用户名: 密码: 验证码:
纤维素基复合层析基质的功能化与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层析技术由于其分离机制多样性和操作的相对简便性,成为新型分离方法和集成化技术研究的焦点。扩张床吸附层析和疏水性电荷诱导层析是新型层析分离和集成化技术的典型代表。
     在课题组前期工作的基础上,本文以纤维素基复合层析介质的设计、制备和应用为主线,侧重于基质的功能化,开展了四个方面的工作:其一,纤维素球形基质的物理性能改进,采用合适的手段,实现基质的孔道扩增和密度增大;其二,基质的化学改性,对纤维素基质进行活化处理,实现功能配基的有效偶联;其三,制备功能化的层析介质,包括弱阴离子交换扩张床介质和疏水性电荷诱导层析介质,进行介质的性能评价,研究介质与目标蛋白的相互作用;其四,应用研究,将功能化介质应用于实际的分离过程,包括固定床层析和扩张床吸附。取得的主要结果如下:
     纤维素基复合层析基质的物理功能化:以再生纤维素为骨架,碳化钨粉末为增重剂,糊化木薯淀粉为制孔剂,采用“反相悬浮热再生法”和成球后去除淀粉方法,成功制备了纤维素/碳化钨复合微球,可用作层析介质的基质。基质的物理特点在于大孔径和高密度,实现了孔径的可控扩增和密度的可控调节。基质具有良好的球形外观和对数正态粒径分布,平均孔径达到129nm,湿真密度与碳化钨添加量呈线性相关,可达2.4mg/ml,孔结构受增重剂的影响较小。复合层析基质的柱层析行为表明:大孔型基质的洗脱峰形明显改善,柱压小,适合于高流速的固定床和扩张床层析;扩张床内可形成稳定的分级分布,符合扩张床吸附要求;可根据具体需要,调节碳化钨添加比例来优化操作流速和床层扩张率。
     纤维素基复合层析基质的化学功能化——阴离子交换配基:采用碱化和偶联两步反应,将纤维素/碳化钨复合层析基质进行阴离子交换的配基功能化,制备成大孔型、高密度的弱阴离子交换扩张床吸附剂(CelI-TuC-DEAE),考察了牛血清白蛋白(BSA)的静态和动态吸附性能。结果表明,静态吸附容量达到97.1mg/ml;流速为500cm/h时(扩张床内扩张率约为2)动态吸附容量为66.6mg/ml;当流速高达900cm/h时,动态吸附容量仍有54.5mg/ml。吸附动力学研究表明,由于介质具有大孔结构,蛋白质扩散传递迅速,与溶液中自由扩散基本处在同一个数量级,验证了基质扩孔的必要性,适用于高流速的扩张床吸附分离。
     纤维素基复合层析基质的化学功能化——疏水性电荷诱导配基:采用烯丙基溴(AB)和二乙烯基砜(DVS)活化,偶联4-巯乙基吡啶(MEP)、2-巯基-1-甲基咪唑(MMI)和2-巯基苯并咪唑(MBI),将纤维素/碳化钨复合层析基质进行疏水性电荷诱导配基功能化,制备得到四种大孔径、高密度的疏水性电荷诱导层析(HCIC)介质Cell-TuC-AB-MEP,Cell-TuC-DVS-MEP,Cell-TuC-DVS-MMI和Cell-TuC-DVS-MBI。考察了反应条件对活化和偶联过程的影响,优化了反应条件。烯丙基溴活化密度可达137μmol/ml,偶联后MEP配基密度为90μmol/ml;二乙烯基砜活化密度达到93μmol/ml,配基偶联密度约60μmol/ml。
     疏水性电荷诱导层析介质与蛋白质的相互作用:考察了HCIC介质与模型蛋白质(卵黄免疫球蛋白IgY和BSA)的相互作用,从吸附平衡、吸附动力学、层析柱保留因子和穿透曲线等方面探讨了HCIC介质的吸附机理和性能特点。结果表明,溶液pH和盐浓度是影响吸附的关键因素。在pH=5左右,即蛋白质等电点附近,吸附作用达到最大,IgY静态吸附量达到100mg/ml以上;pH升高,吸附容量呈下降趋势;pH下降到蛋白质等电点和介质配基的pK_α值以下,产生静电排斥作用,实现解吸。添加盐可以适度增加介质对蛋白质的吸附。四种介质中吸附量Cell-TuC-DVS-MBI最大,而吸附选择性Cell-TuC-DVS-MMI和Cell-TuC-AB-MEP较好。Cell-TuC-AB-MEP的洗脱条件最为温和,而Cell-TuC-DVS-MBI则需要较苛刻的条件。采用简化了的扩散模型可以拟合吸附动力学过程,发现有效扩散系数相对较小,且随pH和盐浓度变化。蛋白质穿透实验表明,功能化介质可用于固定床或扩张床吸附分离。
     疏水性电荷诱导层析介质的应用——卵黄免疫球蛋白的分离:选用Cell-TuC-AB-MEP作为层析介质,从卵黄稀释液中分离免疫球蛋白IgY,考察了层析条件对分离效果的影响。结果表明,采用固定床或扩张床操作模式,均可实现IgY的有效分离。固定床层析时,收率为58.4%,纯化因子2.9,纯度达到了92%;而扩张床吸附层析时,流速高达500cm/h,收率为48.4%,纯化因子2.9,纯度仍有89%。结果验证了所制备的HCIC功能化介质具有良好的IgY吸附特异性,适用于两种层析模式的分离过程。
     总之,全文围绕纤维素基复合层析介质的功能化制备、性能表征和应用开展了系列研究,实现了纤维素复合基质的物理性能改善和化学配基功能化,成功制备了多种新型的功能化层析介质,探讨了相应的吸附机理和分离性能,并应用于实际对象的分离,完成了制备-机理-应用的研究路线,为纤维素层析介质的进一步开发奠定了基础。
The chromatography has been developed with new methods and integrated technologies for bioseparation due to varying separation mechanisms and convenient operation modes. Expanded bed adsorption (EBA) and hydrophobic charge induction chromatography (HCIC) are two of important chromatographic techniques. Based on our previous work, a novel macroporous cellulose-tungsten carbide composite matrix was designed and prepared. Then, the composite matrix was functionalized as anion-exchanger for EBA and HCIC adsorbents. The adsorption properties of new adsorbents as well as the application for antibody separation were investigated. The main points of this thesis were listed as follows.
     Firstly, with the method of water-in-oil suspension thermal regeneration and starch addition, a series of cellulose-tungsten carbide composite matrix with different densities and porosities were developed. With cellulose as the skeleton, gelatinized cassava starch solution and tungsten carbide were used as porogenic agent and inert densifier, respectively. The matrix prepared showed good sphericity and a logarithmic symmetrical distribution of particle size. The mean pore diameter could reach 129 nm, while particle wet density could be increased with the addition of tungsten carbide. The results demonstrated that the macroporous matrix could be used in the packed bed and expanded bed with perfect properties, such as fast diffusion, low column pressure and good liquid mixing in the bed. In addition, the density of composite matrix could be controlled by altering the densifier addition to match the requirement of varying fluid velocity and expansion factor in expanded bed.
     Secondly, a new anion-exchanger Cell-TuC-DEAE for EBA application was prepared by coupling diethylaminoethyl (DEAE) ligand on the macroporous cellulose-tungsten carbide composite.matrix. With bovine serum albumin (BSA) as model protein, the static and dynamic adsorption properties of Cell-TuC-DEAE were studied. The saturated adsorption capacity could reach 97.1mg/ml, and the dynamic adsorption capacity was 66.6mg/ml at 500cm/h and 54.5 mg/ml at 900cm/h in expanded bed. The results of adsorption kinetic indicated that the protein diffusion was enhances due to large pore in the matrix, which could be used for high fluid velocity in expanded bed.
