用户名: 密码: 验证码:
适应电网环境的双馈风电机组变流器谐振控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电装机容量的增长,各国开始要求风电机组能够广泛适应电网运行环境的变化,为此,风电机组应不断开发先进技术来持续提高风电运行性能。我国风电机组大量安装在偏远地区,通常为电网的末端,风电机组接入的电网可能较弱,在这类弱连接的电网中,电压畸变和不平衡尤其突出。由于双馈风电机组的发电机定子直接连接到电网,电网畸变和不平衡情况会严重影响机组的安全、可靠运行,必须解决电网畸变和不平衡情况下的双馈风电机组电网适应性问题。
     为提高风电机组对电网的适应性,本文着重开展以下三个方面内容的研究:1、双馈风电机组在电网畸变情况下的控制策略,以增强风电机组应对畸变电网能力;2、满足风电变流器模块化结构设计要求的不平衡控制策略,降低电网不平衡对双馈风电机组的影响,以提高风电机组可靠性;3、电网非理想情况下的锁相控制策略,为先进控制技术的实现提供精确的电网相位和频率信息。
     本文第一章介绍了风力发电的基本现状和发展趋势,分析了风力发电系统的并网技术要求。针对本文主要的研究工作,归纳总结了电网畸变和不平衡情况下的双馈风力发电系统控制技术研究现状。
     为了增强双馈风电机组对畸变电网的适应性,本文第二章对电网畸变情况下双馈风电机组的运行特性、矢量控制性能以及控制策略进行了分析和研究。首先,对传统电流矢量策略在电网畸变情况下的运行性能进行评估,分析了传统电流矢量控制策略的局限性;在此基础上,提出了一种基于谐振控制器的定子电流谐波控制策略,分析了采用该控制策略后的双馈系统谐波抑制能力,并进行仿真验证;最后,在双馈风电机组实验平台上对所提出的控制策略进行验证,并与传统电流矢量控制进行了稳态和动态的实验比较与分析。
     本文第三章对应用于定子电流谐波控制的谐振控制器进行了分析和设计。分析了谐振控制器对控制系统稳态、动态和稳定性的作用,给出了谐振控制器的一种系统性设计方法。针对谐振控制器对系统动态性能的影响,探讨并分析了两类适用于提高控制系统相位裕量的补偿方法,并进行了仿真验证。
     为了增强双馈风电机组对不平衡电网的适应性,本文第四章对电网不平衡情况下双馈风电机组的运行特性、矢量控制性能以及控制策略进行了分析和研究。探讨了传统电流矢量控制方法对不平衡电网中负序电压的控制阻尼,以此为基础,评估了传统电流矢量控制方法应对不平衡电网的能力;而后,提出了一种基于谐振控制器的定子电流平衡控制策略,对比了传统电流矢量控制和定子电流平衡控制的抗不平衡能力,并进行了仿真和实验验证。同时,针对大型风电机组可靠性和模块化设计要求,提出了利用电容电流控制来抑制直流电压波动的网侧变流器控制策略,评估了采用谐振控制结构的电容电流闭环控制对网侧变流器运行性能提高所起的作用;针对电网不平衡时可能存在的三次谐波电流问题,探讨了两种改进的电容电流控制方案。最后,对电容电流控制方法进行了详细的实验验证工作。
     由于对电网电压畸变、不平衡、瞬时跌落、频率突变等非理想情况下可能对软件锁相造成影响,本文分析并设计了一种基于三相静止坐标延时信号消除算法的软件锁相技术,进一步改善了锁相系统的动态跟踪性能;最后,进行了仿真和实验验证工作。
     本文第六章对本文的工作进行了总结,给出了本文的主要贡献,并对后续研究工作作一展望。
With the continuous increased capacity of installed wind power, the effects of wind power generation on the grid are more and more considerable. As a consequence, the grid codes issued by more and more power system operators specify that the wind turbines should withstand certain voltage disturbances without tripping, to do this the wind turbine systems must continuously develop and improve their performance. A large number of wind turbine systems are increasingly being installed in remote areas in China. Many wind farms are located in the terminal of power transmission systems, whose connections might be weak. The presence of voltage unbalance and voltage harmonic distortion is more severe in these weak transmission lines. Such issues may affect safe and reliable operation of DFIG wind turbines (Doubly Fed Induction Generator, DFIG). Hence, the grid compatibility of DFIG wind turbine systems should be improved during grid voltage unbalance and distortion.
     In order to improve the grid compatibility of DFIG wind turbine systems, the studies of this dissertation are focused on:1. Control strategy of DFIG for improving DFIG grid compatibility under grid voltage distortions conditions;2. Control strategy to reduce the impacts of unbalanced grid voltage on DFIG wind turbines,which is in order to improve the reliability of wind turbine and also to meet the modular design requirements of DFIG converters;3. Phase-locked loop (PLL) control strategy for providing precise phase and frequency of the grid even under non-ideal grid voltage conditions.
     In Chapter1, the state-of-the-art of wind power technologies is presented. The grid connected requirements of wind power systems issued by power system operators are also given. Further, the dissertation summarizes the existing control methods for the DFIG converters under distorted and unbalanced grid voltage conditions.
     In order to improve the compatibility of the DFIG wind turbine systems to the distorted grid voltage, the operation characters, current control performance and the improved control strategy are presented and developed in Chapter2. Firstly, the impacts of the grid harmonic voltage on the DFIG and the current contol system are evaluated. Then, a stator current harmonic suppression method, which is using a6th order resonant controller to eliminate5th and7th order current harmonics, is proposed. The analysis shows that the impacts of the5th and7th order voltage harmonics on the stator current as well as the electromagnetic torque are effectively removed. Finally, simulation and experimental results are presented to valiate the analysis.
