JC, et al. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models[J]. Annu Rev Physiol,2005,67:779-807.
    [73]张晓东,臧益民,周士胜.心脏氯离子通道研究进展[J].心脏杂志,2000,12(6):473-477.
    [74]Shimada K,Li X,Xu G,et al. Experssion and canalicular localization of two isoforms of the ClC-3 cholride channel from rat hepatocytes[J]. Am J Physiol Gastrointest Liver Physiol,2000,279 (2):G268-276.
    [75]Koch MC,Steinmeyer K,Lorenz C,et al.The skeletal muscle chloride channel in dominant and recessive human myotonia[J].Science,1992,257(5071): 797-800.
    [76]Hermoso M, Satterwhite CM,Andrade YN, et al.ClC-3 is a fundamental molecular component of volume2sensitive outwardly rectifying Cl-channels and volume regulation in HeLa cells and Xenopus laevisoocytes[J]. J Biol Chem, 2002,277(42):40066-40067.
    [77]Wang GX,Hatton WJ,Wang GL,et al. Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells[J].Am J Physiol Heart Circ Physiol,2003,285(4): 1453-1463.
    [78]Furukawa T,Ogura T,Katayama Y,et al.Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation[J].Am J Physiol,1998,274(Pt1):C500-512.
    [79]Xiong H,Li C,Garami E,et al.ClC-2 activation modulates regulatory volume decrease[J].J Membr Biol,1999,167(3):215-221.
    [80]Schwiebert EM,Cid-Soto LP,Stafford D,et al.Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells[J].Proc Natl Acad Sci USA,1998,95(7):3879-3884.
    [81]Jordt SE,and Jentsch TJ.Molecular dissection of gating in the ClC-2 chloride channel[J].EMBO J,1997,16(7):1582-1592.
    [82]Griinder S,Thiemann A,Pusch M,et al.Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume[J].Nature,1992, 360(6406):759-762.
    [83]Wang L,Chen L,Jacob TJ.The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition[J].Physiol,2000,524(Pt1):63-75.
    [84]Hara-Chikuma M,Yang B,Sonawane ND,et al.ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation[J].J Biol Chem,2005,280(2):1241-1247.
    [85]Claud EC,Lu J,Wang XQ,et al.Platelet-activating factor-induced chloride channel activation is associated with intracellular acidosis and apoptosis of intestinal epithelial cells[J].Am J Physiol Gastrointest Liver Physiol,2008,294(5):G1191-200.
    [86]Pappas CA,Ullrich N,Sontheimer H,et al.Reduction of glial proliferation by K+ channel blockers is mediated by changes in pHi[J].Neuroreport,1994, 6(1):193-196.
    [87]Li X,Wang T,Zhao Z,et al.The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells.Am J Physiol Cell Physiol,2002,282(6):C 1483-C1491.
    [88]Li DL, Fan L, et al.Involvement of volume-sensitive Cl- channels inthe proliferation of human subcutaneous preadipocytes.Clin ExpPharmacol Physiol. 2010 Jan; 37(1):29-34.
    [89]Cheng G,Kim MJ,Jia G,et al.Involvement of chloride channels in TGF-1-induced proliferation of porcine arterial smooth muscle cells[J]. Cardiovasc Res,2007,73(1):198-207.
    [90]Weylandt KH,Valverde MA,Nobles M,et al.Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation[J].J Biol Chem,2001,276(20):17461-17467.
    [91]Phipps DJ,Branch DR,Schlichter LC.Chloride-channel block inhibits T lymphocyte activation and signalling[J].Cell Signal.1996,8(2):141-149.
    [92]Qian JS, Pang RP, Zhu KS, et al.Static pressure promotes rat aortic smooth muscle cell proliferation via upregulation of volume-regulated chloride channel[J].Cell Physiol Biochem,2009,24(5-6):461-470.
    [93]Rutledge E, Denton J, Strange K.Cell cycle and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases[J].J Cell Biol,2002,158 (3):435-444.
    [94]Shen MR,Droogmans G,Eggermont J,et al.Differrntial expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells[J].J Physiol,2000,529(Pt2):385-394.