     Thirdly, four HCIC adsorbents were prepared. The macroporous cellulose-tungsten carbide composite matrix was activated with allyl bromide (AB) and divinyl sulfone (DVS), then coupled with three kinds of mercapto heterocyclic groups, 4-mercapto-ethyl-pyridine hydrochloride (MEP), 2-mercapto-1-methyl-imidazole (MMI) and 2-mercapto-benzimidazole (MBI), to form four HCIC adsorbents, Cell-TuC-AB-MEP, Cell-TuC-DVS-MEP, Cell-TuC-DVS-MMI andCell-TuC-DVS-MBI. The preparation conditions were optimized. The content of allyl group could reach 137μmol/ml matrix and the MEP density was 90μmol/ml adsorbents; while the content of vinyl sulfone could reach 93μmol/ml matrix and the ligands density was about 60μmol/ml adsorbents.
     Fourthly, with model protein, Immunoglobulin of egg yolk (IgY) and BSA, the adsorption mechanism and performance of HCIC adsorbents was discussed. The static adsorption equilibrium, adsorption kinetics, retention factor and protein breakthrough in the column were investigated. The results indicate that the interactions between HCIC adsorbents and protein were determined mainly by pH and salt concentration. At pH 5, the adsorption reached the maximal value and the adsorption capacity was above 100mg/ml. With the increase of pH, the adsorption capacity decreased. When the pH was below the pI of protein and pK_a of ligand, the protein could be desorbed by the protein-ligand electrostatics repulsion. It was also found that the addition of lyotropic salt could enhance the protein adsorption. For all HCIC adsorbents tested, Cell-TuC-DVS-MBI showed highest adsorption capacity, while Cell-TuC-AB-MEP was the least. Cell-TuC-DVS-MMI and Cell-TuC-AB-MEP showed the excellent adsorption selectivity for immunoglobulin. Based on the study of retention factor, the protein could be easily eluted on Cell-TuC-AB-MEP, while harsh elution terms should be used for Cell-TuC-DVS-MBI. The results of adsorption kinetics indicated that the experimental data could be fitted with simplified diffusion model. The total effective diffusion coefficients of HCIC adsorbent were smaller than that of ion exchanger. The protein breakthrough behaviors demonstrated that the adsorbents prepared could be used in packed bed and expanded bed.
     Finally, Cell-TuC-AB-MEP was used to separate IgY from egg yolk. For packed bed chromatography, the yield was 58.4%, and the purification factor was 2.9 with the purity of 92%. For expanded bed adsorption, the yield was 48.4% with the purification factor of 2.9 and the purity of 89% for the fluid velocity of 500cm/h. These results indicate that the HCIC adsorbents prepared was suitable for the purification of immunoglobulin both in packed bed and expanded bed.
     The thesis focused on the preparation, functionalization and application of novel cellulose-based composite matrix for chromatography, especially for expanded bed adsorption and HCIC. Some important information on the adsorbent preparation, adsorption mechanism and antibody separation were obtained, which would certainly be useful for the developments of new adsorbent and chromatographic methods.
引文
1.孙彦编.生物分离工程.北京:化学工业出版社.1998
    2.梅乐和,姚善泾,林东强,朱自强.生物分离过程研究的新趋势—高效集成化学.化学工程.1999,27:38-41
    3.田亚平主编.生化分离技术.北京:化学工业出版社.2006
    4.俞俊堂,唐孝宣主编.生物工艺学(上).上海:华东化工学院出版社.1991
    5.林东强,朱自强,姚善泾,梅乐和.生化分离过程的新探索—双水相分配与相关技术的集成化.化工学报.2000,51:1-6
    6.Deng G,Lin D Q,Yao S J,Mei L H.Aqueous miceilar two-phase system composed of hyamine-type hydrophobically modified ethylene oxide and application for cytochrome P450BM-3 separation.J.Chromatogr.B,2007,852:167-173
    7.Qi X M,Yao S J,Guan Y X.A Novel lsoelectric Precipitation of Proteins in Pressurized Carbon Dioxide-Water-Ethanol System.Biotechnol.Progr.,2004,20:1176-1182
    8.Scopes R K.Strategies for enzyme isolation using dye-ligand and related adsorbents.J.Chromatogr.A,1986,376:131-140
    9.Burton S C,Harding D R K.Salt-independent adsorption chromatography:new broad-spectrum affinity methods for protein capture(a review).J.Biochem.Biophys.Methods,2001,49:275-287
    10.Porath J,Maisano F,Belew M.Thiophilic adsorption—a new method for protein fractionation.FEBS Lett.,1985,185:306-310
    11.Burton S C,Harding D R K.Hydrophobic charge induction chromatography:salt independent protein adsorption and facile elution with aqueous buffers.J.Chromatogr.A,1998,814:71-81
    12.Elias K.Affinity membranes:a 10-year review.J.Membr.Sci.,2000,179:1-27
    13.Kopperschlager G,Birkenmeier G.Affinity partitioning and extraction of proteins.Bioseparation,1990,1:235-254
    14.Chase H A,Draeger M N.Expanded-bed adsorption of proteins using ion-exchangers.Sep.Sci.Technol.,1992,27:2021-2039
    15.Chase H A.Purification of proteins by adsorption chromatography in expanded beds.Trends in Biotechnol.,1994,12:296-303
    16.McCormick D K,Expanded bed adsorption-the first new unit process operation in decades.Bio/Technology,1993,11:1059-1059
    17.刘国诠主编.生物工程下游技术.北京:化工出版社.1993
    18.Anspach F B,Curbelo D,Hartmann R,Garke G.Deckwer W D.Expanded bed chromatography in primary protein purification.J.Chromatogr.A,1999,865:129-144
