用户名: 密码: 验证码:
发育早期大鼠海马脑片CA1区锥体神经元离子通道特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     神经细胞膜离子通道的活动特性与神经元的功能直接相关,本论文研究发育早期4个周龄组(1w,2w,3w,4w)大鼠海马CA1区锥体神经元全细胞跨膜总电流、全细胞钠通道电流、全细胞钾通道电流、瞬时外向钾电流和全细胞钙通道电流的变化规律,包括激活、失活、失活后恢复等方面的特征变化,探索大鼠海马锥体细胞膜Na+, K+,Ca2+电压门控型离子通道发育的关键期,为研究学习记忆的发育提供支持。
     [方法]
     实验动物是出生后1w,2w,3w,4w,4个周龄组的SD大鼠,每组8只,分别制备海马脑片。应用膜片钳技术Axon 700B膜片钳系统记录脑片海马CA1区锥体神经元全细胞跨膜总电流、全细胞钠通道电流、全细胞外向总钾电流、瞬时外向钾电流和全细胞钙通道电流及其激活、失活等特性变化。应用Clampfit 10.2和Origin 7.5软件获取全细胞钠通道电流、瞬时外向钾电流和全细胞钙通道电流的I-V曲线,激活、失活、及失活后恢复动力学曲线,应用曲线拟合方法得到与之对应的半数激活电压、半数失活电压、斜率因子、失活后恢复时间常数等相关参数,进行统计学检验各组间是否存在差异。
     [结果]
     1.用发育早期4个周龄组大鼠制备的脑片活性良好,显微镜下海马区结构清晰,CA1区锥体神经元饱满、轴突明显、立体感强。
     2.Na+通道:(1)随着周龄的增大钠通道电流的I-V曲线向左移动,钠通道最大电流密度增大,1w,2w,3w,4w组对应的最大电流分布密度(pA/pF)分别为:-139.89±9.47,-147.98±9.39,-229.20±15.42,-271.54±22.78。以生后2w至3w电流密度增大最为显著;(2)钠通道电流的激活曲线向复极化的方向移动,4个组对应的半数激活电压(mV)分别为:-44.65±0.39,-47.42±0.56,-54.79±0.61,-58.44±0.57;(3)失活后恢复时间缩短,4个组对应的恢复时间常数(ms)分别为:9.30±0.642,11.15±0.84,7.95±0.55,7.18±0.56;(4)失活动力学没有显著变化,4个组对应的半数失活电压(mV)分别为:-52.29±0.73,-51.98±0.94,-51.44±0.72,-49.65±0.73。
     3.K+通道:(1)4个组全细胞瞬时外向钾最大电流密度随周龄增大而增大,1w,2w,3w,4w组对应的值(pA/pF)分别为133.11±14.36,182.10±8.55,212.80±15.98,235.86±14.60;(2)4个组半数激活电压(mV)分别为:6.25±2.38,10.88±1.71,5.31±2.46,2.690±2.75;(3)4个组半数失活电压(mV)分别为:-58.41±0.59,-56.35±0.90,-58.06±2.13,-60.37±0.90;(4)4个组恢复时间常数(ms)分别为33.14±3.19,33.78±4.22,35.13±3.92,36.19±3.62。
     4.Ca2+通道:(1)4个组全细胞钙通道最大电流密度随周龄的增大而增大,1w,2w,3w,4w组对应的最大电流密度(pA/pF)分别为:-8.02±0.56,-10.02±0.88,-27.59±1.03,-32.59±1.04,以2w至3w电流密度增大最为显著;(2)全细胞钙电流的激活曲线失活曲线均向左移动,4个组对应的半数激活电压(mV)分别为-6.94±0.11,-4.72±0.41,-11.72±1.05,-12.36±1.32,(3)4个组对应的半数失活电压(mV)分别为-5.35±2.06,5.43±1.93,-17.80±3.37,-24.88±2.43。
     [结论]
     1.发育早期(1w,2w,3w,4w)大鼠海马CA1区锥体神经元的Na+,K+,Ca2+等电压门控离子通道分布,通道的激活动力学,失活动力学随周龄增大而变化,反映了离子通道的发育状态。
     2.出生后2-3w是大鼠海马CA1区锥体神经元钠通道的快速发育期,此期间锥体神经元钠离子通道的分布显著增大,钠通道的激活曲线左移,半数激活电压显著降低,以上结果表明钠通道更容易被激活,失活后恢复曲线左移,恢复时间常数变小,钠通道的恢复更为迅速.
