用户名: 密码: 验证码:
双馈风力发电系统低电压穿越关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国及世界范围内多数风电场都处于比较偏僻的区域,因此风电场接入的电网大部分远离负荷中心。这种电网相对薄弱,容易发生波动,从而影响到风电机组的稳定运行。甚至更为严重的是电网电压存在大幅度跌落的可能,此时风电机组大规模的解列将严重威胁电网的安全运行。为了保证电力系统的稳定运行,目前在大规模风电并网的应用技术中,电网发生故障时风力发电机组自动脱网的方式已不再允许。我国也出台了针对风电场低电压穿越(Low-Voltage-Ride-Through, LVRT)的相关导则,对风力发电机组的低电压穿越做出了硬性的规定。因此,研究风电机组的低电压穿越能力具有重要的理论和现实意义。
     本文首先综述了国内外风力发电的现状,特别是双馈式风电机组的低电压穿越方式及其相应的控制策略。对比分析了多种研究方法的优缺点。通过严格的理论分析,推导出了各种不同电网故障状态下双馈感应电机(Doubly-fed Induction Generator, DFIG)定子磁链及转子感应电压的解析值,为保护和控制策略的研究提供了理论依据。
     应用基于状态反馈线性化的非线性控制方法,在双馈式风电机组动态数学模型的基础上,设计了低电压穿越控制策略。通过控制目标选定输出函数,然后通过状态反馈线性化和适当的坐标变换将该非线性系统转化为线性可控系统,最后通过线性最优控制方法完成系统控制策略的设计。该控制策略仅与风电机组自身参数有关,提高了控制系统的鲁棒性。
     通过理论推导以及仿真、试验,提出了双馈电机应对大幅度电压跌落最有效的方法之一——在转子侧接Crowbar电路,以保护双馈电机及其变换器;同时采用向量法和稳态电路法分析了由于交流侧Crowbar的使用,所引起的电机转矩反向和振荡的问题;求解了电磁转矩的解析表达式,用来指导Crowbar阻值的选取,以减小电机轴系振荡,保护电机轴系系统。同时研究了双馈电机在Crowbar电路投入的情况下无功功率的吸收问题,提出了基于最大电流法的无功功率补偿控制策略。
     设计搭建了一套由虚拟风场、风力机模拟系统、双馈感应发电机、主控制器、虚拟仪器以及变换器系统和低电压穿越单元等组成的完整的7.5kW变速恒频双馈风力发电系统的实验平台。在该实验平台上验证了双馈风力发电的一些基本理论和运行特征,对于双馈风力发电原理的深刻理解和控制策略的进一步优化起到积极的作用。针对双馈风力发电机组的低电压穿越课题所进行的理论推导以及由此所提出的控制策略在实验平台上进行了验证,实验结果与理论分析吻合,验证了其正确性。
Many wind farms in China and other countries are located in the placewith poor conditions, sparse population and the access of the wind farms arefar away from the load center, so these grids are comparatively weak. Forsome weak grids, they are vulnerable to be fluctuated; moreover, the voltageof the grids may drop sharply. When the grids are fluctuated, the fluctuationwill cause huge affect on the stability of the wind turbines. To ensure thestability of the grids, nowadays, for the application of the large scale of windpower grid integration, when the grids are faulted, the methods thatdisconnecting the wind turbines with grids will never be allowed by the newgrid rules. Our countries have established the rules of the low voltageride-through (LVRT), and applied the rules to the every wind farms. Thus,the research on the LVRT of the wind turbines has important theoretical andpractical meanings.
     This paper mentioned the present conditions of wind power at ourcountries and abroad, and included the conditions and correspondingmethods of the LVRT of doubly-fed wind turbine. Moreover, this papercompared the merits and shortcomings of these methods. By strictlytheoretical analysis, this paper deduced the computing values of the stator’sflux linkage and rotor voltage of the doubly-fed induction generator(DFIG)when the grids are faulted, and supplied theoretical basis for the protectingstrategies.