    19.苏拔群.生物化学制备技术(第一版).北京:科学出版社.1986
    20.Hedman P,Barnfield Frej A K,Adapting chromatography for initial large-scale protein recovery.ASC Conference Proceeding Series "Harnessing biotechnology for the 21st century".American Chemical Society,1992,pp.271-274
    21.Amersham Pharmacia Biotech.Expanded bed adsorption-Principles and Methods,Code No.18-1124-26,Uppsala,Sweden,1998
    22.Lochmuller C H,Ronsick C S,Wigman L S.Fluidized-bed separators reviewed:a low pressure drop approach to column chromatography.Prep.Chromatogr.,1988,1:93-108
    23.Thommes J.Fluidized bed adsorption as a primary recovery step in protein purification.Adv.Biochem.Eng.Biotechnol.,1997,58:185-230
    24.Hjorth R.Expanded-bed adsorption in industrial bioprocessing:Recent developments.Trends biotechnol.,1997,15:230-235
    25.Hubbuch J,Thommes J,Kula M R.Biochemical engineering aspects of expanded bed adsorption.Adv.Biochem.Eng.Biotechnol.,2005,92:101-123
    26.胡洪波.扩张床吸附过程的研究-安通溶栓酶的分离和纯化[博士学位论文].浙江大学.杭州.1999
    27.Paleus S,Neilands J B.Preparation of cytochrome c with the aid of Ion-exchange resin.Acta.Chem.Scand.,1950,4:1024-1030
    28.Swingle S M,Tiselius A.Tricacium phosphate as an adsorbent in the chromatography of protein.J.Biochem.,1951,48:171-174
    29.Sober H A,Peterson E A.Chromatography of proteins on cellulose ion-exchangers.J.Am.Chem.Soc.,1954,76:1711-1712
    30.Unger K K,Kern R,Minou M C.High performance gel permeation chromatography with a new type of silica packing material.J.Chromatogr.A,1974,99:435-443
    31.Regnier F E,Noel R J.Glycerpropylsilane bonded phases in the steric exclusion chromatography of biological macromolecules.J.Chromatogr.Sci.,1976,14:316-320
    32.Chang S H,Gooding K M,Regnier F E.A continuous flow enzyme detector for liquid chromatography.J.Chromatogr,A,1977,134:91-106
    33.Thommes J,Halfar M,Lenz S,Kula M R.Purification of monoclonal antibodies from whole hybridoma fermentation broth by fluidized bed adsorption.Biotechnol.Bioeng.,1995,45:205-211
    34.Stout R W,Sivakoff S I,Ricker R D.New ion-exchange packing based on zirconium oxide surface-stabilized,diol-bonded,silica substrates.J.Chromatogr.A,1986,352:381-397
    35.Mullick A,Griffith C M,Flickinger M C.Expanded and packed bed albumin adsorption on fluoride modified Zirconia.Biotechnol.Bioeng.,1998,60:333-340
    36.Tiselius A,Hjerten S,Levin O,Protein chromatography on calcium phosphate columns.Arch.Biochem.Biophys.,1956,65:132-155
    37.Mikeo O,Kamihara T.Increase in cyclic AMP content with enhanced phosphatidylin-ositol turnover in the cells of candida tropicalis during myceliai growth caused by ethanol.J.Chromatogr.A,1983,261:361-389
    38.Kato Y,Nakamura K.Characterization of tsk-gel deae-toyopearl 650 ion exchanger.J.Chromatogr.A,1982,245:193-211
    39.Hjerten S,Mosbach R.Molecular sieve chromatography of proteins on columns of cross-linked polyacrylamide.Anal.Biochem.,1962,3:109-118
    40.高洁,汤烈贵主编.纤维素科学.北京:科学出版社.1996
    41.杨之礼,苏茂尧.纤维素醚基础与应用.广州:华南理工大学出版社.1990
    42.杨之礼,蒋听培,王庆瑞,邬国铭.纤维素与粘胶纤维.北京:纺织工业出版社.1985
    43.Stamberg J.Bead cellulose,separation and purification methods.1988,17:155-183
    44.Peska J,Stamberg J,Pelzbauer Z.Regenerated cellulose in the bead form after treatments and their effects on the porous structure of cellulose.Cell.Chem.Technol.,1978,21:419-428
    45.Miao Z J,Lin D Q,Yao S J.Preparation and Characterization of Cellulose-Stainless Steel Powder Composite Particles Customized for Expanded Bed Application.Ind.Eng.Chem.Res.,2005,44:8218-8224
    46.Westman L,Lindstrom T.Swelling and mechanical properties of cellulose hydrogels I.preparation,characterization,and swelling behavior.J.Appl.Polym.Sci.,1981,26:2519-2532
    47.Gemeiner P,Benes M J,Stamberg J.Bead cellulose and its use in biochemistry and biotechnology.Chem.Papers,1989,43:805-848
    48.Boeden H F,Pommerening K,Becker M,Rupprich C,Holtzhauer M,Loth F,Muller R,Bertram D.Bead cellulose derivatives as supports for immobilization and chromatographic purification of proteins.J.Chromatogr.A,1991,552:389-414
    49.Mislovicova D,Gemeiner P,Kuniak L,Zemek J.Affinity chromatography of rat liver lactate dehydrogenase on the remazol derivative of bead cellulose.J.Chromatogr.A,1980,194:95-99
    50.Kegbubgerm A L.Principles of Biochemistry.New York:Worth Publishers,1982
    51.Van kreveld M E,Van den H N.Poly(styrene-divylbenzene)-based strongion-exchange packing material for high-performance liquid chromatography proteins.J.Chroamtogr.A,1987,397:25-30
    52.Afeyan N B,Regnier F E,Robert C.Perfusive Chromatography.U.S.Pat.,5019270,1991
    53.Afeyan N B,Gordon N F,Mazsaroff I,Varady L,Fulton S P,Yang Y B,Regnier F E.Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J. Chromatogr. A, 1990, 519: 1-29
    