     3.大鼠脑发育早期,从1w到4wCAl锥体神经元细胞膜上钾离子通道的分布密度随出生周龄增大而增大,但激活和失活以及失活后恢复曲线特征未见有明显特征变化。
     4.大鼠出生后2-3w是海马CA1区锥体神经元钙离子通道处于快速发育期,期间钙离子通道最大电流密度显著增大,钙离子通道的激活、失活曲线均左移,半数激活、失活电压显著降低表明在此期间钙离子通道更易被激活,也更易失活。
【Objective】
     The characteristics of the ion channels on cell membrane are direct related to the change of the neurons'functions. This dissertation explores the characters of whole cell transmembrane total currents, whole cell sodium current, whole cell potassium currents, transient outward potassium currents and whole cell calcium currents of hippocampal CA1 pyramidal neurons of S-D rats at various ages in the early stages of development. The aim of this study is to explore the critical period of development of ion channel in hippocampus of rats and provide support for studying the development of learning and memory.
     【Methods】
     The subject of this dissertation is hippocampus CA1 region pyramidal neurons of rats at different ages, respectively 1,2,3,4 weeks after birth.
     Characters of whole-cell transmembrane total current, sodium channel current, whole cell potassium channel currents, transient outward potassium channel currents and whole cell calcium channel currents of hippocampal CA1 pyramidal neurons were recorded using patch clamp technique.
     Curves of I-V, activation, deactivation and recovery after deactivation of whole-cell sodium channel current, transient outward potassium channel current and calcium channel current were obtained via Clampfitl0.2 and Origin7.5.
     The related parameters, such as half activation voltage, half deactivation voltage, slope factor, recovery time constant, were fitted according to appropriate equations. Statistical tests were performed to study whether there were differences among groups.
     【Results】
     1. In the early stages of development, bioactivity of hippocampal slices at different ages were excellent. Structure of hippocampus, Body and axon of the neurons can be observed clearly. The boundary of the neurons has good refractive index and strong sense of three-dimensional under microscope.
     2. In the early stages of development, I-V curve of sodium channel shifts to the left with increasing age. Maximum current density of sodium channel increases, the corresponding value of maximum current density (pA/pF) is:-139.89±9.47,-147.98±9.39,-229.20±15.42,-271.54±22.78. We can find current density on CA1 neurons of 2-3 weeks after birth increases more significantly than others; The activation curve of sodium channel shift to the repolarization, the corresponding value of half activation voltages (mV) is:-44.65±0.39,-47.42±0.56,-54.79±0.61,-58.44±0.57; Recovery time constant of sodium channel reduces with increasing age, the corresponding value of recovery time constant (ms) is:9.30±0.64,11.15±0.84, 7.95±0.55,7.18±0.56; We found there are no significant changes in deactivation curve, the corresponding value of half deactivation voltages (mV) in different group is:-52.29±0.73,-51.98±0.94,-51.44±0.72,-49.65±0.73.
     3. Maximum current density of whole-cell transient outward potassium current increases with increasing age, the corresponding value of maximum current density (pA/pF) is:133.11±14.36,182.10±8.55,212.80±15.98,235.86±14.60; The corresponding value of half activation voltages (mV) is::6.25±2.38,10.88±1.71, 5.31±2.46,2.69±2.75; The corresponding value of half deactivation voltages (mV) is:-58.41±0.59,-56.35±0.90,-58.06±2.13,-60.37±0.90; The corresponding value of recovery time constant (ms) is:33.14±3.19,33.78±4.22,35.13±3.92,36.19±3.62.
     4. Maximum current density of whole-cell calcium current increases with increasing age, the corresponding value of maximum current density (pA/pF) is:-8.02±0.56,-10.02±0.88,-27.59±1.03,-32.59±1.04, We can find current density on CA1 neurons of 2-3 weeks after birth increases more significantly than others; Both the activation and deactivation curves of whole-cell calcium channel shift to the left, The corresponding value of half activation voltages (mV) is:-6.94±0.11,-4.72±0.41,-11.72±1.05,-12.36±1.32, The corresponding value of half deactivation voltages (mV) is:-5.35±2.06,5.43±1.93,-17.80±3.37,-24.88±2.43.
     【Conclusions】
     1. In the early stages of development, the distribution of ion channel and its characters of activation, deactivation, recovery in hippocampal CA1 region pyramidal neurons change with age. That is, ion channel is in developing mode.
     2. The period of 2-3week after birth is fast developing period of sodium channel in hippocampal CA1 region pyramidal neurons. During this time, the distribution of sodium channel increases significantly; Activation curve of sodium channel shifts to the left as well as half activation voltage remarkably decreases. It indicates that sodium channel is prone to be activated; Recovery curve and recovery time constant show recovery of sodium channel is quicker with age.
