用户名: 密码: 验证码:
含分布式电源配电网的故障分析与保护新原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式电源(distributed generation, DG)接入改变了传统的配电网故障特性,给传统的配电网保护带来不可忽略的影响。对此,已有大量学者进行了研究,但针对DG故障特性的研究都未计及DG故障穿越控制策略,基本将DG视为与传统电源类同,而采用传统的电压源等值模型对含DG的配电网进行故障分析,这显然与实际不符。针对当前含DG配电网的故障分析与继电保护的研究中存在的问题,本文通过对电力电子接口DG的控制与特性进行研究,提出计及DG控制特性的配电网故障分析方法,同时结合DG“T”接的情况,提出含DG的配电网自适应距离保护与基于公共联接点(Point ofcommon coupling, PCC)计算电压差值比较的新型纵联保护。
     电力电子并网接口的DG,其输出的故障电流完全由故障穿越控制策略决定,本文通过对对称故障条件下电力电子并网接口DG控制与特性的研究,提出了PCC电压控制的电流源等值模型,并针对不对称故障条件下正序分量控制的DG,提出了PCC正序电压控制的电流源模型等值。通过对采用不间断励磁实现故障穿越的双馈型风力发电机(doubly fed induction generator, DFIG)控制与特性的研究,提出了电压源等值模型计算对称故障条件下的输出电流,建立了DFIG故障电流计算模型;在不对称故障条件下,通过分析DFIG正负序故障电流电流的特性,建立正负序叠加原理的DFIG故障电流计算模型。仿真结果验证了DFIG对称故障与非对称故障电流计算方法。
     针对单DG接入配电网的情况,提出了计及DG控制特性的含DG配电网对称故障与非对称故障分析方法。对称故障条件下,通过建立PCC电压与DG故障电流关系方程,推导出PCC电压求解方程组,从而实现配电网对称故障分析;相间故障条件下,针对正序电压控制的DG输出的故障电流只包含正序分量的问题,通过建立PCC正、负序电压与DG故障电流关系方程,推导出PCC正序电压求解方程组,从而实现配电网相间故障分析。仿真结果验证了文中含DG的配电网故障分析方法。
     针对多DG接入配电网的情况,通过分析DG故障电流与配电网节点电压之间的相互作用关系,建立了计及DG控制特性的节点电压方程,针对DG电流与PCC电压之间的非线性关系,提出了PCC电压与DG故障电流相互迭代的计算方法,实现配电网故障分析。仿真结果验证了文中的含多DG的配电网故障分析方法。
     通过分析DG对距离保护的影响,提出了自适应距离保护原理,确保在不同的DG出力条件下距离保护具有固定的保护范围,并推导出保护定值与DG电流的关系方程。结合对DG故障穿越控制与特性的研究,建立DG无功电流计算方程;综合考虑DG故障电流中以无功电流为主和配电网线路电抗大于电阻的情况,提出了以DG无功电流代替DG电流计算自适应距离保护定值中的自适应量,从而实现自适应距离保护的整定;仿真结果验证了自适应距离保护的合理性。
     针对DG“T”接的情况,通过建立从线路两侧计算PCC电压的方程,揭示了PCC计算电压差值大小与故障位置之间的关系,从而建立基于PCC计算电压差值比较的纵联保护原理并推导出电压差值定值与最大负荷之间的关系;针对故障点临近PCC时基于PCC计算电压差值保护灵敏性低的问题,提出了基于方向比较的保护判据,从而实现对线路全长的保护;最后基于DIgSILENT建立仿真模型验证本文提出的保护原理。
With the interconnection of distributed generation (DG), the fault characteristics arechanged and the protection of distribution network is unavoidably affected. For solving theseproblems, great many scholars have done much work. However, in the study on faultcharacteristics of DG, the control scheme of DG was not considered. DG was considered assame as traditional resources and the fault analysis of distribution network with DG is basedon the voltage resource equivalent model for DG. Obviously, this is inconsistent with the fact.Aiming to solve these problems on fault analysis and protection, this paper studies the controlscheme and output characteristics of DG with inverter interface. Then a fault analysis methodby considering the control scheme of DG is advanced. At the same time, an adaptive distanceprotection and a novel pilot protection based on calculation voltage difference of point ofcommon coupling (PCC) are put forward by considering these DGs interconnected withfeeder.