    54. Afeyan N B, Fulton S P, Gordon N F, Mazsaroff I, Varady L, Regnier F E. Perfusion chromatography: an approach to purifying biomolecules. Bio/Technology, 1990, 8: 203-206
    
    55. Afeyan N B, Fulton S P, Regnier F E. High-throughput chromatrography using perfusive supports. LC GC, 1991,9: 824-832
    
    56. Svec F, Frechet J M J. "Molded" rods of macroporous polymer for preparative separations of biological products. Biotechnol. Bioeng., 1995,48: 476-480
    
    57. Fulton S P, Afeyan N B, Gordon F, Regnier F E. Very high speed separation of proteins with a 20- m reversed-phase sorbent. J.Chromatogr. A, 1991, 547: 452-456
    
    58. Afeyan N B, Fulton S P, Regnier F E. Perfusion Chromatography packing materials for proteins and peptides. J. Chromatogr. A, 1991, 544: 267-272
    
    59. Hizel C, Maurizis J C, Rio P, Communal Y, Chassagne J, Favy D, Bignon Y J, Bernard-Gallon D J. Isolation purification and quantification of BRCA1 protein from tumor cells by affinity perfusion chromatography. J. Chromatogr. B: Biomed. Sci. Appl., 1999, 721: 163-170
    
    60. Svec F, Frechet J M J. Modified poly(glycidyl metharylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins. J. Chromatogr. A, 1995, 702: 89-95
    
    61. Zhang M L, Sun Y. Cooperation of solvent and solid granule as porogenic agents: Novel porogenic mode of biporous media for protein chromatography. J. Chromatogr. A, 2001, 922: 77-86
    
    62. Courtois J, Bystrom E, Irgum K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer, 2006, 47: 2603-2611
    
    63. Gustavsson P E, Axelsson A, Larsson P O. Direct measurements of convective fluid velocities in superporous agarose beads. J. Chromatogr. A, 1998, 795: 199-205
    
    64. Gustavsson P E, Larsson P O. Superporous agarose, a new material for chromatography. J. Chromatogr. A, 1996,734: 231-239
    
    65. Shi Q H, Zhou X, Sun Y. A novel superporous agarose medium for high-speed protein chromatography. Biotechnol. Bioeng., 2005,92: 643-651
    
    66. Wang D M, Hao G, Shi Q H, Sun Y. Fabrication and characterization of superporescellulose bead for high-speed protein chromatography. J. Chromatogr. A, 2007, 1146: 32-40
    