     Based on the trade-off between the steady-state performance, the dynamic performance, and the stability of the proposed stator current harmonic control system, a systematic optimized design procedure of the resonant controller parameters is presented in Chapter3. In order to further improve the dynamic performance, two types of phase compensations are used to increase phase margin of the control system, i.e.1) resonant controller with lead angle compensation;2) resonant controller combined with a lead-lag compensator.
     Chapter4is focused on the compatibility improvement of the DFIG wind turbine systems to the unbalanced grid voltage. The negative-sequence impedance of the DFIG system is calculated when using the conventional current control method with PI-controller. Then the rejection capability to the unbalaned grid voltage is assessed. Based on the analysis, a stator current balance control method using a2nd harmonic resonant controller is proposed in order to increase the negative-sequence impedance. The experimenatl results show that the fundamental negative sequence stator current caused by unbalanced grid voltage is suppressed and the electromagnetic torque fluctuation is significantly reduced.
     Meanwhile, the unbalanced grid voltage also causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This dissertation proposes a novel dc-capacitor current control method for Grid Side Converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed in detail. A modular implementation method of the proposed control strategy is developed for the DFIG controller. Finally, experiments are presented to validate the theoretical analysis.
     As it is difficult for the conventional software PLL to achieve good steady-state and fast dynamic performance simultaneously under non-ideal grid conditions such as voltage harmonic distortion and imbalance, a synchronous reference frame based PLL method, which uses delayed signal cancellation to extract the positive sequence components from unbalanced grid voltage in natural abc frame, is analyzed in Chapter5. The loop filter consists of a PI controller and a first order low-pass filter for high attenuation of harmonic components. The structure of the PLL method is simple. The experimental results show that this PLL method has a fast dynamic response, and an accurate detection of the grid voltage frequency and phase.
     From the aforementioned analysis, it is seen that the grid compatibility of DFIG wind generation systems is able to be significantly improved by using the advanced control technology under harmonic distorted and unbalanced grid voltage conditions, which can lead to more reliable and safer operation of DFIG wind turbines.
引文
[1]国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL].www.most.gov.cn.
    [2]李军军,吴政球,谭勋琼,等.风力发电及其技术发展综述[J].电力建设,2011(8):64-72.
    [3]罗如意,林晔,钱野.世界风电产业发展综述[J].可再生能源,2010,28(2).
    [4]GWEC. Global Wind Statistics 2011 [EB/OL]. www.gwec.net.
    [5]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[EB/OL]. www.cnwp.org.cn.
    [6]Blaabjerg F, Iov F, Terekes T, et al. Power electronics-key technology for renewable energy systems: Power Electronics, Drive Systems and Technologies Conference (PEDSTC),2011 2nd,2011 [C].
    [7]Zhe C, Guerrero J M, Blaabjerg F. A Review of the State of the Art of Power Electronics for Wind Turbines[J]. Power Electronics, IEEE Transactions on,2009,24(8):1859-1875.
    [8]Blaabjerg F, Iov F, Kerekes T, et al. Trends in power electronics and control of renewable energy systems:Power Electronics and Motion Control Conference (EPE/PEMC),2010 14th International, 2010[C].
    [9]Hansen L H, Madsen P H, Blaabjerg F, et al. Generators and power electronics technology for wind turbines:Industrial Electronics Society,2001. IECON'01. The 27th Annual Conference of the IEEE, 2001[C].2001.
    [10]Blaabjerg F, Liserre M, Ma K. Power electronics converters for wind turbine systems[J]. Industry Applications, IEEE Transactions on,2012,48(2):708-719.
    [11]Liserre M, Ca rdenas R, Molinas M, et al. Overview of Multi-MW Wind Turbines and Wind Parks[J]. Industrial Electronics, IEEE Transactions on,2011,58(4):1081-1095.
    [12]Hansen L H, Helle L, Blaabjerg F, et al. Conceptual survey of generators and power electronics for wind turbines[R].Riso National laboratory, Denmark,2001.
    [13]Morren J, de Haan S W H. Short-Circuit Current of Wind Turbines With Doubly Fed Induction Generator[J]. Energy Conversion, IEEE Transactions on,2007,22(1):174-180.
    [14]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009(9):140-146.
    [15]Abbey C, Wei L, Owatta L, et al. Power Electronic Converter Control Techniques for Improved Low Voltage Ride Through Performance in WTGs:Power Electronics Specialists Conference,2006. PESC '06.37th IEEE,2006[C].
    [16]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景[J].电机与控制应用,2008(4):1-5.
    [17]Li H, Chen Z. Overview of different wind generator systems and their comparisons[J]. Renewable Power Generation, IET,2008,2(2):123-138.
    [18]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究——基础理论与关键技术[D].杭州:浙江大学,2009.
    [19]Polinder H, van der Pijl F F A, de Vilder G J, et al. Comparison of direct-drive and geared generator concepts for wind turbines[J]. Energy Conversion, IEEE Transactions on,2006,21(3):725-733.
    [20]Tazil M, Kumar V, Bansal R C, et al. Three-phase doubly fed induction generators:an overview[J]. Electric Power Applications, IET,2010,4(2):75-89.
    [21]张兴,张显立,谢震,等.双馈风力发电变流器长缆驱动及其过电压抑制[J].电力系统自动化,2006(21):44-48.