     For these DGs with electronic interface, the fault current is determined by its faultride-through control scheme. By studying the control scheme and output characteristics, thispaper proposes a PCC voltage controlled current resource equivalent model for DG undersymmetrical fault and a PCC positive voltage controlled current resource equivalent model forDG under unsymmetrical fault. By studying the control scheme and output characteristics ofdoubly fed induction wind generator under uninterrupted excition for fault ride-through, avoltage equivalent model is advanced for calculating the fault current. Under unsymmetricalfault, a superposition method is proposed for calculating the positive and negative sequencecurrent of DFIG by analyzing its output characteristics. The simulation result verifies thecalculation method.
     Aiming at single DG’s access, this paper put forward a fault analysis method forsymmetrical and unsymmetrical fault. Under symmetrical fault, the equations between thenode voltage and feeder current are built. Based on this, the solving equations between faultcurrent of DG and PCC are deduced. Thus, the precise method for fault analysis is obtained.Under unsymmetrical fault, the equations between the positive, negative sequence voltages ofPCC and DGs’ currents are built. The solving equations for the positive voltage of PCC arededuced. Thus, the precise method for fault analysis under phase-to-phase short-circuit faultsis obtained. A10kV distribution network case is built in DIgSILENT and the proposedmethod is verified.
     Aiming at multiple DGs’ access, this paper studies the interrelationship between DG and node voltage. Based on this, the node equation is built by considering the control scheme ofDG. In order to resolve the non-line relation between voltage of PCC and DG fault current, amutual iterative calculations method between voltage of PCC and DG fault current isadvanced for fault analysis.. The simulation result verifies the method.
     This paper firstly analyzed the effect of DG on distance protection, which PCC is in thefeeder. Based on this, in order to cope with the requirement of feeder protection, an adaptivedistance protection is proposed. Additionally, the relation between the setting of adaptivedistance protection and DG fault current is analyzed. By considering control scheme, equationfor calculating the reactive current of DG is built. Under this fact that the reactance is muchbigger than resistance in distribution network and reactive current of DG fault current is underpriority control during ride-through, a method that substituting reactive current for DG faultcurrent on adaptive setting calculation was advanced. Thus, the adaptive setting is obtained.At last, a case is built in DIgSILENT and the proposed method was verified.
     Aiming at this DG which PCC locates at feeder, this paper builds the voltage calculationequations of PCC from both sides and analyzes the relation between the voltage differencevalue and fault point. Then the pilot protection based on difference value judgment isadvanced. And the equation between the setting of voltage difference value and equivalentimpedance of the maximum load is deduced. In order to resolve the low sensitivity of pilotprotection, a direction protection is put forward. Thus, all the line is included in the protectionscheme. At last, a case is built in DIgSILENT and the proposed method is verified.