    67. Pai A, Gondkar S, Lali A. Enhanced performance of expanded bed chromatography on rigid superporous adsorbent matrix. J. Chromatogr. A, 2000, 867:113-130
    
    68. Zhang J, Yao S J, Guan Y X. Preparation of macroporous sodium cellulose sulphate/poly (dimethyldiallylammonium chloride) capsules and their characteristics. J. Memb. Sci., 2005, 255: 89-98
    
    69. AL-Dibouni M R, Garside J. Particle mixing and classification in liquid fluided beds. Trans. Inst. Chem. Eng., 1979, 57: 94-103
    70. Karau A, Benken C, Thommes J, Kula M R. The influence of particle size distribution and operating conditions on the adsorption performance in fluidized beds. Biotechnol. Bioeng., 1997,55:54-64
    
    71. Amersham Biosciences. Expanded bed adsorptions principles and methods. Uppsala, Sweden, http://www.amershambiosciences.com
    
    72. Tong X D, Sun Y. Nd-Fe-B alloy-densified agarose gel for expanded bed adsorption of proteins. J. Chromatogr. A, 2002, 943: 63-75
    
    73. UpFront Chromatography A/S. FastLine Columns and adsorbents for expanded bed adsorption. Copenhagen, Denmark, http://www.upfront-dk.com
    
    74. Zhou X, Shi Q H, Bai S, Sun Y. Dense pellicular agarose-glass beads for expanded bed application: Fabrication and characterization for effective protein adsorption. Biochem. Eng. J., 2004,18:81-88
    
    75. Lei Y L, Lin D Q, Yao S J, Zhu Z Q. Preparation and characterization of TiO_2-densified cellulose beads for expanded bed adsorption. J. Appl. Polym. Sci., 2003, 90: 2848-2854
    
    76. Lei Y L, Lin D Q, Yao S J, Zhu Z Q. Preparation of an anion exchanger based on TiO_2densified cellulose beads for expanded bed adsorption. React. Funct. Polym., 2005, 62: 169-177
    
    77. Lei Y L, Lin D Q, Yao S J, Zhu Z Q. Physical and hydrodynamic properties of spherical cellulose-TiO_2 composite matrix for expanded bed adsorption. Chinese J. Chem. Eng., 2003, 11: 141-145
    
    78. Gilchrist G R, Burns M T, Lyddiatt A. Solid phases for protein adsorption in liquid fluidized beds: comparison of commercial and custom-assembled particles. in: Separations for Biotechnology 3, Pyle D L eds., Royal Society of Chemistry, London, 1994,186-192
    
    79. Finette G M S, Baharin B, Mao Q M, Hearn M T W. Optimization consideration for the purification of α_1-antitrypsin using silica-based ion-exchange adsorbents in packed and expanded beds. Biotechnol. Prog., 1998,14: 286-293
    
    80. McCreath G E, Chase H A, Owen R O. Expanded bed affinity chromatography of dehydrogenases from Baker's yeast using dye-ligand perfluoropolymer supports. Biotechnol. Bioeng., 1995,48:341-354
    
    81. Pall corporation. Q & CM HyperZ? Ion Exchange Sorbents High Productivity Expanded Bed Adsorption Chromatography. Newyork, USA, http://www.pall.com
    
    82. Amersham Pharmacia Biotech. Ion exchange chromatography principles and methods. Uppsala, Sweden, 1997
    
    83. Moore S, Stein W H. Chromatography of amino acids on sulofnated polystyrene resins. J. Biol. Chem., 1951, 192:663-681
    
    84. Himmelhoch S R. Chromatography of proteins on ion-exchange adsorbents. Meth. Enzymol., 1971,22:273-286
    
    85. Bonnerjea J, Oh S, Hoare M, Dunnill P. Protein purification: the right step at the right time. Bio/Technology, 1986, 4: 954-958
    86. Tiselius A. Adsorption separation by salting out. Arch. Kemi. Mineral. Geol., 1948,26B: 1-5
    
    87. Hjerten S. Some general aspects of hydrophobic interaction chromatography. J. Chromatogr. A, 1973,87:325-331
    
    88. Janson J C, Ryden L. Protein purification: principles, high resolution methods and applications. New York: John Wiley & Sons, Inc. 1998
    
    89. Hofmeister F, Zur lehre von der wirkung der salze. Arch. Expt. Pathol. Pharmakol., 1888, 24: 247-260
    
    90. Axen R, Porath J, Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature, 1967,214:1302-1304
    
    91. Mclaughlin L W. Mixed-mode chromatography of nucleic acids. Chem. Rev., 1989, 89: 309-319
    92.姚善泾,高栋,林东强.一种新的生物分离方法—混合模式吸附层析.化工学报.2007,58: 2169-2177
    
    93. Scouten W H. Affinity Chromatography: Bioselective adsorption on inert matrices. New York; John Wiley & Sons, 1981
    
    94. Porath J, Sundberg L, Fornstedt N, Olsson I. Salting-out in amphiphilic gels as a new approach to hydrophobia adsorption. Nature, 1973,245: 465-466
    
    95. Hjerten S, Rosengren J, Pahlman S. Hydrophobic interaction chromatography. The synthesis and the use of some alkyl and aryl derivatives of agarose. J. Chromatogr. A, 1974, 101: 281-288
    
    96. Yon R J, Simmonds R J. Protein chromatography on adsorbents with hydrophobic and ionic groups: some properties of N-(3-carboxypropionyl) aminodecyl-sepharose and its interaction with wheat-germ aspartate transcarbamoylase. Biochem. J., 1975,151: 281~290
    