    [22]Abad G, Lopez J, Rodriguez M, et al. Doubly Fed Induction Machine:Modeling and Control for Wind Energy Generation Applications[M]. Wiley-IEEE Press,2011.
    [23]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004(3).
    [24]Abo-Khalil A G. Synchronization of DFIG output voltage to utility grid in wind power system[J]. Renewable Energy,2012.
    [25]Ullah N R, Thiringer T, Karlsson D. Temporary primary frequency control support by variable speed wind turbines — Potential and applications[J]. Power Systems, IEEE Transactions on, 2008,23(2):601-612.
    [26]Mullane A, O'Malley M. The inertial response of induction-machine-based wind turbines[J]. Power Systems, IEEE Transactions on,2005,20(3):1496-1503.
    [27]Morren J, de Haan S W H, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. Power Systems, IEEE Transactions on,2006,21(1):433-434.
    [28]Great Britain N G. Grid Code:Issue 4 Revision 10[S].2012.
    [29]中华人民共和国国家标准:风电场接入电力系统技术规定[S].2012.
    [30]国家能源局.NB/T 31003-2011中华人民共和国能源行业标准:大型风电场并网设计技术规范[S].行业标准-能源,2011.
    [31]Denmark E D. Technical regulation 3.2.5 for wind power plants with a power output great than 11kw[S].2010.
    [32]Germany E. Grid Connection Regulations fo High and Extra High Voltage[S].2006.
    [33]Spain R. P.O.12.3:Response Requirements of Wind Power Generation to Network Voltage Dips[S]. 2006.
    [34]Altin M, Go□ksu O, Teodorescu R, et al. Overview of recent grid codes for wind power integration: Optimization of Electrical and Electronic Equipment (OPTIM),2010 12th International Conference on, 2010[C].20-22 May 2010.
    [35]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010(25):1-9.
    [36]Tsili M, Papathanassiou S. A review of grid code technical requirements for wind farms[J]. Renewable Power Generation, IET,2009,3(3):308-332.
    [37]Singh B, Singh S N. Wind Power Interconnection into the Power System:A Review of Grid Code Requirements[J]. The Electricity Journal,2009,22(5):54-63.
    [38]王伟胜,范高锋,赵海翔.风电场并网技术规定比较及其综合控制系统初探[J].电网技术,2007(18):73-77.
    [39]Iov F, Teodorescu R, Blaabjerg F, et al. Grid Code Compliance of Grid-Side Converter in Wind Turbine Systems:Power Electronics Specialists Conference,2006. PESC '06.37th IEEE, 2006[C].18-22 June 2006.
    [40]GB/T 14549-1993中华人民共和国国家标准:电能质量——公用电网谐波[S].国家质检总局,1993.
    [41]IEC 61000-3-6 Ed.2:Assessment of harmonic emission limits for the connection of distorting installations to MV, HV and EHV power systems[S].
    [42]Driesen J, Van Craenenbroeck T. Voltage Disturbances Introduction to Unbalance[R].2002.
    [43]BURCHI G, LAZAROIU C, GOLOVANOV N, et al. Estimation of Voltage Unbalance in Power Systems Supplying High Speed Railway[J]. Electrical Power Quality and Utilisation, Journal, 2005,11(2).
    [44]陈军.浅谈电气化铁路单相负载对风电机组安全运行影响[J].电力技术,2009(10):25-26.
    [45]GB/T 15543-2008中华人民共和国国家标准:电能质量——三相电压不平衡[S].国家质检总局, 2008.
    [46]Brumsickle W E, Schneider R S, Luckjiff G A, et al. Dynamic sag correctors:cost-effective industrial power line conditioning[J]. Industry Applications, IEEE Transactions on,2001,37(1):212-217.
    [47]Olguin G. Voltage dip (sag) estimation in power systems based on stochastic assessment and optimal monitoring[M]. Chalmers University of Technology,2005.
    [48]Iov F, Blaabjerg F. Power electronics and control for wind power systems:Power Electronics and Machines in Wind Applications,2009. PEMWA 2009. IEEE,2009[C].
    [49]Tremblay E, Atayde S, Chandra A. Comparative Study of Control Strategies for the Doubly Fed Induction Generator in Wind Energy Conversion Systems A DSP-Based Implementation Approach[J]. IEEE Transactions on Sustainable Energy,2011,2(3):288-299.
    [50]Kazmierkowski M P, Krishnan R, Blaabjerg F, et al. Control in power electronics:selected problems[M]. Academic press,2002.
    [51]Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. Electric Power Applications, IEE Proceedings-,1996,143(3):231-241.
    [52]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006(23):109-114.
    [53]Xu L. Coordinated control of DFIG's rotor and grid side converters during network unbalance[J]. Power Electronics, IEEE Transactions on,2008,23(3):1041-1049.
    [54]Hopfensperger B, Atkinson D J, Lakin R A. Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder,2000[C].
    [55]Muller S, Deicke M, De Doncker R W. Doubly fed induction generator systems for wind turbines[J]. Industry Applications Magazine, IEEE,2002,8(3):26-33.
    [56]Hu J, He Y, Xu L, et al. Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators[J]. Industrial Electronics, IEEE Transactions on,2009,56(2):439-451.
    [57]Akagi H, Sato H. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system[J]. Power Electronics, IEEE Transactions on,2002,17(1):109-116.
    [58]Lopez J, Gubia E, Olea E, et al. Ride Through of Wind Turbines With Doubly Fed Induction Generator Under Symmetrical Voltage Dips[J]. Industrial Electronics, IEEE Transactions on, 2009,56(10):4246-4254.