引文
[1]陆朝柱.我国火电产业发展的外部环境分析[J].现代商业,2011,9:33-34
    [2] N. Miller, Z. Ye. Report on distributed generation penetration study[R].http://www.nrel.gov/docs/fy03osti/34715.pdf
    [3] Thomas Degner, Jurgen Schmid, Philipp Strauss. Distributed generation with highpenetration of renewable energy sources [R]. http://www.iset.uni-kassel.de/dispower_static/
    [4] Ramakumar, R.; Chiradeja, P. Distributed generation and renewable energy systems.37th Intersociety: Energy Conversion Engineering Conference,2002:716-724
    [5] Torsten Lund. Analysis of distribution systems with a high penetration of distributedgeneration [D]. Technical University of Denmark: Centre for Electric Technology,2007
    [6] RenewableS2011GLOBAL STATUS REPORT [R], http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf
    [7] World Wind Energy Report2010[R]. http://www.wwindea.org/home/images/stories/pdfs/world wind energyreport2010_s.pdf
    [8] IEEE Application Guide for IEEE Std1547[S]. IEEE Standard for interconnectingdistributed resources with Electric Power Systems,2008:1-16
    [9] G. Pepermansa, J. Driesenb, D. Haeseldonckx, et al. Distributed generation: defnition,benefts and issues [J].Energy Policy,2007,33(6):787-798
    [10]W. El-Khattam, M.M.A.Salama. Distributed generation technologies, defnitions andbenefts [J]. Electric Power Syst. Res.,2004,71:119-128
    [11]Giuseppe Esposito, Dario Zaninelli, George C. Lazaroiu, et al. Impact of embeddedgeneration on the voltage quality of distribution networks [J].9th InternationalConference on Electrical Power Quality and Utilisation, Barcelona, Spain,2007
    [12]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响[J].电网技术,2006,30(19):28-31
    [13]J. Morren,Impact of distributed generation with electronic converters on distributionnetwork protection [J]. IET9th International Conference on Developments in PowerSystems Protection, Glasgow, United kingdom,2008:663-668
    [14]Philip P. Barker. Determining the Impact of distributed generation on power systems:Part1-Radial Distribution Systems [J]. Proceedings of the2000Power EngineeringSociety Summer Meeting, Seattle, WA, United states,2000
    [15]Natthaphob Nimpitiwan, Gerald Thomas Heydt, Raja Ayyanar, et al. Fault currentcontribution from synchronous machine and inverter based distributed generators[J],IEEE Transactions on Power Delivery,2007,22(1):634-641
    [16]Samatcha Phuttapatimok, Anawach Sangswang, Krissanapong Kirtikara. Effects onshort circuit level of PV grid-connected systems under unintentional Islanding [J]. IEEEInternational Conference on Sustainable Energy Technologies, Singapore,2008.
    [17]Panagiotis Karaliolios, Anton Ishchenko. Edward Coster, Overview of short-circuitcontribution of various distributed generators on the distribution network [J].43rdInternational Universities Power Engineering Conference, Padova, Italy,2008.
    [18]Sreto Boljevic, Michael F. Conlon. The contribution to distribution network shortcircuit current level from the connection of distributed generation [J]. Padova, Italy:43rd International Universities Power Engineering Conference, Padova, Italy,2008
    [19]M.A. Kashem, G. Ledwich. Impact of Distributed generation on protection of SingleWire Earth Return Lines [J]. Electric Power Systems Research,2002,62(1):67-80
    [20]Effect of distributed generation on protective device coordination in distribution System[J]. International Conference on Sustainable Energy and Intelligent Systems, Chennai,India,2011
    [21]Juan A. Martinez,Impact of distributed generation on distribution protection and powerquality [J]. IEEE Power and Energy Society General Meeting, Calgary, AB, Canada,2009
    [22]James A, Impact of distributed generation on the IEEE34Node Radial Test Feeder withovercurrent protection [J].39th North American Power Symposium, Las Cruces, NM,United states,2007