     Applying non-linear control method based on state feedbacklinearization and depending on the mathematical dynamic modeling of thedoubly-fed wind turbine, the control strategy of the LVRT is designed.Firstly, we selected the output functions according to control target; then, by using linearization the state feedback and proper coordinate transforming,we converted this nonlinear system to the linear and controllable system;finally, through the optimized linear control strategy we designed the controlstrategy of the control system. This control strategy was only depended onthe parameters of the wind turbines, and strengthened the robust of controlstrategies.
     This paper analyzed that one of the most effective methods fordoubly-fed induction generator to deal with the severe LVRT is connectingCrowbar to rotor side to protect the doubly-fed induction generator andinvertors. By using the vector methods and stable circuit methods, the paperanalyzed that the Crowbar of AC sides will cause the inverse vibration of thegenerators torque. This paper found the equation of the electromagnetictorque for the parameters optimization of the Crowbar to decrease thevibration of the generator and protect the shaft system of the generator. Atthe same time, this paper analyzed the issue of reactive power absorption ofthe doubly-fed induction generator using Crowbar, and set up the reactivecompensation strategy based on the maximal current methods.
     This paper designed a7.5KW variable speed constant frequencydoubly-fed wind power system laboratory platform composed by virtualwind farm, wind resource imitation system, doubly-fed induction generator,main controller, virtual instruments, converter systems and LVRT units. Onthis laboratory platform, some basic theories and operation characteristics ofthe doubly-fed wind power system are demonstrated. It will be helpful forthe deeper understanding of the theories of the doubly-fed wind power andthe optimization of the control strategy. From the theory deduction andcorresponding experiments of the LVRT of doubly-fed induction generator,the experiment results are expected to show good agreement with thetheoretical analysis.
引文
[1]江泽民.对中国能源问题的思考.北京,2008
    [2]孙笑天.中国清洁能源市场分析报告.中国三峡建设.2008:78-80.
    [3]刁瑞盛.风力发电对电网的影响研究[硕士论文].浙江:浙江大学.2006.
    [4]李俊峰.欧洲风能协会,国际绿色和平组织.风力12:关于2020年风电达到世界电力总量12%的蓝图[M].北京:中国环境科学出版社,2004.5.
    [5] GWEC, GREENPEACE. Global wind energy outlook2010[R].2010.
    [6]易跃春.风力发电现状、发展前景及市场分析[J].国际电力,2004,2004(10):18-22.
    [7]何祚庥,王亦楠.风力发电是我国能源和电力可持续发展战略的最现实选择[J].上海电力,2005,(1):8-18.
    [8]陈雷.大型风力发电机组技术发展趋势[J].可再生能源,2003,107(1):12-14.
    [9]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [10]叶启明.大型风力发电机组系统的结构与特点[J].华中电力,2002,15(2):67-68.
    [11]卞松江.变速恒频风力发电系统关键技术研究[D].[博士学位论文],杭州:浙江大学,2003.
    [12] Datta R, Ranganathan V. Variable-speed wind power generation using doubly-fed wound rotorinduction machine-A comparison with alternative schemes[J]. IEEE Transactions on EnergyConversion,2002,17(3):414-421.
    [13]张鲁华.双馈风力发电变换器的控制技术研究[D].上海:上海交通大学,2010.
    [14]贺益康,郑康,潘再平,等.交流励磁变速恒频风电系统运行研究[J].电力系统自动化,2004,18(13):55-59.
    [15] Polinder H, Vilder D. Comparison of direct-drive and geared generator concepts for windturbines[J]. IEEE International Conference on Electric Machines and Drives,2005,543-550.
    [16]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究—基础理论与关键技术[D].浙江杭州,浙江大学,2009.
    [17] H. Li, Z. Chen. Overview of Different Wind Genertor Systems and Their Comparisons [J]. JETRenewable Power Generation,2008,2(2):123-138.
    [18]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].浙江杭州:浙江大学,2005:43-87.
    [19] S.A.Larrinaga, M.A.RodriguezVidal, E.Oyathide, J.R.T.Apraiz. Predietive Control Strategy forDC/AC Converters Based on Direct Power Control [J].IEEE Transactions on IndustrialElectronics,2007,54(3):1261-1271.
    [20]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报,2006,23(11):122-125.