    97. Simmonds R J, Yon R J. Protein chromatography on adsorbents with hydrophobic and ionic groups: chromatography of dodecyl sulphate-solubilized proteins of the human erythrocyte membrane on N-(3-carboxypropionyl) aminodecyl-sepharose. Biochem. J., 1976,157: 153-159
    
    98. Kasche V, Loffler F, Scholzen T, Kramer D M, Boller T. Rapid protein purification using phenylbutylamine-Eupergit: a novel method for large-scale procedures. J. Chromatogr. A, 1990, 510:149-154
    
    99. Burton S C, Haggarty N W, Harding D R K. One step purification of chymosin by mixed mode chromatography. Biotechnol. Bioeng., 1997, 56: 45-55
    
    100. Hamilton G E, Luechau F, Burton S C, Lyddiatt A. Development of a mixed mode adsorption process for the direct product sequestration of an extracellular protease from microbial batch cultures. J. Biotechnol., 2000, 79: 103-115.
    
    101. Johansson B L., Belew M, Eriksson S, Glad G, Lind O, Maloisel J L, Norman N. Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. J. Chromatogr. A, 2003,1016: 21-33
    102. Johansson B L, Belew M, Eriksson S, Glad G, Lind O, Maloisel J L, Norrman N. Preparation and characterization of prototypes for multi-modal separation aimed for capture of positively charged biomolecules at high-salt conditions. J. Chromatogr. A, 2003,1016: 35-49
    
    103. Gao D, Yao S J, Lin D Q. Preparation and adsorption behavior of a cellulose-based mixed-mode adsorbent with a benzylamine ligand for expanded bed applications. J. Appl. Polym. Sci., 2008, 107: 674-682
    
    104. Gao D, Lin D Q, Yao S J. Measurement and correlation of protein adsorption with mixed-mode adsorbents taking into account the influences of salt concentration and pH. J. Chem. Eng. Data, 2006,51: 1205-1211
    
    105. Gao D, Lin D Q, Yao S J. Patch controlled protein adsorption in mixed-mode chromatography with benzylamine as functional ligand. Biochem. Eng. J. 2008, 38: 355-361
    
    106. Gao D, Lin D Q, Yao S J. Mechanistic analysis on the effects of salt concentration and pH on protein adsorption onto a mixed-mode adsorbent with cation ligand. J. Chromatogr. B, 2007, 859: 16-23
    
    107. Gao D, Lin D Q, Yao S J. Protein adsorption kinetics of mixed-mode adsorbent with benzylamine as functional ligand. Chem. Eng. Sci., 2006, 61: 7260-7268
    
    108. Amersham Biosciences. Technical book. Uppsala, Sweden, http://www.amershambiosciences.com
    
    109. Porath J. Gel filtration of proteins, peptides and amino acids. Biochim. Biophys. Acta, 1960, 39: 193-207
    
    110. Porath J, Laas T, Janson J C. Agar derivatives for chromatography, electrophoresis and gel-boundenzymes: III. Rigid agarose gels cross-linked with divinylsulfone. J. Chromatogr. A, 1975,103: 49-62
    
    111. Porath J, Belew M. 'Thiophilic' interaction and the selective adsorption of proteins. TIBTECH, 1987,5:225-229
    
    112. Hutchens T W, Porath J. Thiophilic adsorption: A comparison of model protein behavior. Biochemistry, 1987, 26: 7199-7204
    
    113.Nopper B, Kohen F, Wilcheck M. A thiophilic adsorbent for the one-step high-performance liquid chromatography purification of monoclonal antibodies. Anal. Biochem., 1989, 180: 66-71
    
    114. Schwarz A, Kohen F, Wilchek M. Novel sulfone-based thiophilic ligands for the high performance liquid chromatographic purification of antibodies. React. Polym., 1995, 22: 259-266
    
    115. Scolbe J A, Scopes R K. Ligand structure of the divinylsulfone-based T-gel. J. Chromatogr. A, 1997,787:47-54
    
    116. Scholz G H, Wippich P, Leistner S, Huse K. Salt-independent binding of antibodies from human serum to thiophilic heterocyclic ligands. J. Chromatogr. B:Biomed. Sci. Appl., 1998, 709: 189-196
    117.Oscarsson S, Porath J. Protein Chromatography with pyridine and alkyl-thioether-based agarose adsorbents. J. Chromatogr. A, 1990,499: 235-247
    
    118. Porath J, Oscarsson S. A new kind of thiophilic electron-donor-acceptor adsorbent. Makromol. Chem., 1988,17:359-371
    
    119. Porath J. Metal-ion-hydrophobic, thiophilic and II-electron governed interactions and their application to salt-promoted protein adsorption chromatography. Biotechnol. Prog., 1987, 3: 14-21
    
    120. Berna P P, Porath J. Salt-independent adsorption of human serum proteins on cyanocarbon gels. J. Chromatogr. B, 1997, 693:277-285
    
    121. Scholz G H, Vieweg S, Leistner S J S, Scherbaum W A, Huse K. A simplified procedure for the isolation of immunoglobulins from human serum using a novel type of thiophilic gel at low salt concentration. J. Immunol. Methods, 1998, 219: 109-118
    
    122. Boschetti E. Antibody separation by hydrophobic charge induction chromatography. Trends Biotech., 2002, 20: 333-337
    
    123. Schwartz W, Judd D, Wysocki M, Guerrier L, Birck-Wilson E, Boschetti E. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. J. Chromatogr: A, 2001, 908: 251-263
    