    [23]Adly Girgis, Sukumar Brahma, Effect of distributed generation on protective devicecoordination in distribution system[J], International Journal of Power and EnergySystems,2004,24(1):32-37
    [24]WANG Wei, Impact of distributed generation on relay protection and its improvedmeasures [J].2008China International Conference on Electricity Distribution,,Guangzhou, China,2008
    [25]K Kauhaniemi, L Knmpnlained. Impact of Distributed generation on the protection ofdistribution networks [J].2011International Conference on Material Science andInformation Technology, Singapore, Singapore,2011
    [26]张超,计建仁,夏翔.分布式发电对配电网馈线保护的影响[J].继电器,2006,34(13):9-12
    [27]Florin Iov, Anca Daniela Hansen, Poul S rensen, et al. Mapping of grid faults and gridcodes[R]. http://www.risoe.dk/rispubl/reports/ris-r-1617.pdf
    [28]Vladislav Akhmatov.风力发电用感应电机[M].刘长浥,王伟胜,赵海翔.中国电力出版社,2009
    [29] S.Muller, M.Deiche, Rikw.Dedoncker. Doubly fed induction generator system forwind turbines [J]. Industry Applications Magazine.2002,8(3):26-33
    [30]S. Arnalte, J. C. Burgos, J. L. Rodr′Iguez-Amenedo. Direct Torque Control of aDoubly-Fed Induction [J]. Applied power electronics conference and exposition(APEC), Fort Worth, TX.,2011
    [31]K.C.Wong, S.L.HO, K.W.E.Cheng. Direct torque control of doubly fed inductiongenerators connected to grids with unbalanced voltage [J]. Applied Power ElectronicsConference and Exposition (APEC), Fort Worth, TX,2011
    [32]GUO Xiao-Ming, Sun Dan, He Ben-Teng, et al. Direct power control for wind-Turbinedriven doubly-fed induction generator with constant switch frequency [J]. Seoul.Electrical Machines and Systems,2007
    [33]Milton Kumar Das, S.Chowdhury, S.P.Chowdhury, et al. Control of a grid connecteddoubly-fed induction generators for wind energy conversion [J]. Universities PowerEngineering Conference (UPEC), Glasgow,2009
    [34]Pena, R., Clare, J. C., Asher, G. M. Doubly fed induction generator using back-to-backPWM converters and its application to variable-speed wind-energy generation [J]. IEEProc. Elect. Power Appl.,1996,143(3):231-241
    [35]Graham Pannell, David Atkinson, Ruth Kemsley. DFIG Control performance underfault conditions for offshore wind applications. Turin, Italy,2010
    [36]Johan Morren, Sjoerd W. H. de Haan. Ride through of wind turbines with doubly-fedinduction generator during a voltage dip. Energy Conversion.2009,20(2):435-441
    [37]蒋雪冬,赵舫.应对电网电压骤降的双馈感应风力发电机Crowbar控制策略[J].电网技术,2008,32(12):84-89
    [38]Jesús López, Eugenio Gubía, Eneko Olea, et al. Ride through of wind turbines withdoubly fed induction generator under symmetrical voltage dips [J]. IndustrialElectronics,2005,56(10):4246-4254
    [39]Vladislav Akhmatov. Variable-speed wind turbines with doubly-fed inductiongenerators part II: Power System Stability [J]. Wind Engineering.2004,26(2):85-108
    [40]Ling Peng, Bruno Francois,Yongdong Li. Improved crowbar control strategy of DFIGbased wind turbines for grid fault ride-through [J]. Applied Power ElectronicsConference and Exposition, Washington, DC.2009
    [41]I. Erlich, C.Feltes, Dynamic Behavior of DFIG-Based wind turbines during grid faults[J]. Power Conversion Conference, Nagoya,2007
    [42]向大伟,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170
    [43]A.D.hansen, Gabriele Michalke, Poul S rensen, et al. Coordinated voltage control ofDFIG wind turbines in uninterrupted operation during grid faults [J]. Wind Energy,2007,10:51–68
    [44]M.S.Vicatos, J.A.Tegopoulos. Transient state analysis of a doubly-fed inductiongenerator under three phase short circuit [J]. IEEE Transactions on Energy Conversion,1991,6:62-68
    [45]Sun Tao; Chen Zhe, Blaabjerg, et al. Transient Stability of DFIG wind turbines at anexternal short-circuit fault [J]. Wind Energy,2005,8(3):345-360