    [21] A.Petersson,S.Lundberg, T.Thiringer. Comparison Between Stator-Flux and Grid-Flux-OrientedRotor Current Control of Doubly-Fed Induction Generators[C],35th Annual IEEE PowerElectronics Specialists Conference, Aachen, Germany,2004:482-486.
    [22] S.Vazquez, J.A.Sanehez, J.M.Carrasco, J.I.Leon, E.Galvan. A Model-Based Direct PowerControl forThree-Phase Power Converters[J]. IEEE Transactions on Industrial Electronics,2008,55(4):1647-165.
    [23] S. R. H. Amrei. Investigation on grid-connected power converter for wind power generationsystem [D]. Harbin: Harbin Institute of Technology,2006.
    [24]马小亮.大功率交一交变频调速及矢量控制技术[M].北京:机械工业出版社.1996.
    [25]秦晓平,王克成.感应电动机的双馈调速和串级[M].北京:机械工业出版社.1990.
    [26] Ekanayake J B, Lee Holdsworth L, Wu X G, et al. Dynamic modeling of doubly fed inductiongenerator wind turbines[J]. IEEE Trans on Power Systems,2003,18(2):803-809.
    [27] S. Wang, Y. Ding. Stability analysis of field oriented doubly-fed induction machine drive basedon computer simulation [J]. Electric Power Components and systems,1993,21(1):11-24.
    [28] Pena R., Cardenas R., Clare J. Control Strategy of Doubly Fed Induction Generators for a WindDiesel Energy System [C]. IECON2002,4:3297-3302.
    [29] Arantxa Tapia, Gerardo Tapia et al. Modeling and Control of a Wind Turbine Driven Doubly FedInduction Generator [J]. IEEE Trans. On Energy Conversion,2003,18(2):194-204.
    [30]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26.
    [31]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162
    [32]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90
    [33] Yong Liao, Li Ran, Putrus G. A., Smith K. S. Evaluation of the Effects of Rotor Harmonics in aDoubly-fed Induction Generator with Harmonic Induced Speed Ripple. IEEE Trans. On EnergyConversion,2003,18(3):225~230
    [34]马洪飞,徐殿国.几种变速恒频风力发电系统控制方案对比分析[J].电工技术杂志.2000,(10):49-52.
    [35]陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社.1999:220.
    [36] R.Datta, V.T.Ranganatha. Direct Power Control of Grid-Connected Wound Rotor InduetionMachine Without Rotor Position Sensor[J]. IEEE Transactions on Power Electronics,2001,16(3):390-399.
    [37] L.Xu, P.Cartwright. Direct Active and Reaetive Power Control of DFIG for Wind EnergyGeneration[J]. IEEE Transactions on Energy Conversion,2006,21(3):750-758.
    [38] G.Abad, M.A.Rodriguez, J.Poza. Two-Level VSC-Based Predictive Direct Power Control of theDoubly Fed Induetion Machine with Reduced Power Ripple at Low Constant SwitchingFrequeney[J]. IEEE Transactions on Energy Conversion,2008,23(2):570-580.
    [39]伍小杰,柴建云,王祥.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化.2004,28(23):92-96.
    [40]刘笙.电气工程基础[M].北京:科学出版社,2008.
    [41] M.H.J.Bollen. Understanding Power Quality Problems: Voltage Sags and Interruptions[M]. NewYork IEEEPress,1999.
    [42] M.H.J.Bollen. Voltage Recovery After Unbalanced and Balanced Voltage Dips in Three-PhaseSystems. IEEE Trans. on Power Delivery,2003,18(4):1376-1381.
    [43]张兴,张龙云,杨淑英,余勇,曹仁贤.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2002,20(2):1-8.
    [44] A.Petersson, S.Lundberg,T.Thiringer. A DFIG Wind Turbine Ride-through System Influence onthe Energy Production[J]. Wind Energy,2005,9(8):251-263.
    [45]王伟,孙明东,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化,2007,31(23):84-89.
    [46] L.Xu, Y.Wang. Dynamic Modeling and Control of DFIG-Based Wind Turbines UnbalancedNetwork Conditions[J]. IEEE Transactions on Power Systems,2007,22(1):314-323
    [47]胡家兵,贺益康,郭晓明,年珩.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统及其自动化学报,2007,31(14):47-56.