    [59]Mohseni M, Islam S M. Transient Control of DFIG-Based Wind Power Plants in Compliance With the Australian Grid Code[J]. IEEE Transactions on Power Electronics,2012,27(6):2813-2824.
    [60]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003(8):160-163.
    [61]Tremblay E, Atayde S, Chandra A. Direct power control of a DFIG-based WECS with active filter capabilities:Electrical Power & Energy Conference (EPEC),2009 IEEE,2009[C].
    [62]Santos-Martin D, Rodriguez-Amenedo J L, Arnalte S. Direct power control applied to doubly fed induction generator under unbalanced grid voltage conditions[J]. Power Electronics, IEEE Transactions on,2008,23(5):2328-2336.
    [63]Zhi D, Xu L, Morrow J. Improved Direct Power Control of Doubly-Fed Induction Generator Based Wind Energy System:Electric Machines & Drives Conference,2007. IEMDC'07. IEEE International, 2007[C].
    [64]Xu L, Zhi D, Yao L. Direct power control of grid connected voltage source converters,2007[C].
    [65]张俊峰,毛承雄,陆继明,等.双馈感应发电机的直接功率控制策略[J].电力自动化设备,2006,26(4):31-35.
    [66]Datta R, Ranganathan V T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J]. Power Electronics, IEEE Transactions on,2001,16(3):390-399.
    [67]Liu Z, Mohammed O, Liu S. A Novel Direct Torque Control of Doubly-Fed Induction Generator Used for Variable Speed Wind Power Generation:IEEE Power Engineering Society General Meeting, 2007[C].
    [68]Arnalte S, Burgos J C, Rodriguez-Amenedo J L. Direct torque control of a doubly-fed induction generator for variable speed wind turbines[J]. Electric power components and systems, 2002,30(2):199-216.
    [69]Arbi J, Ghorbal M J B, Slama-Belkhodja I, et al. Direct virtual torque control for doubly fed induction generator grid connection [J]. Industrial Electronics, IEEE Transactions on,2009,56(10):4163-4173.
    [70]Abad G, Rodriguez M A, Poza J, et al. Direct Torque Control for Doubly Fed Induction Machine-Based Wind Turbines Under Voltage Dips and Without Crowbar Protection[J]. Energy Conversion, IEEE Transactions on,2010,25(2):586-588.
    [71]Santos-Martin D, Rodriguez-Amenedo J L, Arnaltes S. Providing Ride-Through Capability to a Doubly Fed Induction Generator Under Unbalanced Voltage Dips[J]. Power Electronics, IEEE Transactions on,2009,24(7):1747-1757.
    [72]Congwei L, Haiqing W, Xudong S, et al. Research of stability of double fed induction motor vector control system:Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001 [C].
    [73]Heller M, Schumacher W. Stability analysis of doubly fed induction machines in stator flux reference frame:in Proceedings 7th European Conference Power Electronics and Applications, Tronheim, Norway,1997[C].
    [74]Petersson A, Harnefors L, Thiringer T. Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators,2004[C].
    [75]Luna A, Lima F, Rodriguez P, et al. Comparison of power control strategies for DF1G wind turbines: Industrial Electronics,2008. IECON 2008.34th Annual Conference of IEEE,2008[C].
    [76]Wu B, Lang Y, Zargari N, et al. Power Conversion and Control of Wind Energy Systems[M]. Wiley-IEEE Press,2011.
    [77]Morren J, de Haan S W H. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J]. Energy Conversion, IEEE Transactions on,2005,20(2):435-441.
    [78]Rajda J, Galbraith A W, Schauder C D, et al. Device, system, and method for providing a low-voltage fault ride-through for a wind generator farm[Z]. Google Patents,2009.
    [79]Rahimi M, Parniani M. Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement[J]. Renewable Power Generation, IET, 2010,4(3):242-252.
    [80]Erlich I, Wrede H, Feltes C. Dynamic behavior of DFIG-based wind turbines during grid faults, 2007[C].
    [81]Abbey C, Joos G. Effect of low voltage ride through (LVRT) characteristic on voltage stability, 2005[C].
    [82]Flannery P S, Venkataramanan G. A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter[J]. Power Electronics, IEEE Transactions on, 2008,23(3):1126-1135.
    [83]Zhan C, Barker C D. Fault ride-through capability investigation of a doubly-fed induction generator with an additional series-connected voltage source converter,2006[C].
    [84]Kiani M, Wei-Jen L. Effects of Voltage Unbalance and System Harmonics on the Performance of Doubly Fed Induction Wind Generators[J]. Industry Applications, IEEE Transactions on, 2010,46(2):562-568.
    [85]Lingling F, Yuvarajan S, Kavasseri R. Harmonic Analysis of a DFIG for a Wind Energy Conversion System[J]. Energy Conversion, IEEE Transactions on,2010,25(1):181-190.
    [86]Djurovic-S, Williamson S. Influence of supply harmonic voltages on DFIG stator current and power spectrum:Electrical Machines (ICEM),2010 XIX International Conference on,2010[C].6-8 Sept. 2010.
    [87]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems[J]. Industrial Electronics, IEEE Transactions on, 2006,53(5):1398-1409.
    [88]Liserre M, Teodorescu R, Blaabjerg F. Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame[J]. Power Electronics, IEEE Transactions on,2006,21(3):836-841.
    [89]Trinh Q N, Lee H H. Improvement of current performance for grid connected converter under distorted grid condition,2011[C].
    [90]Teodorescu R, Blaabjerg F. Proportional-resonant con-trollers. A new breed of controllers suitable for grid-connected voltage-source converters:in Proc. OPTIM 2004[C].