    124. Guerrier L, Girot P, Schwartz W, Boschetti E. New method for selective capture of antibodies under physiolgical conditions. Bioseparation, 2000, 9: 211-221
    
    125. Voute N, Guerrier L, Santambien P. Specific capture of antibodies using hydrophobic charge induction chromatography (MEP-HyperCel). The 20~(th) International Symposium on the Separation and Analysis of Proteins, Peptides, and Polynucleotides. Ljubljana, 2000
    
    126. Ghose S, Hubbard B, Cramer S M. Evaluation and comparison of alternatives to Protein A chromatography Mimetic and hydrophobic charge induction chromatographic stationary phases. J. Chromatogr. A, 2006, 1122: 144-152
    
    127. Roque A C A, Silva C S O, Taipa M A. Affinity-based methodologies and ligands for antibody purification: Advances and perspectives (review). J. Chromatogr. A, 2007, 1160: 44-55
    
    128. Boschetti E. The use of thiophilic chromatography for antibody purification: a review. J. Biochem. Biophys. Methods, 2001,49: 361-389
    
    129. Weatherly G T, Bouvier A, Lydiard D D, Chapline J, Henderson I, Schrimsher J L, Shepard S R. Initial purification of recombinant botulinum neurotoxin fragments for pharmaceutical production using hydrophobic charge induction chromatography. J. chromatogr. A, 2002, 952: 99-110
    
    130. Coulon D, Cabanne C, Fitton V, Noubhani A M, Saint-Christophe E, Santarelli X. Penicillin acylase purification with the aid of hydrophobic charge induction chromatography. J. Chromatogr. B, 2004, 808: 111-115
    
    131. O'Neill J J, Reichardt E P. Cellulose pellets. U.S. Pat., 2543928, 1951
    
    132.杨之礼,王庆瑞,邬国铭编.粘胶纤维工艺学(第二版).北京:纺织工业出版社.1988
    133.印寿根,李欣,徐欢驰,李朝兴,何炳林.珠状纤维素的粒径分布研究.离子交换与吸附.1997,13:127-132
    134.潘祖仁主编.高分子化学.北京:化学工业出版社.1986
    135.朱伯儒,史作清,何炳林.大孔球形纤维素离子交换剂的制备及其对蛋白质的吸附富集性能研究:大孔球形纤维素的制备研究.离子交换与吸附.1996,12:522-525
    136.Peska J,Stamberg J,Blace Z.Method for manufacturing of spherical cellulose particles.U.S.Pat.,4055510,1977
    137.雷引林.球形纤维素/钛白粉复合扩张床吸附剂的制备及其在蛋白质纯化中的应用[博士学位论文].浙江大学,杭州,2003
    138.离子交换树脂湿真密度测定方法.GB/T 8330-87.1988
    139.离子交换树脂含水量测定方法.GB/T 5757-86.1988
    140.Zhang L N,Zhou J P,Yang G,Chen J H,Preparative fractionation of polysaccharides by columes packed regenerated cellulose gels.J.Chromatogr.A,1998,816:131-136
    141.Kaewprasit C,Hequet E,Abidi N,Gourlot J P.Quality measurements-application of methylene blue adsorption to cotton fiber specific surface area measurement:part Ⅰ.methodology.J.Cotton Sci.,1998,2:164-173
    142.何炳林,黄文强编.离子交换与吸附树脂.上海:上海科技教育出版社.1992
    143.谭天恩,麦本熙,丁惠华.化工原理.北京:化学工业出版社.1984
    144.Levenspiel O.Chemical Reaction Engineering(3rd Edition).Wiley,New York,1999
    145.Richardson J F,Zaki W N.Sedimentation and fluidisation:part Ⅰ.Trans.Inst.Chem.Eng.,1954 32:35-53
    146.Thommes J,Bader A,Halfar M,Karau A,Kula M R.Isolation of monoclonal antibodies from cell containing hybridoma broth using a protein A coated adsorbent in expanded beds.J.Chromatogr.A,1996,752:111-122
    147.Davidson J F,Harrison D.(eds.).Fludization.Academic press,London,1971
    148.李欣,李朝兴,何炳林.磁性珠状纤维素的性能表征.离子交换与吸附.1997,13:496-502
    149.Pall corporation.Q & CM HyperZ~(TM) Ion Exchange Sorbents High Productivity Expanded Bed Adsorption Chromatography.New York,USA.http://www.pall.com
    150.傅仲华,吕年青.生物制药中的灌注层析技术.生物工程进展.1997,17:55-63
    151.缪志俊.纤维素/不锈钢粉复合扩张床介质的制备及应用[硕士学位论文].浙江大学,杭州,2005
    152.Johansson H J,Jagersten C,Shiloach J.Large scale recovery and purification of periplasmic recombinant protein from E.coli using expanded bed adsorption chromatography followed by a new ion exchange media.J.Biotechnol.,1996,48:9-14
    153.Anslow W K.Cellulose Derivatives useful as anion-exchange materials and their application.G.B.Pat.,869439,1962
    154.Raper A H,Cross G,Lockwood A R.Unoriented particulate DEAE-cellulose ion exchange material.U.S.Pat.,3102113,1963
    155.Weaver L E,Carta G.Protein adsorption on cation exchangers:comparison of macroporous and gel-composite media.Biotechnol.Prog.,1996,12:342-355
    156.Wright P R,Muzzio FJ,Glasser B J.Batch uptake of lysozyme:effect of solution viscosity and mass transfer on adsorption.Biotechnol.Prog.,1998,14:913-921
    157.Zhang S P,Sun Y.Ionic Strength Dependence of protein adsorption to dye-ligand adsorbents.AIChE J.,2002,48:178-186
    158.Chen W D,Dong X Y,Sun Y.Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent.J.Chromatogr.A,2002,962:29-40
    159.Geankopolis C J.Transport Processes and Unit Operations(2~(nd) edition).New York:Allyn and Bacon,1983
    160.Tyn M T,Guesk T W.Prediction of diffusion coefficients of proteins.Biotechnol.Bioeng.,1990,35:327-338
    161.Yun J X,Lin D Q,Yao S J.Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds.J.Chromatogr.A,2005,1095:16-26
    162.阳离子交换树脂交换容量测定方法.GB/T 8144-87.1988
    163.Griffith C M,Morris J,Robichaud M,Annen M J,McCormick A V,Flickinger M C.Fluidization characteristics of and protein adsorption on fluoride-modified porous zirconium oxide particles.J.Chromatogr.A,1997,776:179-195
    164.雷引林,林东强,姚善泾,朱自强.一种球形纤维素钛白粉扩张床吸附剂的研究.高分子学报.2004,1:40-44
    165.Horstmann B J,Chase H A.Modelling the affinity adsorption of immunoglobulin G to protein A immobilized to agarose matrices.Chem.Eng.Res.Des.,1989,67:243-254
    166.Xue B,Sun Y.Protein adsorption equilibria and kinetics to a poly(vinylalcohol)-based magnetic affinity support.J.Chromatogr.A,2001,921:109-119
    167.苏雪丽.蛋白质静电吸附平衡与动力学的研究[博士学位论文].天津大学,天津,2005
    168.Hansen P,Scoble J A,Hanson B,Hoogenraad N J.Isolation and purification of immunoglobulins from chicken eggs using thiophilic interaction chromatography.J.Immunol.Methods,1998,215:1-7
    169. Burton S C, Harding D R K. Bifunctional etherification of a bead cellulose for ligand attachment with allyl bromide and allyl glycidyl ether. J. Chromatogr. A, 1997, 775: 29-38
    