    [48] B.Idsoe Nass,T.Undeland,T.Gjengeda. Methods for Reduction of Voltage Unbalance in WeakGrids Connected to Wind Plant[C].IEEE WorkshoP on Wind Power and The Impacts on PowerSystems,Norway,June2002, pp.17-18.
    [49]胡家兵,贺益康.双馈风力发电系统的低电压穿越运行与控制[J].电力系统自动化,2008,32(2):49-52.
    [50] http://www.eon-nets.com/
    [51] Erlich. I and Bachmann. U. Grid code requirements concerning connection and operation Ofwind turbines in Germany, IEEE Power Engineering Society General Meeting2,2005,1253-1257.
    [52] Tsili. M, Patsiouras. C and Papathanassiou. S, Grid Code Requirements for Large Wind Farms: AReview of Technical Regulations and Available Wind Turbine Technologies, European WindEnergy Conference&Exhibition, Brussels,31st March,2008.
    [53] C.Jauch,J.Matevosyan, T.Ackermann,S.Bolik. International Comparison of Requirements forConneetion of wind Turbines to Power Systems[J].Wind energy,2005,8(3):295-306.
    [54] S. Seman..Transient performance analysis of wind-power induction generators[D]. Helsinki:Helsinki University,2006.
    [55]国家电网公司,风电场接入电网技术规定(修订版),2009,2.
    [56] B.Kehrli, M.Ross. Utility-Connected Power Electronics Compensators in Wind PowerApplications[C].11th European Conf. on Power Electronics and Applications, Aalborg, Denmark,2007:1-15.
    [57] J.Niiranen. Voltage ride through of a doubly-fed generator equipped with an active Crowbar[C].11th International Power Electronics and Motion, Control Conference,2004:56-59.
    [58] W. Zhang, P. Zhou, Y. He. Analysis of the By-pass Resistance of an Active Crowbar forDoubly-fed Induction Generator Based Wind Turbines under Grid Faults[C]. InternationalConference on Electrical Machines and Systems ICEMS2008,2316-2321.
    [59]李建林,赵栋利,李亚西等.适合于变速恒颇双馈感应发电机Crowbar对比分析.可再生能源,2006(5):57-60.
    [60] Morern J., De Haan S W H. Ride through of wind turbines with doubly-fed induction generatorduring a voltage dip [J]. IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [61] ABBEY C, JOOS G. Short-term energy storage or wind energy applications[C]. Proceedings ofConference Record of the Industry Applications Conference, Hong Kong, China,2005,(3):2035-2042.
    [62]姚骏,廖勇,唐建平.电网短路故障时交流励磁风力发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2007,27(30):64-71.
    [63]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [64]姚骏.交流励磁发电机及其励磁电源的控制策略研究[D].重庆::重庆大学博士学位论文,2007.
    [65] D. Xiang, L. Ran, P. J. Tavner, S. Yang. Control of a Doubly fed Induction Generator in a WindTurbine During Grid Fault Ride-through[J]. IEEE transactions on energy conversion,2006,21(3):652-662.
    [66] Yi Wang,Lie Xu. Control of DFIG-Based Wind Generation Systems under Unbalanced NetworkSupply[C]. IEEE EMDC,2007:430-435.
    [67]樊绝芳.电压不平衡与风电厂运行之间相互影响的研究[J].电力系统及其自动化学报,2002,14(4):58-60,71.
    [68] Abad, G., Rodriguez, M.A.,Iwanski, G., Poza, J.. Direct Power Control of Doubly Fed InductionGenerator based Wind Turbines under Unbalanced Grid Voltage. IEEE Transactions on PowerElectronics,2010,25(2):442-452.
    [69] Ruben Pena, Roberto Cardenas. Control System for Unbalanced Operation of Stand-AloneDoubly Fed Induction Generators[J]. IEEE TRANSACTIONS ON ENERGY CONVERSION,2007,22(2):544-545.
    [70] Oriol Gomis-Bellmunt, Adria Junyent-Ferre, Andreas Sumper, Joan Bergas-Jane. Ride-ThroughControl of a Doubly Fed Induction Generator Under Unbalanced Voltage Sags[J]. IEEE Trans.on Energy Conversion,2008,23(4):1036-1045.