    [91]Todeschini G, Emanuel A E. A Novel Control System for Harmonic Compensation by Using Wind Energy Conversion Based on DFIG Technology:Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC),2010[C].
    [92]Gaillard A, Poure P, Saadate S. Active filtering capability of WECS with DFIG for grid power quality improvement:IEEE International Symposium on Industrial Electronics (ISIE),2008[C].
    [93]Todeschini G, Emanuel A E. Transient Response of a Wind Energy Conversion System Used as Active Filter[J]. Energy Conversion, IEEE Transactions on,2011(99):1-10.
    [94]Yu Q, Heng N, Jiabing H, et al. Improved control of the grid-connected converter under the harmonically distorted grid voltage conditions:Electrical Machines and Systems (ICEMS),2010 International Conference on,2010[C].10-13 Oct.2010.
    [95]Ramos C J, Martins A P, Carvalho A S. Rotor Current Controller with Voltage Harmonics Compensation for a DFIG Operating under Unbalanced and Distorted Stator Voltage:Industrial Electronics Society,2007. IECON 2007.33rd Annual Conference of the IEEE,2007[C].5-8 Nov. 2007.
    [96]徐君,陈文杰,徐德鸿,等.电网低次谐波电压下双馈风电系统定子谐波电流抑制[J].电力系统自动化,2011(8):87-92.
    [97]Jiabing H, Heng N, Hailiang X, et al. Dynamic Modeling and Improved Control of DFIG Under Distorted Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on,2011,26(1):163-175.
    [98]徐海亮,胡家兵,贺益康.电网谐波条件下双馈感应风力发电机的建模与控制[J].电力系统自动化,2011(11):20-26.
    [99]Muljadi E, Yildirim D, Batan T, et al. Understanding the unbalanced-voltage problem in wind turbine generation:Conference Record of the 1999 IEEE Thirty-Fourth IAS Annual Meeting.,1999[C].1999.
    [100]Xu L, Wang Y. Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions[J]. Power Systems, IEEE Transactions on,2007,22(1):314-323.
    [101]Lopez J, Gubia E, Sanchis P, et al. Wind Turbines Based on Doubly Fed Induction Generator Under Asymmetrical Voltage Dips[J]. Energy Conversion, IEEE Transactions on,2008,23(1):321-330.
    [102]Luna A, Lima K, Corcoles F, et al. Control of DFIG-WT under unbalanced grid voltage conditions: Energy Conversion Congress and Exposition,2009. ECCE 2009. IEEE,2009[C].20-24 Sept.2009.
    [103]Brekken T K A, Mohan N. Control of a Doubly Fed Induction Wind Generator Under Unbalanced Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on,2007,22(1):129-135.
    [104]Martinez M I, Tapia G, Susperregui A, et al. DFIG Power Generation Capability and Feasibility Regions Under Unbalanced Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on, 2011,26(4):1051-1062.
    [105]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006(22):134-139.
    [106]胡家兵,贺益康,郭晓明,等.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统自动化,2007(14):47-56.
    [107]Yi Z, Bauer P, Ferreira J A, et al. Operation of Grid-Connected DFIG Under Unbalanced Grid Voltage Condition[J]. Energy Conversion, IEEE Transactions on,2009,24(1):240-246.
    [108]Hu J, He Y, Nian H. Enhanced control of DFIG-used back-to-back PWM VSC under unbalanced grid voltage conditions[J]. Journal of Zhejiang University-Science A,2007,8(8):1330-1339.
    [109]胡胜,林新春,康勇,等.一种双馈风力发电机在电网电压不平衡条件下的改进控制策略[J].电工技术学报,2011(7):21-29.
    [110]Sathitwong S, Sirisumrannukul S, Chatratana S, et al. Symmetrical Components-Based Control Technique of Doubly Fed Induction Generators under Unbalanced Voltages for Reduction of Torque and Reactive Power Pulsations:7th International Conference on Power Electronics and Drive Systems, 2007[C].2007.
    [111]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006(8):21-26.
    [112]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005(8):90-94.
    [113]Vincenti D, Jin H. A three-phase regulated PWM rectifier with on-line feedforward input unbalance correction[J]. Industrial Electronics, IEEE Transactions on,1994,41(5):526-532.
    [114]Kim H S, Mok H S, Choe G H, et al. Design of current controller for 3-phase PWM converter with unbalanced input voltage:IEEE PESC' 98, NEW YORK,1998[C]. IEEE.
    [115]郑艳文,李永东,柴建云,等.不平衡电压下双馈发电系统控制策略[J].电力系统自动化,2009(15):89-93.
    [116]Jiabing H, Yikang H. Modeling and Control of Grid-Connected Voltage-Sourced Converters Under Generalized Unbalanced Operation Conditions[J]. Energy Conversion, IEEE Transactions on, 2008,23(3):903-913.
    [117]Malesani L, Rossetto L, Tenti P, et al. AC/DC/AC PWM converter with reduced energy storage in the DC link[J]. Industry Applications, IEEE Transactions on,1995,31(2):287-292.
    [118]Dong-Choon L, G-Myoung L, Ki-Do L. DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. Industry Applications, IEEE Transactions on, 2000,36(3):826-833.
    [119]Mullane A, Lightbody G, Yacamini R, et al. Comparison of a cascade and feedback linearization scheme for DC link voltage control in a grid connected wind turbine,2001 [C].
    [120]李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究[J].中国电机工程学报,2006(22):74-79.