     3.The density of potassium channel in hippocampal CA1 region pyramidal neurons increases significantly with increasing age,. But, no remarkable changes were found in characters of activation, deactivation and recovery.
     4.During the period of 2-3weeks after birth, calcium channel in hippocampal CA1 region pyramidal neurons develops rapidly. During this time, maximum current density of calcium channel increases significantly. Both the activation and deactivation curves of calcium channel shift to the left, the value of half activation and deactivation voltage obviously decrease. Which indicates that calcium channel is apt to be activated and deactivated.
引文
[1]Cohen CD, Vollmayr B and Aldenhoff JB. Kl currents of human Tlymphocytes are unaffected by Alzheimer's disease and amyloid beta protein [J].Neurosci Lett,1996,202:177-180.
    [2]Neher Erwin, Sakmann Bert. The patch clamp technique [J]. Scientific American,1992,226:44-52.
    [3]孙继虎,王春安.电压门控离子通道[J].中国神经科学杂志2000,16(3):283-289.
    [4]Goldin A L. Evolution of voltage-gated Na+ charmels [J]. The Jottmal of Experimental Biology,2002,205:575-584.
    [5]Hille B. Ionic Channels of Exeitable Membranes,. Third edition [M].sunderland, MA:Sinaner Associates Inc,2001.
    [6]Kullmann D M, Hanna M G. Neurological Disorders Cansed by Inherited Ion-channel Mutations [J]. Neurology,2002,1(3):157-166.
    [7]陈宜张.分子生物学[M].北京人民军医出版社,1995.
    [8]Carterall W. From ionic culrents to molecular mechanisms:the structure and function of voltage-gated sodium channels [J]. Neuron,2000,26(1):13-25.
    [9]邹冈主编.基础神经药理学[M].第二版,北京:北京科技出版社,1999.
    [10]Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure function relationships of voltage-gated sodium channels [J]. Pharmacol Rev,2005,57(4):397-409.
    [11]Papazian DM, Schwarz TL,Tempel BL, Jan YN and Jan LY. Cloning of genomic and complementary DNA from Shanker, a putative potassium channegene from Drosophila [J].Science,1987,237:749-753.
    [12]蒋学俊,李晓艳.电压依赖型钾通道的失活及其分子机制[J].中国心脏起搏与心电生理杂志1999,13(4).
    [13]徐科.神经生物学纲要[M].北京:科学出版社,2000.81.
    [14]Doyle D A, Cabral J M, Pfuetmer R A, et al. The structure of the potassium charmel:molecular basis of potassium conduction and selec-tivity [J]. Science, 1998,280(5360):69-77.
    [15]金宏伟,王晓良.电压依赖性钾通道与人类神经性疾病[J].生理科学进展,2002,33(2):22.
    [16]Kanold P O, Manis P B. Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells [J]. Neurosci,1999, 19:2195-2208.
    [17]Myoung-Hwan Kim, Natalya Korogod, Ralf Schneggenburger, Won-Kyung Ho, and Suk-Ho Lee. Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of held [J]. The junal of neuroscience,2005, 25(26):6057-6065.
    [18]Zahradnikova A, Minarovic I and Zahradnik I. Competitive and cooperative effects of BayK 8644 on the L-type calcium channel current inhibition by calcium channel antagonists [J]. JPET,2007,107:122-176.
    [19]Raginov IS, Cherepnev GV, Garaev RS. Effect of xymedone on high-voltage-activated Ca2+ currents in pyramidal neurons of the entorhinal cortex [J].Eksp Klin Farmakol,2006,69(1):18-20.
    [20]Neher E, Sakmann B. Single channel currents recorded from membrane of denervated frog muscle fibers [J].Nature,1976,260:799-802
    [21]Llinas R, Steinberg IZ, and Walton K. Presynaptic calcium currents in squid giant synapse. [J].Biophys J,1981,33:289-322
    [22]Hockerman GH, Dilmac N, Scheuer T, and Catterall WA. Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca2+ channels. [J].Mol Pharmacol,2000,58:1264
    [23]Catterall WA, Striessnig J, Snutch TP, and Perez-Reyes E. International Union of Pharmacology. XL. Compendium of voltage-gated ion channels:calcium channels. [J].Pharmacol Rev,2003,5:579-581
    [24]Hailing DB, Aracena-Parks P, Hamilton SL. Regulation of Voltage-gated Ca2+ channels by calmodulin. [J].Science Sigualing,2006,318.
    [25]Ztihlke RD, Pitt GS, Deisseroth K, et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. [J].Nature,1999,399:159-162.