    [71]关宏亮,赵海翔,迟永宁,等.电力系统对并网风电机组承受低电压能力的要求[J].电网技术,2007,31(7):78-82.
    [72] Abbey C, Morneau J, Mahseredjian J, et al. Modeling requirements for transient stabilitv studiesfor wind parks[C].2006IEEE Power Engineering Society General Meeting, Montreal, Canada,2006.
    [73] Zhan C, Barker C D. Fault ride-through capability investigation of a doubly-fed inductiongenerator with an additional series-connected voltage source converter[C]. The8th IEEInternational Conference on AC and DC Power Transmission, London, U K:2006.
    [74] BING XIE, FOX B, FLYNN D. Study of fault ride-through for DFIG based wind turbines[J].IEEE Trans on Electric Utility Deregulation,2004(1):411-416.
    [75] Jiaqi Liang, Wei Qiao, Ronald G. Harley. Feed-Forward Transient Current Control forLow-Voltage Ride-Through Enhancement of DFIG Wind Turbines[J]. IEEE TRANSACTIONSON ENERGY CONVERSION,2010,25(3):836-843.
    [76] Holdsworth L, Wu X G, Ekanayake J B, et al. Comparison of fixed speed and doubly-fedinduction wind turbines during power system disturbances[C]. IEE Proceedings-Generation,Transmission and Distribution,2003,150(3):343-352.
    [77]李建林,许鸿雁,梁亮,等. VSCF-DFIG在电压瞬间跌落情况下的应对策略[J].电力系统自动化,2006,30(19):65-68.
    [78]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [79] Jesus Lopez, Eugenio Gubia, Pablo Sanchis, et al. Wind Turbines Based on Doubly FedInduction Generator Under Asymmetrical Voltage Dips[J]. IEEE TRANS ON ENERGYCONVERSION,2008,23(1):321-330.
    [80] Timbus A V, Teodorescu R, Blaabjerg F, et al. PLL algorithm for Power generation systemsrobust to grid voltage faults[C]. Proceeding of2006IEEE Power Electronics SpecialistsConference, Jeju, South Korea,2006.
    [81] Manoj R Rathi, Ned Mohan. A Novel Robust Low Voltage and Fault Ride Through For WindTurbine Application Operating in Weak Grids[C]. Proceedings of31st Annual Conference ofIEEE Industrial Electronics Society, Raleigh, NC, USA, Nov6-102005. pp2481-2486.
    [82] He Yikang, Hu Jiabing, Zhao Rende. Modeling and Control of Wind Turbine Used DFIG underNetwork Fault Conditions[C]. Proceeding of Eighth International Conference on ElectricalMachine and systems, Vol2, Sep27-29, Nanjin, China,2005.
    [83]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D].重庆:重庆大学,2006.
    [84] C. J. Ramos, A. P. Martins and A. S. Carvalho. Rotor Current Controller with Voltage HarmonicsCompensation for a DFIG Operating under Unbalanced and Distorted Stator Voltage[C].Proceeding of33rd Annual Conference of the IEEE Industrial Electronics Society,2007,1287-1292.
    [85]关宏亮,赵海翔,王伟胜,等.风电机组低压穿越功能及其应用[J].电工技术学报,2007,22(10):173-177.
    [86] Muljadi, E. Butterfield, C.P. Parsons, B. Ellis, A. Effect of VAriable Speed Wind Generator onStability of a Weak Grid. IEEE Trans on Energy Conversion,200722(1):29-36.
    [87] Piwko, R, Miller, N, Sanchez-Gasca, J. Xiaoming Yuan, Renchang Dai, Lyons, J. IntegratingLarge Wind Farms into Weak Power Grids with Long Transmission Lines[C]. Proceedings ofTransmission and Distribution Conference and Exhibition: Asia and Pacific, Aug14-18DalinChina,2005, pp:1-7.
    [88] Senjyu, T., Sueyoshi, N.,Uezato, K., Fujita, H.. stability analysis of wind power generatingsystem. Proceedings of Power Conversion Conference, Apr2-5, Osaka, Japan,2002,1441-1446.