    [121]Sudmee W, Neammanee B. Performance Comparison of DC Link Voltage Controllers in Vector Controlled Boost Type PWM Converter for Wind Turbine System:IEEE Power Electronics and Drive Systems,2007[C].
    [122]Pena R S, Cardenas R J, Clare J C, et al. Control strategies for voltage control of a boost type PWM converter:2001 IEEE 32nd Annual Power Electronics Specialists Conference,2001. PESC., 2001[C].2001.
    [123]Jinhwan J, Sunkyoung L, Kwanghee N. A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor[J]. Industry Applications, IEEE Transactions on,1999,35(5):1124-1131.
    [124]Namho H, Jinhwan J, Kwanghee N. A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system[J]. Industrial Electronics, IEEE Transactions on,2001,48(4):794-803.
    [125]Yongsug S, Yuran G, Dohwan R. A Comparative Study on Control Algorithm for Active Front-End Rectifier of Large Motor Drives Under Unbalanced Input[J]. Industry Applications, IEEE Transactions on,2011,47(3):1419-1431.
    [126]Wang Y, Xu L, Williams B W. Compensation of network voltage unbalance using doubly fed induction generator-based wind farms[J]. Renewable Power Generation, IET,2009,3(1):12-22.
    [127]Abo-Khalil A G, Dong-Choon L, Jeong-Ik J. Control of Back-to-Back PWM Converters for DFIG Wind Turbine Systems under Unbalanced Grid Voltage:Industrial Electronics,2007. ISIE 2007. IEEE International Symposium on,2007[C].4-7 June 2007.
    [128]肖磊,黄守道,黄科元,等.不对称电网故障下直驱永磁风力发电系统直流母线电压稳定控制[J].电工技术学报,2010(7):123-129.
    [129]Song H, Nam K. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. Industrial Electronics, IEEE Transactions on,1999,46(5):953-959.
    [130]Yazdani A, Iravani R. A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions[J]. Power Delivery, IEEE Transactions on,2006,21(3):1620-1629.
    [131]Ivanovic Z, Vekic M, Grabic S, et al. Control of Multilevel Converter Driving Variable Speed Wind Turbine in Case of Grid Disturbances:Power Electronics and Motion Control Conference (EPE-PEMC),2006 [C].
    [132]Alepuz S, Busquets-Monge S, Bordonau J, et al. Control Strategies Based on Symmetrical Components for Grid-Connected Converters Under Voltage Dips[J]. Industrial Electronics, IEEE Transactions on,2009,56(6):2162-2173.
    [133]Suh Y, Tijeras V, Lipo T A. A control method in dq synchronous frame for PWM boost rectifier under generalized unbalanced operating conditions,2002[C].
    [134]Jiabing H, Yikang H. Reinforced Control and Operation of DFIG-Based Wind-Power-Generation System Under Unbalanced Grid Voltage Conditions[J]. Energy Conversion, IEEE Transactions on, 2009,24(4):905-915.
    [135]胡家兵,贺益康,王宏胜.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010(9):97-104.
    [136]Xu L. Enhanced control and operation of DFIG-based wind farms during network unbalance[J]. Energy Conversion, IEEE Transactions on,2008,23(4):1073-1081.
    [137]Suh Y, Lipo T A. Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network[J]. Power Delivery, IEEE Transactions on, 2006,21(3):1530-1540.
    [138]Suh Y, Lipo T A. A control scheme in hybrid synchronous-stationary frame for PWM AC/DC converter under generalized unbalanced operating conditions:Conference Record of the 2004 IEEE Industry Applications Conference,2004[C].
    [139]Hu J, He Y, Xu L, et al. Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators[J]. Industrial Electronics, IEEE Transactions on,2009,56(2):439-451.
    [140]Hwang J G, Lehn P W. A Single-Input Space Vector for Control of AC-DC Converters Under Generalized Unbalanced Operating Conditions[J]. Power Electronics, IEEE Transactions on, 2010,25(8):2068-2081.
    [141]Xiaoming Y, Merk W, Stemmler H, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J]. Industry Applications, IEEE Transactions on, 2002,38(2):523-532.
    [142]Xiang D, Li R, Tavner P J, et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J]. Energy Conversion, IEEE Transactions on,2006,21 (3):652-662.
    [143]Lopez J, Gubia E, Sanchis P, et al. Wind Turbines Based on Doubly Fed Induction Generator Under Asymmetrical Voltage Dips[J]. Energy Conversion, IEEE Transactions on,2008,23(1):321-330.
    [144]Best R. E.,李永明,王海永等译.锁相环设计、仿真与应用(第5版)[M].清华大学出版社,2007.
    [145]Kaura V, Blasko V. Operation of a phase locked loop system under distorted utility conditions[J]. Industry Applications, IEEE Transactions on,1997,33(1):58-63.
    [146]Se-Kyo C. A phase tracking system for three phase utility interface inverters [J]. Power Electronics, IEEE Transactions on,2000,15(3):431-438.
    [147]Saccomando G, Svensson J. Transient operation of grid-connected voltage source converter under unbalanced voltage conditions:Conference Record of the 2001 IEEE Thirty-Sixth IAS Annual Meeting,2001 [C].
    [148]Xiao P, Corzine K A, Venayagamoorthy G K. Multiple reference frame-based control of three-phase PWM boost rectifiers under unbalanced and distorted input conditions[J]. Power Electronics, IEEE Transactions on,2008,23(4):2006-2017.
    [149]周鹏,贺益康,胡家兵.电网不平衡状态下风电机组运行控制中电压同步信号的检测[J].电工技术学报,2008(5):108-113.