    [26]Catterall WA, Perez-Reyes E, Snutch TP, and Striessnig J. International union of pharmacology. XLⅧ. nomenclature and strucuere-function relationships of voltage-gated calcium channels. [J].Pharmacol Rev,2005,57:411-425
    [27]Meinrenken CJ, Gerard-Borst JG, and Sakmann B. Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. [J]. J Neurosci,2002,22:1648
    [28]Rozov A, Burnashev N, Sakmann B and Neher E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium. [J] Journal of Physiology,2001, 531(3):807-826.
    [29]Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C,Schneider T, and Beck H. Functional specialization of presynaptic Cav2.3 Ca2+ channels. [J].Neuron,2003,39:483-496.
    [30]Meinrenken CJ, Gerard-Borst JG and Sakmann B. Local routes revisited:the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. [J].J Physiol,2003,547(3):665-689.
    [31]Lee A, Zhou H, Scheuer T, et al. Molecular determinants of Ca/calmodulin-dependent regulation of Ca(v)2.1 channels. [J].Proc Natl Acad Sci USA.2003,100:16059-16064.
    [32]Davies A, Douglas L, Hendrich J, Wratten J, Alexandra Tran Van Minh, Foucault I, Dietlind Koch, Pratt WS, Saibil HR, and Dolphin AC. The calcium channel alfa2delta-2 subunit partitions with cav2.1 into lipid rafts in cerebellum: implications for localization and function. [J].The journal of neuroscience,2006, 26(34):8748-8757.
    [33]Doughty JM, Barnes-Davies M, Rusznak Z, Harasztosi C, and Forsythe ID. Contrasting Ca2+ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurons. [J].JPhysiol,1998,512:365.
    [34]Pitt GS, Zuhlke RD, Hudmon A, et al. Molecular basis of calmodulin tethering and Ca-dependent inactivation of L-type Ca2+ channels. [J].J Biol Chem,2001, 276:30794-30802.
    [35]Kim J, Ghosh S, Nunziato DA, et al. Identification of the components controlling inactivation of voltage-gated Ca channels. [J].Neuron,2004,41: 745-754.
    [36]Herlitze S, Zhong H, Scheuer T, and Catterall WA. Allosteric modulation of Ca2+ channels by G proteins, voltage-dependent facilitation, protein kinase C, and Cav-beta subunits. [J].PNAS,2001,98(8):4699-4704.
    [37]曹海燕,王静敏,姜玉武.发育中神经元惊厥性损伤的相关基因表达[J].实用儿科临床杂志,2004,19(9):765-767.
    [38]Flake NM, Gold MS. Inflammation alters sodium cutrents and ex. citability of tempommandibular joint afferents[J]. Ne"rosci Lett.2005,384(3):294-299.
    [39]Hourez R, Azdad K, Vanwalleghem G, et al. Activation of protein C and inositol 1,4,5-triphosphate receptors antagonistically modulate voltage-gated sodium channels in striatal neurons [J]. Brain Res.2005,1059(2):189-196.
    [40]Richter H, Klee R, HeinemannU, et al. Developmental changes of in. ward rectifier currents in neurons of the rat entorhinal cortex [J]. Neurosci Lett,1997, 228(2):139-141.
    [41]Furtan F, Guasti L, Avossa D, et al. Interneurons transiently express the ERG K+ channels during development of mouse spinal networks in vitro [J]. Neuroscience,2005,135(4):1179-1192.
    [42]Koneksas P, Wadman WJ. Development of HVA and LVA calcium currents in pyramidal CA1 neurons in the hippocampus of the rat [J]. Dev Brain Res,1997, 101(1):139-147.
    [43]Akaishi T, Nakazawa K, Soto K, et al. Hydrogen peroxide modulates whole cell Ca+ currents through L-type channels in cultured rat dentate granule cell [J]. Neurosci Lett,2004,356(1):25-28.
    [44]Spafford JD, Van Minnen J, Larsen P, Smit AB, Syed NI, and Zamponi GW. Uncoupling of calcium channel and subunits in developing neurons. [J].The Journal of Biological Chemistry,2004,279(39):41157-41167.
    [45]Stotz SC, Barr W, Mcrory JE, Chen L, Jarvis SE, and Zamponi GW. Several structural domains contribute to the regulation of N-type calcium channel inactivation by the β3 subunit. [J]JBiol Chem,2004,279:3793-3800.
    [46]Davare MA and Hell JW. Increased phosphorylation of the neuronal L-type Ca2+ channel Cavl.2 during aging. [J].PNAS,2003,100:16018.
    [47]Tai C, Kuzmiski JB, Macvicar BA. Muscarinic endhancement of R-type calcium currents in hippocampal CA1pyramidal neurons. [J].J Neurosci,2006, 26(23):6249-58.