    [89] Abbey, C., Joos, G.. Effect of Low Voltage Ride Through(LVRT) Characteristic on VoltageStability[C]. Proceedings of Power Engineering Society General Meeting, Vol2,2005:1901–1907.
    [90] Jean Momeau, Chad Abbey, Geza Joos. Effect of Low Voltage Ride Through Technologies onWind Farm. Proceedings of Electrical Power Conference, Canada,2007:56-61.
    [91] P. D. Hopewell, W. W. Price, N. W. Miller, and W.Liu. Modeling and Simulation of Wind TurbineGenerators in Large Offshore Applications[C]. Proceeding of Fifth International Workshop onLarge-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms,Glasgow, Scotland,2005.
    [92] Chondrogiannis, S., Barnes, M., Aten, M., Cartwright, P. Modelling and GB Grid CodeCompliance Studies of OffshoreWind Farms with Doubly-Fed Induction Generators[C].Proceedings of The3rd IET International Conference on Power Electronics, Machines andDrives,2006:22-26.
    [93] Gu B G, Nam K. A DC link capacitor minimization method through direct capacitor currentcontrol[J]. IEEE Transaction on Industry Applications,2006,42(2):573-581.
    [94]林资旭.变速恒频风力发电机网侧变换器在输入电压不平衡时控制技术的研究[D].北京:中国科学院电工研究所,2006.
    [95]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报.,2005,23(13):51-56.
    [96] Alan Mullane, G. Lightbody, R. Yacamini. Comparison of a cascade and feedback linearizationscheme for DC link voltage control in a grid connected wind turbine [C]. Proceedings of theUPEC2001,36th Universities Power Engineering Conference, Sep.2001.
    [97] DENG Wei-hua, ZHANG Bo, QIU Dong-yuan, LU Zhi-feng, HU Zong-bo. The research ofdecoupled state VAriable feedback linearization control method of three-phase voltage sourcePWM rectifier [C]. Proceedings of CSEE,25(7):97-103,2005.
    [98] D.I. Kim, I.J. Ha, M.S. Ko. Control of induction motor via feedback linearization withinput-output decoupling [J]. Int. J. Contr.1990,51(4):863-886.
    [99] Komurcugil. H, Kukrer. O.. Lyapunov-based control for three phase PWM AC/DCvoltage-source converters [J]. IEEE Trans. Power Electronics,1998,13(5):801-813.
    [100]张学广,徐殿国.电网对称故障下基active crowbar双馈发电机控制[J].电机与控制学报,2009,13(1):99-103.
    [101]陈伯时.电力拖动自动控制系统(第2版).北京:机械工业出版社.1992.
    [102]马斌.基于DSP的双馈风力发电系统变频器的研究实现[D].上海:上海交通大学,2009.
    [103]刘其辉.变速恒频双馈风力发电系统运行与控制研究[D].浙江:浙江大学,2005.
    [104]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社.2002
    [105] Peter Vas. Electrical Machines and Drives a Space-Vector Theory Approach[M]. OxfordUniversity Press.1992.
    [106] Johan Morren. Short-Circuit Current of Wind Turbines With Doubly Fed Induction Generator[J].IEEE Transactions on Energy Conversion,2007,22(1):174-180.
    [107] Andreas Petersson. Analysis, modeling and control of doubly-fed induction generators for windturbines [D]. Chalmers University of Technology,2005.
    [108]邓卫华,张波,胡宗波,等. CCM Buck变换器的状态反馈精确线性化的非线性解耦控制研究[J].中国电机工程学报,2004,24(5):112-119.
    [109]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [110]刘小河.非线性系统分析与控制引论M].北京:清华大学出版社,2008:238-245.
    [111] H. Kwakernaak and R. Sivan, Linear Optimal Control System [M]. Wiley-Interscience, NewYork,1972.
    [112] L. Holdsworth, X. G. Wu, J. B. Ekanayake and N. Jenkins. Comparison of fixed speed anddoubly-fed induction wind turbines during power system disturbances[C]. IEE ProceedingsGeneration, Transmission&Distribution,2003,150,343–352.