    [95]Zheng YJ,Furukawa T,Tajimi K,et al.Cl- channel blockers inhibit transition of quiescent(GO) fibroblasts into the cell cycle[J].J Cell Physiol,2003, 194(3):376-383.
    [96]Zheng YJ,Furukawa T,Ogura T,et al. M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel[J].J Bio Chem,2002,227(35):32268-32273.
    [97]郑雅娟,辛华,张文松,等.氯离子通道阻滞剂对人RPE细胞增生抑制作用的实验研究[J].2006,24(4):344-347.
    [98]Tang YB, Liu YJ, Zhou JG,et al.Silence of ClC-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells[J].Cell Prolif,2008,41(5):775-785.
    [99]Wang LW,Chen LX,Jacob T.ClC-3 expression in the cell cycle of nasopharyngeal carcinoma cell[J].Sheng Li Xue Bao,2004,56(2):230-236.
    [100]Wei L,Xiao AY,Jin C,et al.Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons [J]. Pflugers Arch,2004,448(3):325-334.
    [101]Souktani R,Ghaleh B,Tissier R,et al. Inhibitors of swelling-activated chloride channels increase infarct size and apoptosis in rabbit myocardium [J]. Fundam Clin Pharmacol,2003,17(5):555-561.
    [102]Szabo I, Lepple-Wienhues A, Kaba KN, et al. Tyrosine kinase-dependent activation of a chloride channel in CD2952 induced apoptosis in T lymphocytes [J]. Proc Natl Acad Sci USA,1998,95(11):6169-6174.
    [103]Remillard CV, Lupien MA, Crepeau V, et al. Role of Ca2+-and swelling-activated Cl- channels in alpha1-adrenoceptor-mediated tone in pressurized rabbit mesenteric arterioles[J].Cardiovasc Res,2000,46 (3):557-568.
    [104]Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO3-transporters[J]. Pflugers Arch,2004,447(5):495-509.
    [105]周园,周家国,丘钦英,等.ClC-3氯通道对H202诱导的大鼠主动脉平滑肌细胞凋亡的影响[J].中国药理学通报,2006,22(10):1175-1179.
    [106]周园,周家国,丘钦英,等.氯通道ClC-3反义寡核苷酸对过氧化氢诱导的大鼠主动脉平滑肌细胞凋亡的影响[J].中国动脉硬化杂志,2006,14(15):369-373.
    [107]张海宁,关永源,丘钦英,等.反义C1C-3寡核苷酸促进thapsigargin诱导的PC12细胞凋亡[J].中国药理学通报,2004,20(6):614-649.
    [108]Lemonnier L,Lazarenko R,Shuba Y,et al.Alterations in the regulatory volume decrease (RVD) and swelling-activated Cl- current associated with neuroendocrine defferentiation of prostate cancer epithelial cells[J].Endocr Relat Cancer,2005,12(2):335-349.
    [109]Lemonnier L, Shuba Y, Crepin A, et al. Bcl-2-dependent modulation of swelling-activated Cl current and CLC-3 expression in human prostate cancer epithelial cells[J]. Cancer Res,2004,64(14):4841-4848.
    [110]Dai YP, Bongalon S, Hatton WJ, et al. CLC-3 chloride channel is upregulated by hypertrophy and inflammation in rat and canine pulmonary artery[J]. Br J Pharmacol,,2005,145(1):5-14.
    [111]Jiao JD,Xu CQ,Yue P,et al.Volume-sensitive outwardly rectifying chloride channels are involved in oxidative stress-induced apoptosis of mesangial cells[J].Biochem Biophys Res Commun,2006,340(1):277-285.
    [112]Erika C. Claud, Jing Lu.Platelet-activating factor-induced chloride channel activation is associated with intracellular acidosis and apoptosis of intestinal epithelial cells[J].Am J Physiol Gastrointest Liver Physiol,2008,294(5): G1191-G1200.
    [113]Lascola CD,Nelson DJ,Kraig RP.Cytoskeletal actin gates a Cl- channel in neocortical astrocytes[J].J Neurosci,1996,18(5):1679-1692.