    [150]Freijedo F D, Doval-Gandoy J, Lopez O, et al. Robust phase locked loops optimized for DSP implementation in power quality applications:34th Annual Conference of IEEE Industrial Electronics, IECON 2008.[C].
    [151]Courbon E, Poullain S, Thomas J L. Analysis and synthesis of a digital high dynamics robust PLL for VSC-HVDC robust control:10th European Conference on Power Electronics and Applications, 2003[C].
    [152]Timbus A V, Teodorescu T, Blaabjerg F, et al. PLL Algorithm for Power Generation Systems Robust to Grid Voltage Faults:Power Electronics Specialists Conference (PESC),2006[C].
    [153]Freijedo F D, Yepes A G, Lopez O, et al. Three-phase PLLs with fast postfault retracking and steady-state rejection of voltage unbalance and harmonics by means of lead compensation[J]. Power Electronics, IEEE Transactions on,2011,26(1):85-97.
    [154]徐海亮,章玮,胡家兵,等.电网电压不平衡及谐波畸变时基波电压同步信号的检测[J].电力系统自动化,2012(5):90-95.
    [155]Awad H, Svensson J, Bollen M J. Tuning software phase-locked loop for series-connected converters[J]. Power Delivery, IEEE Transactions on,2005,20(1):300-308.
    [156]Rodriguez P, Teodorescu R, Candela I, et al. New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions:Power Electronics Specialists Conference (PESC),2006[C].
    [157]Rodriguez P, Pou J, Bergas J, et al. Decoupled double synchronous reference frame PLL for power converters control[J]. Power Electronics, IEEE Transactions on,2007,22(2):584-592.
    [158]Rodriguez P, Luna A, Teodorescu R, et al. Grid Synchronization of Wind Turbine Converters under Transient Grid Faults using a Double Synchronous Reference Frame PLL:IEEE Energy 2030 Conference, ENERGY 2008.,2008[C].
    [159]王颢雄,马伟明,肖飞,等.双dq变换软件锁相环的数学模型研究[J].电工技术学报,2011(7):237-241.
    [160]Karimi-Ghartemani M, Iravani M R. A method for synchronization of power electronic converters in polluted and variable-frequency environments[J]. Power Systems, IEEE Transactions on, 2004,19(3):1263-1270.
    [161]Yazdani D, Mojiri M, Bakhshai A, et al. A fast and accurate synchronization technique for extraction of symmetrical components[J]. Power Electronics, IEEE Transactions on,2009,24(3):674-684.
    [162]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006.
    [163]Amin M M, Mohammed O A. DC-bus voltage control of three-phase PWM converters connected to wind powered induction generator:Power and Energy Society General Meeting,2010 IEEE, 2010[C].25-29 July 2010.
    [164]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2004.
    [165]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学,2007.
    [166]Liu C, Blaabjerg F, Chen W, et al. Stator Current Harmonic Control With Resonant Controller for Doubly Fed Induction Generator[J]. Power Electronics, IEEE Transactions on,2012,27(7):3207-3220.
    [167]汤蕴缪等.交流电机动态分析[M].北京:机械工业出版社,2004.
    [168]Bong-Hwan K, Jang-Hyoun Y, Jee-Woo L. A line-voltage-sensorless synchronous rectifier[J]. Power Electronics, IEEE Transactions on,1999,14(5):966-972.
    [169]Lascu C, Asiminoaei L, Boldea I, et al. High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters[J]. Power Electronics, IEEE Transactions on, 2007,22(5):1826-1835.
    [170]Liserre M, Teodorescu R, Blaabjerg F. Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values[J]. Power Electronics, IEEE Transactions on, 2006,21 (1):263-272.
    [171]Castilla M, Miret J, Matas J, et al. Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators [J]. Industrial Electronics, IEEE Transactions on,2009,56(11):4492-4501.
    [172]Hongrae K, Degner M W, Guerrero J M, et al. Discrete-Time Current Regulator Design for AC Machine Drives[J]. Industry Applications, IEEE Transactions on,2010,46(4):1425-1435.
    [173]Wall S, Jackson R. Fast controller design for single-phase power-factor correction systems[J]. Industrial Electronics, IEEE Transactions on,1997,44(5):654-660.
    [174]Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. Power Electronics, IEEE Transactions on,2003,18(3):814-822.
    [175]Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators [J]. Industry Applications, IEEE Transactions on,2001,37(2):601-610.
    [176]Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters [J]. Electric Power Applications, IEE Proceedings 2006,153(5):750-762.
    [177]Timbus A V, Ciobotaru M, Teodorescu R, et al. Adaptive resonant controller for grid-connected converters in distributed power generation systems:Applied Power Electronics Conference and Exposition (APEC'06),2006[C].19-23 March 2006.
    [178]Bierhoff M H, Fuchs F W. Semiconductor losses in voltage source and current source 1GBT converters based on analytical derivation:Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004[C].
    [179]Liu C, Huang X, Chen M, et al. Flexible control of dc-link voltage for doubly fed induction generator during grid voltage swell:Energy Conversion Congress and Exposition (ECCE),2010[C].12-16 Sept. 2010.
    [180]Inc. H A. Aluminum electrolytic capacitors[EB/OL]. http://www.hitachi-aic.com.
    [181]Kaminski N.5SYA2402 Failure Rates of HiPak Modules Due to Cosmic Rays[R].2011.
    [182]Bauer F D. Calculation of cosmic ray limited maximum DC blocking voltages of high voltage silicon PIN diodes[J]. Solid-State Electronics,2008,52(7):1052-1057.