    [48]Schwerdtfeger WK. Structure and fiber connections of the hippocampus. [J].Berlin:Springer-Verlag,1984.
    [49]万选才,杨天祝,徐承熹主编.现代神经生物学.[M].北京医科大学中国协和医科大学出版社
    [50]Sitges M, Chiu LM, Nekrassov V. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings. [J].Neurochem Int,2006, 49(1):55-61
    [51]Dawbarn, Allen SJ, Semenenk FM. Coexistence of choline acetyltransferase and nerve growth factors in the rat basal forevran. [J].Neurosci Lett,1988, 94:138.144
    [52]S.L.Morgan and T.J.Teyler. VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. [J].JNeurophysiol,1999,82:736-740
    [53]Eichembaum H. The hippocampus and mechanisms of declarative memory. Behav Brain Res,1999,103:123-133
    [54]Ross RT, Orr WB, Holland PC, et al. Hippocampectomy disrupts acquisition and retention of learned conditioned responding. [J].Behav Neurosci.96:211-225, 1984
    [55]Moss M, Mahut H, Zola-Morgan S. Current discrimination learning of monkeys after hippocampal, entorhinal or fornix lesions. [J].Neurosci,1981,1:227-240
    [56]宿宝贵,许鹿希.大鼠海马结构在学习记忆活动时的细胞形态学可塑性研究.[J].解剖学杂志,1999,22(2):141-143
    [57]Kanner BI. Glutamate transporters from brain. A novel neurotransmitter transporter family [J]. FEBS Lett,1993,325(1-2):95-99.
    [58]Masson J, Sagne C, Hamon M, et al. Neurotransmitter transporters in the central nervous system [J]. Pharmacol Rev,1999,51(3):439-464.
    [59]Seal RP, Amara SG. Excitatory amino acid transporters:^famalily in flux [J]. Annu Rev Pharmacol Toxicol,1999,39(1):431-456.
    [60]Storck T, Schulte S, Hofinann K, et al. Structure, expression and functional analysis of a Na-depedent glutamate/aspartate transporter from rat brain [J]. Proc Natl Acad Sci U S A,1992,89(22):10955-10959.
    [61]Fairman WA, Amara SG Functional diversity of excitatory amino acid transporters:ion channel and transport modes [J]. Am J Physiol,1999, 277(4):481-486.
    [62]Bouvier M, Szatkowski M, Amato A, et al. The glial cell glutamate uptake carrier countertransports pH-changing anions [J]. Nature,1992, 360(6403):471-474.
    [63]Sugimoto M, Fukami S, Kayakiri H, et nz. The beta lactfim antibiotics, penicillin-G and cefoselis have different mechanisms and sites of action at GABA(A)receptors[J]. Br J Pharmacol,2002,135(2):427-432.
    [64]Fox JE, Bikson M, Jefferys JG. The effect of neuronal population size on the development of epileptiform discharges in the low calcium model of epilepsy [J].Neurosci Lett,2007,411(2):158-161.
    [65]康华光.膜片钳技术及应用.[M].科学出版社.
    [66]姚泰主编.生理学.[M].人民卫生出版社
    [67]Miwa JM, Stevens TR, King SL, Caldarone BJ, Ibanez-Tallon I, Xiao C, et al.The protoxin lynxl acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. [J]. Neuron,2006,5:587-600.
    [68]Yuan XR,Madamba SG,Siggins GR,Opioid peptides reduce synaptic transmission in the neucleus accumbens. [J]. Neurosci Lett,1992,134:223-238.
    [69]Aronseb JK.Potassium channels in nervous tissue.Biochem. [J]. Pharmacol,1992, 43:11-14.
    [70]康华光.细胞电生理与膜片钳技术[J].中国医疗器械杂志,2000,24(3):155-160.
    [71]赵勇刚,王保华。生物分子结构及功能,细胞信号传导和胞间通讯过程的检测技术[J].国外医学生物工程分册,2000,23(2):65-70.
    [72]Pak Y, Kouvefas A, Scheideler MA, et al.Agonist-induced functional desensitization of the mu-opioid receptor is mediated by loss of membrane receptors rather than uncoupling from G protein [J]. Mol Pharmacol, 1996(50):1214-1222.
    [73]陈军.膜片钳实验技术.[M].科学出版社
    [74]Takeo Suzuki, Masami Miura, Kin-ya Nishimura et al. Dopamine-Dependent Synaptic Plasticity in the Striatal Cholinergic Interneurons. [J]. J.Neuroscience, 2001,21(17):6492-6501.