    [114]Ransom CB,O'Neal JT,Sontheimer H.Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells[J].J Neurosci,2001,21(19):7674-7683.
    [115]Soroceanu L,Manning TJ Jr,et al.Modulation of glioma cell migration and invasion using Cl- and K- ion channel blockers[J].J Neurosci,1999,19(14): 5942-5954.
    [116]Steinmeyer K, Ortland C, Jentsch TJ. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel [J]. Nature,1991,354(6351):301-304.
    [117]Nighot PK,Moeser AJ,Ryan KA,et al.ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum[J]. Exp Cell Res,2009,315(1):110-118.
    [118]Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies [J]. Nat Genet,2003,33(4):527-532.
    [119]Sander T, Schulz H, Saar K, et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies[J]. Hum Mol Genet,2000,9 (10): 1465-1472.
    [120]de Santiago JA, Nehrke K, Arreola J.Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel[J].J Gen Physiol,2005,126(6):591-603.
    [121]Comes N, Abad E, Morales M, et al. Identification and functional characterization of ClC-2 chloride channels in trabecular meshwork cells[J]. Exp Eye Res,2006,83(4):877-889.
    [122]Blanz J, Schweizer M, Auberson M, et al. Leukoencephalopathy upon disruption of the chloride channel ClC-2[J]. J Neurosci,2007,27(24):6581-6589.
    [123]Schmieder S, Lindenthal S, Ehrenfeld J. Tissue-specific N-glycosylation of the CLC-3 chloride channel[J]. Biochem Biophys Res Commun,2001,286 (3):635-640.
    [124]Britton FC, Hatton WJ, Rossow CF, et al. Molecular distribution of volume-regulated chloride channels (ClC-2 and ClC-3) in cardiac tissues[J]. Am J Physiol Heart Circ Physiol,2000,279 (5):H2225-2233.
    [125]Wang L, Chen L, Jacob TJ. The role of ClC-3 in volume-activated chloride currents and volume regulation in bovine epithelial cells demonstrated by antisense inhibition[J]. J Physiol,2000,524(Pt1):63-75.
    [126]Huang P,Liu J,Di AK,et al.Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulindependent protein Kinase[J].J Biol Chem,2001, 276(23):20093-20100.
    [127]Schnur RE,Wick PA.Intragenic TaqI restriction fragment length polymorp- hism (RFLP) in CICN4, between the loci for X-linked ocular albinism (OA1) and microphthalmia with linear skin defects syndrome (MLS) [J]. Hum Genet,1995,95(5):594-595.
    [128]Vanoye CG,George AG Jr.Functional characterization of recombinant human ClC-4 chloride channels in cultured mammalian cells[J].J Physiol Lond,2002,539(pt2):373-383.
    [129]Friedrich T,Breiderhoff T,Jentsch TJ.Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents[J].J Biol Chem,1999,274(2):896-902.
    [130]Piwon N,,Gunther W, Schwake M,et al. ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease[J]. Nature,2000, 408(6801):369-373.
    [131]Carballo-Trujillo L, Garcia-Nieto V, Moya-Angeler FJ, et al. Novel truncating mutations in the ClC-5 chloride channel gene in patients with Dent's disease[J]. Nephrol Dial Transplant,2003,18(4):717-723.
    [132]Cleiren E, Benichou O,Van Hul E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type Ⅱ) results from mutations in the ClCN7 chloride channel gene[J]. Hum Mol Genet,2001,10(25):2861-2867.
    [133]Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man[J].Cell,2001,104(2):205-215.
    [134]Kobayashi K, Uchida S, Mizutani S, et al.Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney[J]. J Am Soc Nephrol, 2001,12(7):1327-1334.
    [135]Kobayashi K, Uchida S, Okamura HO, et al. Human CLC-KB gene promoter drives the EGFP expression in the specific distal nephron segments and inner ear[J]. J Am Soc Nephrol,2002,13(8):1992-1998.
    [136]Simon DB, Bindra RS, Mansfield TA, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type Ⅲ [J]. Nat Genet, 1997,17 (2):171-178.