    [183]Backlund B, Rahimo M, Klaka S, et al. Topologies, voltage ratings and state of the art high power semiconductor devices for medium voltage wind energy conversion:IEEE Power Electronics and Machines in Wind Applications (PEMWA 2009),2009[C].
    [184]Franklin G F, Powell J D, Emami-Naeini A, et al. Feedback control of dynamic systems[M]. Addison-Wesley Reading, MA,1994.
    [185]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [186]Tan P C, Loh P C, Holmes D G. High-Performance Harmonic Extraction Algorithm for a 25 kV Traction Power Quality Conditioner[J]. Electric Power Applications, IEE Proceedings 2004,151(5):505-512.
    [187]Miret J, Castilla M, Matas J, et al. Selective Harmonic-Compensation Control for Single-Phase Active Power Filter With High Harmonic Rejection[J]. Industrial Electronics, IEEE Transactions on, 2009,56(8):3117-3127.
    [188]Oppenheim A V, Schafer R W, Buck J R. Discrete Time Signal Processing (2ed)[M]. Prentice Hall, 1998.
    [189]李培芳.离散信号与系统分析[M].杭州:浙江大学出版社,2001.
    [190]Buso S, Mattavelli P. Digital control in power electronics[J]. Lectures on Power Electronics, 2006,1(1):1-158.
    [191]Mattavelli P. A closed-loop selective harmonic compensation for active filters [J]. Industry Applications, IEEE Transactions on,2001,37(1):81-89.
    [192]Venturini R P, Mattavelli P, Zanchetta P, et al. Variable frequency adaptive selective compensation for active power filters:Power Electronics, Machines and Drives,2008. PEMD 2008.4th IET Conference on,2008[C].2-4 April 2008.
    [193]Teodorescu R, Liserre M, Rodriguez P. Grid Converters for Photovoltaic and Wind Power Systems[M]. Wiley,2011.
    [194]Bojoi R I, Griva G, Bostan V, et al. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame [J]. Power Electronics, IEEE Transactions on, 2005,20(6):1402-1412.
    [195]Bojoi R, Limongi L R, Profumo F, et al. Analysis of current controllers for active power filters using selective harmonic compensation schemes[J]. IEEJ Transactions on Electrical and Electronic Engineering,2009,4(2):139-157.
    [196]夏道止.电力系统分析[M].北京:中国电力出版社,2004.
    [197]IEC. Adjustable speed electrical power drive systems—Part 3:EMC requirements and specific test methods[R].2004.
    [198]Moran L, Ziogas P D, Joos G. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions[J]. Industry Applications, IEEE Transactions on, 1992,28(6):1286-1293.
    [199]Henryk Markiewicz A K. Standard EN 50160 Voltage Characteristics in Public Distribution Systems [J].2004.
    [200]Codd I. Windfarm power quality monitoring and output comparison with EN50160:in Proc.4th Int. Workshop Large-Scale Integration Wind Power Transmission Networks Offshore Wind Farm, Sweden, 2003[C].
    [201]Iov F, Hansen A D, Sorensen P, et al. Mapping of grid faults and grid codes[R].Riso National Laboratory,2007.
    [202]Krause G. From Turbine to Wind Farms-Technical Requirements and Spin-Off Products[M]. InTech, 2011.
    [203]Lee K, Jahns T M, Venkataramanan G, et al. DC-Bus Electrolytic Capacitor Stress in Adjustable-Speed Drives Under Input Voltage Unbalance and Sag Conditions[J]. Industry Applications, IEEE Transactions on,2007,43(2):495-504.
    [204]Kolar J W, Wolbank T M, Schrodl M. Analytical calculation of the RMS current stress on the DC link capacitor of voltage DC link PWM converter systems:Ninth International Conference on Electrical Machines and Drives,1999[C].
    [205]Kolar J W, Round S D. Analytical calculation of the RMS current stress on the DC-link capacitor of voltage-PWM converter systems[J]. Electric Power Applications, IEE Proceedings 2006,153(4):535-543.
    [206]Bierhoff M H, Fuchs F W. DC-Link Harmonics of Three-Phase Voltage-Source Converters Influenced by the Pulsewidth-Modulation Strategy—An Analysis[J]. Industrial Electronics, IEEE Transactions on, 2008,55(5):2085-2092.
    [207]Boyra M, Thomas J L. A review on synchronization methods for grid-connected three-phase VSC under unbalanced and distorted conditions:Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011),2011[C].
    [208]邱关源.电路[M].北京:高等教育出版社,2006.
    [209]Vincenti D, Hua J. A three-phase regulated PWM rectifier with on-line feedforward input unbalance correction[J]. Industrial Electronics, IEEE Transactions on,1994,41(5):526-532.
    [210]Rodriguez P, Luna A, Ciobotaru M, et al. Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions:IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006[C].
    [211]Ghorashi A H, Murthy S S, Singh B P, et al. Analysis of wind driven grid connected induction generators under unbalanced grid conditions[J]. Energy Conversion, IEEE Transactions on, 1994,9(2):217-223.
    [212]Kundur Prabha.电力系统稳定与控制[M].北京:中国电力出版社,2001.
    [213]Bueno E J, Rodriguez F J, Espinosa F, et al. SPLL design to flux oriented of a VSC interface for wind power applications:31st Annual Conference of IEEE Industrial Electronics Society (IECON 2005), 2005[C].
    [214]Suh Y. Analysis and control of three phase AC/DC PWM converter under unbalanced operating conditions[D]. University of Wisconsin--Madison,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700