    [75]Ho OH, Delgado JY, and O'Dell TJ. Phosphorylation of proteins involved in activity-dependent forms of synaptic plasticity is altered in hippocampal slices maintained in vitro. [J]. J Neurochem,2004,91:1344-1357.
    [76]Brigitte Capron, Christian Sindic, Emile Godaux and Laurence Ris. The characteristics of LTP induced in hippocampal slices are dependent on slice-recovery conditions Learn. [J]. Mem,2006,13:271-277.
    [77]Varona P, Ibarz JM, Lopez-Aguado L, and Herreras O. Macroscopic and subcellular factors shaping CA1 population spikes. [J]. J Neurophysiol.2000, 83:2192-2208.
    [1]Kullmann D M, Hanna M G. Neurological Disorders Cansed by Inherited Ion-channel Mutations [J]. Neurology,2002,1(3):157-166.
    [2]Yu FH, Catteral1 WA. Overview of the voltage-gated sodium channel family[J]. Genome Biol,2003,4(3):207-213.
    [3]Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. ⅩLⅦ. Nomenclature and structure function relationships of voltage-gated sodium channels[J]. Pharmacol Rev,2005,57(4):397-409.
    [4]Ogata N, Ohishi Y. Molecular diversity of structure and function of the voltage-gated Na channels[J]. Jpn J Pharmacol,2002,88 (4):365-377.
    [5]任成涛,欧绍武,王运杰,等.大鼠脑组织Nav1.5钠通道的基因克隆及分布分析[J].生物化学与生物物理进展,2007,34(8):816-823.
    [6]Ferrera L, Moran O. Betal-subunit modulates the Navl.4 sodium channel by changing the surface charge[J]. Exp Brain Res,2006,172(2):139-150.
    [7]Armstrong CM. Na channel inactivation from open and closed states[J]. Proc Natl Acad Sci USA,2006,103(47):17991-17996.
    [8]Cesti~le S, Yarov-Yarovoy V, Qu Y, et al. Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin[J]. Biol Chem,2006, 281(30):21332-21344.
    [9]Chen Y, Yu FH, Surmeier DJ, et al. Neuromodulation of Na channel slow inactivation via Camp. dependent protein kinase and protein kinase C[J]. Neuron, 2006,49(3):409-420.
    [10]Tikhonov DB, Zhorov BS. Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands[J]. Biophys J, 2005,88(1):184-197.
    [11]邹冈主编.基础神经药理学[M].第二版,北京:北京科技出版社,1999.
    [12]Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. ⅩLⅦ. Nomenclature and structure function relationships of voltage-gated sodium channels [J]. Pharmacol Rev,2005,57(4):397-409.
    [13]金宏伟,王晓良.电压依赖性钾通道与人类神经性疾病[J].生理科学进展, 2002,33(1):21-25.
    [14]王世敏,蒋学俊,李晓艳.心脏电压依赖性钾通道的研究进展[J].中国心脏起搏与心电生理杂志,2002,16(1):67-70.
    [15]Rasmusson RL。 Morales MJ, Wang S, et al. Inactivation of Voltage-gated cardiac K channels[J]. Circ Res。1998,82(7):739-750.
    [16]Jerng HH, Shahidullah M. Covarrubias M. Inactivation gating of Kv4 potassium channels:molecule interaction involving the inner vestibule of the pore[J]. J Gen Physiol,1999,113(5):641-660.
    [17]Giese KP, Storm JF, Reuter D, et al. Reduced K channel inactivation, spike broadening, and after hyperpolarizatiOn in Kvbetal.1-deficient mice with impaired learning[J]. Learn Med,1998,5(4-5):257-273.
    [18]郭洪波,王帅,邹飞.下丘脑神经元钙激活钾通道的温度效应[J].中国公共卫生,2002,18(1):81-82.
    [19]丁报春,秦达念.生理学名词比较[M].长沙:湖南科学技术出版社,2001.124-125.
    [20]朱庆磊,汪海,肖文彬.ATP敏感性钾离子通道分子结构和功能的组织特异性研究进展[J].中国药理学通报,2001,17(2):121-127.
    [21]张颖丽,汪海.神经元ATP敏感钾通道的研究进展[J].中国药理学通报,2003,19(7):731-735.
    [22]冯力,赵岐,刘杰.短暂缺氧对心肌细胞KATP通道的影响[J].中山医科大学学报,2000,21(4s):56-59.
    [23]Yokoshiki H, Sunagawa M, Seki T, et al. ATP-sensitive K channels in pancreatic, cardiac, and vascular smooth muscle cells[J]. Am J Physiol,1998, 274(Cell Physiol,43):C25-37.