    [137]Cheifetz S,Weatherbee JA,Tsang ML et al.The transforming growth factor-beta system,a complex pattern of cross-reactive ligands and receptors[J]. Cell 1987,48(3):409-415.
    [138]Kingsley DM.The TGF-beta superfamily:new members,new receptors,and new genetic tests of function in dieffrent organisms[J].Gene Dev,1994,8(2):133-146.
    [139]Derynck R,Feng XH.TGF-beta receptor signaling[J].Biochim Biophys Acta,1997,1333(2):F105-150.
    [140]Massague J.The transforming growth factor-beta family[J].Annu Rev Cell Biol,1990,6:597-641.
    [141]Derynck R,Akhurst RJ,Balmain A.TGF-beta signaling in tumor suppression and cancer progression[J].Nat Genet,2001,29(2):117-129.
    [142]Yamashita H,Tobari I,Sawa M,et al. Functions of the transforming growth factor-beta super family in eyes[J].Nippon Canka Gakkai Zasshi,1997, 1997,101(12):927-947.
    [143]Massague J,Blain SW,Lo RS.TGFbeta signaling in growth control,cancer,and heritable disorders[J].Cell,2000,103(2):295-309.
    [144]Valderrama-Carvajal H,Cocolakis E,Lacerte A,et al.Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP[J].Nat Cell Biol,2002,4(12):963-939.
    [145]Wang CL,Wan Y.L,Liu YC,et al.TGF-betal/SMAD signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines[J].Chin Med Sci J,2006,21(1):33-35.
    [146]Kawabata M,Imamura T,Miyazono K.Signal transduction by bone morphogenetic proteins[J].Cytokine Growth Factoe Rev,1998,9(1):49-61.
    [147]Franzen P,ten Dijke P,Ichijo H,et al.Cloning of a TGF-beta type I receptor that forms a heteromeric complex with the TGF beta type Ⅱ receptor[J].Cell,1993,75(4):681-692.
    [148]Weis-Garcia F,Massague J.Complementation between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptoe cooperativity essential for signaling[J].Embo J,1996,15(2):276-289.
    [149]Feng XH,Derynck R.A kinase subdomain of transforming growth factor-beta(TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity[J].Embo J,1997,16(13):3912-3923.
    [150]Derynck R,Gelbart WM,Harland RM,et al.Nomenclature:vertebrate mediators of TGF beta family signals[J].Cell,1996,87(2):173.
    [151]Massague J.TGF-beta signal transduction[J].Annu Rev Biochem,1998, 67:753-791.
    [152]Heldin CH,Miyazono K,ten Dijke P.TGF-beta signalling from cell menbrane to nucleus through SMAD proteins[J].Nature,1997,390(6659):465-471.
    [153]Suzuki A,Chang C,Yingling JM,et al.Smad5 induces ventral fates in Xenopus embryo[J].Dev Biol,1997,184(2):402-405.
    [154]Kretzschmar M,Liu F,Hata A,et al.The TGF-beta family mediator Smad1 is phosphorylate directly and activated functionally by the BMP receptor kinase[J].Genes Dev,1997,11(8):984-995.
    [155]Hoodless PA,Haerry T,Abdollah S,et al.MADR1,a MAD-related protein that functions in BMP2 signaling pathways[J].Cell,1996,85(4):489-500.
    [156]Chen Y,Lebrum JJ,Vale W.Regulation of transforming growth factor beta and activin-induced transcription by mammalian Mad proteins[J].Proc Natl Acad Sci USA,1996,93:12992-12997.
    [157]Zhang Y,Feng X,We R,et al.Receptoe-associated Mad homologues synergize as effectors of the TGF-beta response[J].Nature,1996:383:168-172.
    [158]Eppert K,Scherer SW,Ozcelin H,et al.MADR2 maps to 18q21 and encodes a TGF beta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma.Cell[J],1996,86:543-553.
    [159]Kuang C,Xiao Y,Liu X,et al.Invivo disruption of TGF-beta signaling by SMAD7 leads to premalignant ductal lesions in the pancreas[J].Proc Natl Acad Sci USA,2006,103(6):1858-1863.