    [46]A.A.El-Sattar, N.H.Saad, M.Z.Shams, et al. Dynamic response of doubly fed inductiongenerator variable speed wind turbine under fault [J]. Electric Power Systems Research,2008,78(7):1240-1246
    [47]D.D.Li. Analysis and Calculation of short circuit current of doubly fed inductiongenerator [J]. Transmission and Distribution Exposition Conference, Chicago, IL,United states,2008
    [48]J. Lopez, P. Sanchis, X. Roboam, L. Marroyo. Dynamic behavior of the doubly fedinduction generator during three-phase voltage dips [J]. IEEE Transactions on EnergyConversion,2007,22(3):709-717
    [49]Yang Cui, Gan-Gui Yan, Da-Wei Jiang,et al. DFIG-based Wind farm equivalent modelfor power system short circuit current calculation [J].1st International Conference onSustainable Power Generation and Supply, Nanjing, China,2009
    [50]Morren.Johan, de Haan, Sjoerd W.H. Short-circuit current of wind turbines with doublyfed induction generator [J]. IEEE Transactions on Energy Conversion, Special Issue onWind Power,2007,22(1):174-180
    [51]Kearney, J. Conlon, M.F. Performance of a variable speed double-fed inductiongenerator wind turbine during network voltage unbalance conditions [J]. UniversitiesPower Engineering Conference,2006,1:36-40
    [52]Slavomir Seman, Jouko Niiranen, Antero Arkkio. Ride-through analysis of doubly fedinduction wind-power generator under unsymmetrical network disturbance [J]. PowerSystems.2006,21(4):1782-1789
    [53]E. Muljadi, T. Batan, D. Yildirim, et al. Understanding the unbalanced-voltage problemin wind turbine generation [J]. Industry Applications Conference, Phoenix, AZ.,2002
    [54]Lopez, J. Gubia, E. Sanchis, P. Roboam, et al. Wind turbines based on doubly fedinduction generator under asymmetrical voltage dips [J]. Energy Conversion, IEEETransactions,2003,23:321-330
    [55]Luhua Zhang, Xu Cai, Jiahu Guo. Dynamic responses of DFIG fault currents underconstant AC excitation condition [J]. Asia-Pacific Power and Energy EngineeringConference, Wuhan, China,2009
    [56]Luhua Zhang, Jia-Hu Guo, Xu Cai, et al. Fault currents of the doubly fed inductiongenerator with constant AC excitation[J]. Journal of Shanghai Jiaotong University,2010,44(7):1000-1004
    [57]. Erlich, Member, W. Winter, A. Dittrich. Advanced grid requirements for theintegration of wind turbines into the german transmission system [J]. PowerEngineering Society General Meeting, Montreal, Que,2006
    [58]I. Erlich, U. Bachmann. Grid code requirements concerning connection and operationof wind turbines in Germany [J]. Power Engineering Society General Meeting, SanFrancisco, CA, United states,2005,2
    [59]S.Charkraborty, B.Kroposki, W.Kramer. Advanced power electronic interfaces fordistributed energy systems[R].2008, NREL/TP-550-44313
    [60]Mesut E. Baran, Ismail El-Markaby. Fault analysis on distribution feeders withdistributed generators [J]. IEEE Transactions on Power Systems,20(4),2005:1757-1764
    [61]Adrian V. Timbus, Pedro Rodriguezt, Remus Teodorescu, et al. Control strategies fordistributed power generation systems pperation on faulty grid [J]. IEEE InternationalSymposium on Industrial Electronics, Montreal,2006.
    [62]陈理.分布式发电装置控制系统的设计和研究[D],浙江大学,电气工程学院,2006
    [63]Vladimir Lazarov, Deian Apostolov. PWM inverter power transfer under unbalancedvoltage conditions [J]. Environment Identities and Mediterranean Area, Corte-Ajaccio,2006
    [64]孙景钌,李永丽,李胜伟,等.含逆变型分布式电源配电网自适应电流速断保护[J].电力系统自动化,2009,33(14):71-76
    [65]A.K.Pradhan, Geza, Joos. Adaptive distance relay setting for lines connecting windfarms [J]. IEEE Transactions on Energy Conversion,2007,22(1):206-213
    [66]Thekla N. Boutsika, Stavros A. Papathanassiou. Short-circuit calculations in networkswith distributed generation [J]. Electric power systems research,2008,78(7):1181-1191
    [67]Johan Morren. Grid support by power electronic converters of distributed generationunits [D]. Delft, Netherlands: Delft University of Technology,2006.