    [24]lsomoto SC, Kondo M, Yamada S, et al. A novel sulfonylurea receptor forms with B1R (Kir6.2)a smooth m uscle type ATP-sensitive K+ channel[J]. J Biol Chem,1996,271(40):2432124324.
    [25]Levin BE, Dunn-Meynell AA, Routh VH. Brain glucose sensing and body energy hom eostasis:role in obesity and diabetes[J]. Am J Physiol,1999, 276(5):1223-1231.
    [26]Liss B, Roeper J. Molecular physiology of neuronal KATP channels[J]. Mol Membr Biol,2001,18(1):117-127.
    [27]Jaburek M, Yarov-Yarovoy V, Paucek P, et al. State-2 dependent inhibition of m itochondrial KATP channel by glyburide and 5 hydrOxydecanOate[J]. J Biol Chem, 1998,273(22):13578-13582.
    [28]Suzuki M, Kotake K, Fujikura K, et al. Kir6. I:a possible subunit of ATP-sensitive K+ channels in mitochondria[J]. Biochem Biophys Res,1997, 241(3):693-697.
    [29]Zhou M, Tanaka O, Sekiguchi M, et al. Localization of the ATP-sensitive potassium channel subunit (Kir6.1/uK(ATP)-1)in rat brain[J]. Brain Res Mol Brain Res,1999,74(1):15-25.
    [30]Liu Y, Sato T,O Rourke B, et al. Mitochondrial ATP-dependent potassium channels:novel effectors of cardioprotection[J]. Circulation,1998, 97(24):2463-2469.
    [31]Halestrap AP. Regulation of mitochondrial metabolism through changes in matrix volume[J]. Biochem Soc Trans,1994,22(2):522-529.
    [32]Czyz A, Szewczyk A, Nalecz MJ, et al. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria[J]. Biochem Biophys Res,1995,210(1):98-104.
    [33]Garlid KD, Paucek P, Yarov Y. et al. cardioprotective effect of diazoxide and its interaction with mitOchOndrial ATP-sensitive K+channels-possible mechanism of cardioprotection[J]. Circ Res,1997,81(6):1072-1082.
    [34]张炜,王晓良.钾通道家族新成员:双孔道钾通道的研究进展[J].生命科学进展.2003,34(1):49-52.
    [35]Connor J A, Stevens C F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol,1971,213(1):31-53.
    [36]Song W J, Tkatch T, Baranauskas G, et al. Somatodendritic depolarization-activated potassium currents in rat neostriata cholinergic intemeurons are predominantly of the A-type and attributable to coexpression of Kv4.2 and Kv4.1 subnnits. Neurosci,1998,18(9):3 124-3 137.
    [37]Isbrandt D, Leicher T, Waldschutz R, et ol. Gene structures an expression profiles of three human KCND (Kv4) potassium channels mediating A-type currents I(TO)and I(SA). Genomics,2000,64(2):144-154.
    [38]RhodesK J, CarrollKI, SungMA, et ol. KChIPs and Kv4 alph subnnits as integral components of A-type potassium channels in mammalian brain. J Neurosci,2004,24(36):7903-7915.
    [39]Maletic-Savatic M, Lenn N J, Trimmer J S. Differentia spatiotemporal expression of K+channel polypeptides in rat hippocampal neurons developing in situ an d in vitro. J Neurosci 1995,15(5):3840-3851.
    [40]Malin S A, Nerbonne J M. Elimination ofthe fast transient in superior cervical ganglion neurons with expression of Kv4.2W362F molecular dissection of IA. J Neurosci,2000,20(14):5191-5199.
    [41]Yuan L L, Adam s J P, Swank M, et al. Protein kinase modulation of dendricic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci,2002,22(12):4860-4868.
    [42]Schrader L A, Bimbaum S G, Nadin B M, et al. ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol,2006,290(3)C852-861.
    [43]Tkatch T, Baranauskas G, Surmeier D J. Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. J Neurosci,2000,20(2):579-588.
    [44]Stuart G, Spruston N, Sakmaun B, et al. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci,1997, 211(3):125-131
    [45]MiglioreM, Hoffman D A, Magee J C, et al. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippoeampal pyramidal neurons. J Comput Neurosci,1999,7(1):5-15.
    [46]Watanabe S, Hofllnan D A, M iglioreM, et al. Dendritic channels contribute to spike-timing dependen t long-ternl potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA,2002,99(12):8366-8371.
    [47]Ramakers G M, Storm J F. A postsynapfic transient current modulated by arachidonic acid regulates synaptic integration and threshold for LTP inductionin hippo campal pyramidal cells. Proc Natl Acad Sci USA,2002,99(15): 10144-10149.