    [160]Quan Taihao,He Tianyuan,Voorhees John J,et al.Ultraviolet Irradiation Induces Srnad7 via Induction of Transcription Factor AP-1 in Human Skin Fibroblasts[J].The Journal of Biological Chemistry,2005,280(9):8079-8085.
    [161]Smith L,Dahler AL,Cavanagh LL,et al.Modulation of proliferation-secific and differentiation-specific markers in human keratinocytes by SMAD7[J].Exp Cell Res,2004,294(2):356-365.
    [162]Kleef J,Ishiwata T,Maruyama H,et al.TGF beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer[J].Oncogene,1999,18(39): 5363-5372.
    [163]Feng XH,Derynck R.Specificity and versatility in TGF beta signaling through SMADs[J].Annu Rev Cell Dev Biol,2005,21:659-693.
    [164]Shi Y,Massague J.Mechanisms of TGF beta signaling from cell membrane to the nucleus[J].Cell,2003,113:685-700.
    [165]Markus B,Gero VG,Dan L,et al.A mechanism of suppression of TGF-β/SMAD signaling by NF-κB/RelA[J].Genes Dev,2000,14(2):187-197.
    [166]Raman PN,Chen FF,LiWei,et al.Repression of transforming-growth-factor-β mediated transcription by nuclear factor κB[J].Biochem J,2000,348: 591-596.
    [167]Wang W,Koka V,Lan HY.Transforming growth factor-beta and Smad signalling in kidney diseases[J].Nephrology.2005,10(1):48-56.
    [168]Zhang XL,Topley N,Ito T,et al.IL-6 regulation of TGF-beta receptor compartmentalisation and turnover enhances TGF-beta1 signalling[J].J Biol Chem,2005,280(13):12239-12245.
    [169]Kretzschmar M,Doody J,Timokhina Z,et al.A mechanism of repression of TGF-beta/smad signaling by oncogenic Ras[J].Genes,1999,13(7): 804-816.
    [170]Kretzschmar M,Doody J,Massague J.Opposing BMP and EGF signalling pathway converge on the TGF-beta family mediator Smad1[J].Nature, 1997,389(6651):618-622.
    [171]Ulloa L,Doody J,Massague J,et al.Inhibiton of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway [J].Nature, 1999,397:710-713.
    [172]Yuko I,Toshikazu K,Tatsunori T,et al.The Essential Involvement of Cross-Talk between IFN-γ and TGF-β in the Skin Wound-Healing Process[J].J Immunol,2004,172(3):1848-1855.
    [173]Iwamoto T,Oshima K,Seng T,et al.STAT and SMAD signaling in cancer[J].Histol Histopathol,2002,17(3):887-895.
    [174]石一宁,张纯涛TGF-β1、TGFβRⅡ及Smad4蛋白在原发性翼状胬肉中的表达[J].眼科新进展,2010,30(5):430-433.
    [175]Usui T,Takase M,Kaji Y,Suzuki K,Ishida K,Tsuru T,et al.Extracellular matrix production regulation by TGF-beta in corneal endothelial cells[J].Invest Ophthalmol Vis Sci,1998,39(11):1981-1989.
    [176]Saika S,Okada Y,Miyamoto T,et al.Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium[J]. Invest Ophthalmol Vis Sci,2004,45:100-109.
    [177]Halder SK,Beauchamp RD,Datta PK.Smad7 induces tumorigenicity by blocking TGF-beta induced growth inhibition and apoptosis[J].Exp Cell Res,2005,107(1):231-246.
    [178]McAvoy JW,Schulz MW,Maruno KA,et al.TGF-β2 induced cataract is characterized by epithelial-mesenchymal transition and apoptosis[J].Invest Ophthalmol Vis Sci,1998,39(4):S7.
    [179]Hales AM,Chamberlain CG,McAvoy JW.Cataract induction in lenses cultured with transforming growth factoe-beta[J].Invest Ophthalmol Vis Sci,1995,36(8):1709-1713.