    [113] Feng Wu, Xiao-Ping Zhang, Ping Ju, Sterling, M.J.H.. Decentralized Nonlinear Control of WindTurbine With Doubly Fed Induction Generator[J]. IEEE TRANSACTIONS ON POWERSYSTEMS,2008,23(2):613-621.
    [114]郭家虎.变速恒频双馈风力发电系统控制技术研究[D].上海:上海大学,2008.
    [115]邓卫华,张波,丘东元,卢至锋,胡宗波.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [116]王茂海,孙元章.三相电路中功率现象的解释及无功功率的分类[J].中国电机工程学报,2003,23(10):63-66.
    [117] David M Xu, Yang C, Kong J H. Quasi soft-switching partly decoupled three phase PFC withapproximate unity power factor[C]. APEC, USA,1998:953-957.
    [118]唐欣,罗安,涂春鸣.基于递推积分PI的混合型有源电力滤波器电流控制[J].中国电机工程学报,2003,23(10):38-41.
    [119] Anca D. Hansena, Gabriele Michalke. Fault ride-through capability of DFIG windturbines[J].Renewable Energy,2006,(32):1594-1610.
    [120] Johan Ribrant, Lina Bertling. Survey of Failures in Wind Power Systems With Focus onSwedish Wind Power Plants During1997-2005[J]. IEEE Transactions on Energy Conversion,2007,22(1):167-173.
    [121] Erlich, I., Wrede, H., Feltes, C. Dynamic Behavior of DFIG-Based Wind Turbines during GridFaults[C]. Power Conversion Conference-Nagoya, IEEE Publisher, Nagoya,2007,1195-1200.
    [122] Jouko, N., Voltage dip ride through of a doubly-fed generator equipped with an activecrowbar[C]. Nordic Wind Power Conference, Chalmers University of Technology, GothenburgSweden,2004.
    [123] J. B. Ekanayake, L. Holdsworth, N. Jenkins. Comparison of5th order and3rd order machinemodels for doubly fed induction generator (DFIG) wind turbines[J]. Electric Power SystemsResearch,2003,67(3):207-215.
    [124] R. Pena, J. C. Clare, G. M. Asher. Doubly fed induction generator using back-to-back PWMconverters and its application to variable-speed wind-energy generation[C]. IEE Proceedings:Electric Power Applications,1996,143(3):231-241.
    [125] Akhmatov V. Analysis of dynamic behavior of electric power systems with large amount ofwind power[D]. Copenhagen:Technical University of Denmark,2003.
    [126] Mengzeng Cheng, Xu Cai. Reactive Power Generation and Optimization during a PowerSystem Fault in Wind Power Turbines having a DFIG and Crowbar Circuit[J]. WindEngineering.2011,35(2):145-164.
    [127]郎永强,张学广,徐殿国等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报.2007,27(9):77-82.
    [128] Santos-Martin, D., Arnaltes, S., Rodriguez Amenedo, J.L.. Reactive power capability of doublyfed asynchronous generators[J]. Electric Power Systems Research,2008,78(11),1837–1840.
    [129]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术,2003,27(11):60-63.
    [130] P ller M. Doubly-fed induction machine models for stability assessment of wind farms[C].IEEE-Power-Tech Conference, Bologna, Italy,2003.
    [131]汤蕴璆,张亦黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2004.
    [132]胡书举,李建林,梁亮,许洪华.风力发电用电压跌落发生器研究综述[J].电力系统自动化设备,2008,28(2):101-103.
    [133] Shuju Hu, Jianlin Li, Honghua Xu. Comparison of voltage sag generators for wind powersystem[C]. Power and Energy Engineering Conference,2009:1-4.
    [134] Miguel Garcia-Gracia, M. Paz Comech, Jseus Sallan. voltage dip generator for wind energysystem up to5MW[J]. Applied Energy,86(2009):565-574.
    [135] Seman, S., Niiranen, J., Virtanen, R., Matsinen, J.-P.. Low voltage ride-through analysis of2MW DFIG wind turbine-grid code compliance validations[C]. Power and Energy SocietyGeneral Meeting-Conversion and Delivery of Electrical Energy in the21st Century,2008:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700