    [68]傅旭.含分布式电源的配电网故障分析的解耦相分量法[J].电力自动化设备,2009,29(6):19-24
    [69]王守相,江兴月,王成山.含分布式电源的配电网故障分析叠加法[J].电力系统自动化,2008,32(5):38-42
    [70]刘森.含分布式电源的配电网保护研究[D].天津:天津大学,2007
    [71]朱玲玲,李长凯,张华中,等.含分布式电源的配电网方向过流保护[J].电网技术,2009,33(14):94-98
    [72]Han Yi, Hu Xuehao, Zhang Dongxia. A new adaptive current protection scheme ofdistribution networks with distributed generation.1st international conference onsustainable power generation and supply,Nanjing, China,2009:1-5
    [73]Jing Ma, Jinlong Li, Zengping Wang. An adaptive distance protection scheme fordistribution system with distributed generation [J].5th International Conference onCritical Infrastructure (CRIS), Beijing, China,2010
    [74]A. K. Pradhan, A. Routray, S. Madhan Gudipalli. Fault direction estimation in radialDistribution system using phase change in sequence current [J]. IEEE Transactions onPower Delivery,2007,22(4):2065-2072
    [75]Abhisek Ukil, Bernhard Deck, Vishal H. Shah. Current-only directional overcurrentrelay [A]. IEEE Sensors Journal,2011,11(6):1403-1404
    [76]Chilvers, N. Jenkins, P. Crossley. Distance relaying of11kV circuits to Increase theinstalled capacity of distributed generation [J]. IEE Proceedings: Generation,Transmission and Distribution,2005:40-46
    [77]林霞,陆于平,王联合.分布式发电条件下的多电源故障区域定位新方法[J].电工技术学报,2008,23(11):139-145,165
    [78]Nuwan Perera, Athula D Rajapakse. Agent-Based protection scheme for distributionnetworks with distributed generators [J]. Generation, Transmission and Distribution,IEE Proceedings,2006,40-46
    [79]WAN Hui, Protection coordination in power system with distributed generations [D].Hong Kong: Hong Kong Polytechnic University,2007.
    [80]孙景钌,李永丽,李盛伟,等.含分布式电源配电网保护方案[J].电力系统自动化,2009,33(1):81-84,89
    [81]张艳霞,代凤仙.含分布式电源配电网的馈线保护新方案[J].电力系统自动化,2009,33(12):71-74
    [82]P.Pillay, V. Levin. Mathematical models for induction machines [J]. Conference Record-IAS Annual Meeting,1995,1:606-618
    [83]R. J. Lee, P. Pillay, R. G. HarLey. D,Q Reference frames for the simulation of inductionmotors[J]. Electric Power Systems Research,1984,8(1):15-26
    [84]DFIG model. https://pscad.com/products/pscad/free_downloads
    [85]Zheng-rong Wu, Gang Wang, Hai-feng Li, et al. Equivalent model for calculating shortcircuit current of doubly fed wind generator under uninterrupted excitation [J].Asia-Pacific Power and Energy Engineering Conference, Wuhan, China,2011.
    [86]Zheng-rong Wu, Gang Wang, Hai-feng Li, et al. Fault current contribution of DFIGunder unsymmetrical fault[J].4th International Conference on, Electric UtilityDeregulation and Restructuring and Power Technologies (DRPT), Jinan, China,2011
    [87]Hirofumi Akagi, Edson Hirokazu Watanabe, Mauricio Aredes. Instantaneous powertheory and applications to power conditioning[M].Wiley-IEEE Press,2007
    [88]郑艳文,李永东,柴建云,等.不平衡电压下双馈发电系统控制策略[J].电力系统自动化,2009,33(15):89-98
    [89]郭晓明,贺益康,何奔腾,等.不对称电网电压下双馈风力发电机的直接功率控制[J].电力系统自动化,2008,32(13):86-91
    [90]胡家兵,贺益康,王宏胜,等.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010,30(9):97-104
    [91]E.Troester. New german grid codes for connecting PV systems to the Medium voltagepower grid [A].2th International Workshop on Concentrating Photovoltaic PowerPlants: Optical Design and Grid Connection, Darmstadt,2009
    [92]王守相,江兴月,王成山.含分布式电源的配电网故障分析叠加法[J].电力系统自动化,32(5):38-44
    [93]谢昊,夏东平,卢继平.距离保护在具有分布式电源的配电网系统中的应用[J].电力电气,2006,25(12):56-60
    [94]张健.逆变型分布式电源故障特性分析及配电网保护策略研究[D].武汉:华中科技大学,2010
    [95]李风光.距离保护躲过渡电阻能力研究[J].电力系统保护与控制,2008,39(8):124-127,154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700