    [180]Srinivasan Y,Lovicu FJ,Overbeek PA.Lens specific of transforming growth factorl in transgenic mice causes an terior subcapsular cataracts[J].J Clin Invest,1998,101:625-634.
    [181]Lovicu FJ,Schulz MW,Hales AM,et al.TGFinducesm orphological land molecular changes typical of anterior subcapsular cataract[J].Br J Ophthalmol,2002,86:220-226.
    [182]曹晓光,鲍永珍,胡建信,et al.紫外辐射诱导人晶状体上皮细胞凋亡机制中TGF-β2 /Smad-4细胞信号传导通路的作用[J].眼科研究,2007,25(8):584-588.
    [183]杨培增,梁舜薇,龚向明,等.β-转化生长因子的提纯及其对内毒素诱发的葡萄膜炎的抑制作用[J].中华眼底病杂志,1996,12(2):101-104.
    [184]Tripathi RC,LiJ,Chan WF.Aqueous humor in glaucomaous eyes contains an increased level of TGF-beta2[J].Exp Eye Res,1994,59(6):723-727.
    [185]钟丽春,李美玉.转化生长因子β1对培养的人眼小梁细胞微丝肌动蛋白的影响[J].中华眼科杂志,1999,35(3):186-189.
    [186]Zhou L,Li Y,Yue BY.Alteration of cytoskeletal structure,integrin distribution,and migratory activity by phagocytic challenge in cells from an ocular tissue-the trabecular meshwork[J].In Vitro Cell Dev Biol Anim,1999, 35(3):144-149.
    [187]王强,魏厚仁.体外培养人眼小梁细胞吞噬乳胶颗粒的研究[J].中华眼科杂志,1999,35(5):389-390.
    [188]葛岩TGF-β信号通路在小鼠视网膜神经节细胞轴突再生过程中作用的实验研究[D].吉林:吉林大学白求恩医学院,2009.
    [189]Matsumoto Y,Takahashi M,Ogata M.Relationship between glycoxidation and cytokines in the vitreous of eyes with diabetic retinopathy.Jpn J Ophthalmol,2002,46(4):406-412.
    [190]Hirase K,Ikeda T,Sotozono C,et al.Transforming growth factor beta2 in the vitreous in proliferative diabetic retinopathy.Arch Ophthalmol,1998, 116(6):738-741.
    [191]Ochiai Y,Ochiai H.Higher concentration of transforming growth factor-beta in aqueous humor of glaucomatous eyes and diabetic eyes.Jpn J Ophthalmol,2002,46(3):249-253.
    [192]SimonciniT,Maffei S,Basta G,et al.Estrogens and glucocorticoids inhibit endothelial vascular cell adhesion molecule expression by different transcriptional mechanisms[J]. Circ Res,2000,87:19-25.
    [193]Kon CH,Occleston NL,Aylward GW,Khaw PT.Expression of vitreous cytokines in proliferative vitreoretinopathy:a prospective study [J]. In vest Ophthalmol Vis Sci,1999,40(3):705-712.
    [194]郭长梅,惠延年,马吉献,等.转化生长因子β受体Ⅱ在增生性玻璃体视网膜病变增生膜中的表达[J].眼科学报,2003,19(4):244-247.
    [195]Oshima Y,Sakamoto T,Hisatomi T,et al.Gene transfer of soluble TGF-beta type Ⅱ receptor inhibits experimental proliferative vitreoretinopathy[J]. Gene Ther,2002,9(18):1214-1220.
    [196]Tripathi RC, Li J,Borisuth NS,et al.Trabecular cells of the eye express messenger RNA for transforming growth factor-beta 1 and secrete this cytokine[J].Invest Ophthalmol Vis Sci,1993,34(8):2562-2569.
    [197]Ymamoto N,Itonaga K,Marunouchi T,et al.Concentration of trasforming growth factor beta2 in aqueous humor[J].Opthalmic Res,2005, 37(1):29-33.
    [198]Enz R,Ross BJ,Cutting GR.Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina[J].J Neurosci,1999,19(22): 9841-9847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700