    [48]Scannevin R H, Wang I, Jow F, et al. Two N-terminal domains of Kv4 K+ channels regulate binding to and modulation by KChlP1. Neuron,2004, 41(4):587-598.
    [49]SinghN A, Charlier C, Stauffer D, et nf. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet,1998, 8(1):25-29
    [50]Lep pert M, Singh N. Benign familial neonatal epilepsy with mutations in two potassium channel genes. Curr Opin Neurol,1999,12(2):143-147.
    [51]Beck H. Clusmann H'Kral T, et ol. Potassium currents in acutely isolated hum an hippocampal dentate granule cells. J Physiol,1997,498(1):73-85.
    [52]BagettaG, Nistico G'Dolly JO. Production of seizures and brain damage in rats by alpha-dendrotoxin. a selective channel blocker. Neurosci Lett,1992, 139(1):34-40.
    [53]JuhngKN, KokateTG, Yamagu chi S, et al. Induction of seizures by the potent K+ channel-blocking scorpion venom poptide toxins tityustoxin-K(alpha) and pandinustoxin-K(alpha). Epilepsy Res,1999,34(2-3):177-186.
    [54]Thaur M L, ShengM, LowensteinD H, et al. Differential expression of K+ channel mRNAs in the ml brain and down-regulation in the hippocampus following seizures. Neuron,1992,8(6):1055-1067.
    [55]Malin S A, Guo W X, Jafari G, et. Presenilina up regulate functional channel currents in mammalian cells. Neurobiol Dis,1998,4(6):398-409.
    [56]ChoiE It, ZaidiN F, Miller J S, et nf. Calsenilin is a substrate for caspase-3 that preferentially interacts with the familial Alzheimer's disease-associated C-terminal fragment of presenilin 2. J Biol Chem,2001,276(22):19197-19204.
    [57]Gregory H. Hockerman, Nejmi Dilmac, Todd Scheuer, and William A. Catterall. Molecular Determinants of Diltiazem Block in Domains ⅢS6 and ⅣS6 of L-type Ca2+ Channels. Mol. Pharmacol, Dec 2000,58:1264.
    [58]William A. Catterall, Joerg Striessnig, Terrance P. Snutch, and Edward Perez-Reyes. International Union of Pharmacology. XL. Compendium of Voltage-Gated Ion Channels:Calcium Channels. Pharmacol Rev,2003,55: 579-581
    [59]William A. Catterall, Edward Perez-Reyes, Terrance P. Snutch, and Joerg Striessnig. International Union of Pharmacology. ⅩLⅧ. Nomenclature and Strucuere-Function Relationships of Voltage-Gated Calcium Channels. Pharmacol Rev,2005,57:411-425
    [60]Christoph J. Meinrenken, J. Gerard G. Borst and Bert Sakmann. Local routes revisited:the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol,2003,547(3):665-689.
    [61]Joanne M. Doughty, Margaret Barnes-Davies, Zoltan Rusznak, Csaba Harasztosi, and Ian D. Forsythe. Contrasting Ca2+ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurons. J Physiol, Oct 1998; 512:365.
    [62]Christoph J. Meinrenken, J. Gerard G. Borst, and Bert Sakmann. Calcium Secretion Coupling at Calyx of Held Governed by Nonuniform Channel-Vesicle Topography. JNeurosci, Mar 2002; 22:1648.
    [63]Rozov A, Burnashev N, Sakmann B and Neher E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium. Journal of Physiology,2001, 531(3):807-826.
    [64]Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C,Schneider T, and Beck H. Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron,2003,39:483-496.
    [65]Jing X, Li DQ, Olofsson CS, Salehi A, Surve W, Caballero J, Ivarrsson R, Lundquist I, Pereverzev A, Schneider T, et al. Cav2.3 calcium channels control second-phase insulin release. J Clin Investig,2005,115:146-154.
    [66]Pereverzev A, Salehi A, Mikhna M, Renstrom E, Hescheler J, Weiergraber M, Smyth N, and Schneider T. The ablation of the Cav2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of Langerhans. Eur J Pharmacol,2005,511:65-72.
    [67]Heady TN, Gomora JC, Macdonald TL, and Perz-Reyes E. Molecular pharmacology of T-type Ca2+ channels. Jpn J Pharmacol,2001,85:339-350.
    [68]Popovic M, Caballero BM, Popovic N, et al. Neuroprotective effect of chronic verapamil treatment on cognitive and noncognitive deficits in an experimental Alzheimer's disease in rats. Int JNeurosci,1997,92(1-2):79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700