    170. Burton S C, Harding D R K. High-density ligand attachment to brominated allyl matrices and application to mixed mode chromatography of chymosin. J. Chromatogr. A, 1997, 775: 39~50
    
    171. Noel R J, O'Hare WT, Street G. Thiophilic nature of divinylsulphone cross-linked agarose. J, Chromatogr. A, 1996, 734: 241-246
    
    172. Scoble J A, Scopes R K. Assay for determining the number of reactive groups on gels used in affinity chromatography and its application to the optimisation of the epichlorohydrin and divinylsulfone activation reactions. J. Chromatogr. A, 1996, 752: 67-76
    
    173. Scoble J A, Scopes R K.. Ligand structure of the divinylsulfone-based T-gel J. Chromatogr. A, 1997,787:47-54
    
    174. Burton S C, Harding D R K. Preparation of chromatographic matrices by free radical addition ligand attachment to allyl groups. J. Chromatogr. A, 1998, 796: 273-282
    
    175. Coffinier Y, Vijayalakshmi M A. Mercaptoheterocyclic ligands grafted on a poly (ethylene vinyl alcohol) membrane for the purification of immunoglobulin G in a salt independent thiophilic chromatography. J. Chromatogr. B, 2004, 808: 51-56
    
    176. Brandt J, Svenson A, Carlsson J, Drevin H. Covalent coupling of unsaturated compounds to thiol agarose using y-radiation: a new method for preparation of adsorbents for affinity chromatography. J. Solid-Phase Biochem., 1977, 2: 105-109
    
    177. Caron M G, Srinivasan Y, Pitha J, Kociolek K, Leifkowitz R J. Affinity chromatography of the beta-adrenergic receptor. J. Biol. Chem., 1979, 254: 2923-2927
    
    178. Rounds M A, Regnier F E. Evaluation of a retention model for high-performance ion-exchange chromatography using two different displacing salts. J. Chromatogr. A, 1984, 283: 37-45.
    
    179. Stahlberg J, Jonsson B, Horvath C. Theory for electrostatic interaction chromatography of proteins. Anal. Chem., 1991,63: 1867-1874
    
    180. Melander W R, Corradini D, Horvath Cs. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. J. Chromatogr. A, 1984,317: 67-85
    
    181. Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria. Process Biochem., 1993,28:365-376
    
    182. Marlvern. "What is hydrodynamic radius?", www.marlvern.co.uk
    
    183. Hunter R J. Zeta potential in colloid science - principle and applications. San Diego: Academic Press Inc., 1981
    
    184. Lin D Q, Kula M R. The biomass/adsorbent electrostatic interactions in expanded bed - zeta potential Study (Internal Report ) Institut fur Enzymtechnologie. Heinrich-Heine Universitat Dusseldorf, 2001
    
    185. Tanford C, Buzzell J G, Rands D G. The reversible expansion of bovine serum albumin in acid solutions. J. Am. Chem. Soc., 1955,77: 6421-6428
    
    186. Martenson R E. The use of gel filtration to follow conformational changes in proteins: conformational flexibility of bovine myelin basic protein. 1978,253: 8887-8893
    
    187. Peters T J. Serum albumin. Adv. Prot. Chem., 1985, 37:161-245
    
    188. Sadler P J, Tucker A. pH-induced structural transitions of bovine serum albumin Histidine pK_a values and unfolding of the N-terminus during the N to F transition. Eur. J. Biochem., 1993, 212:811-817
    
    189. Johnson E M, Berk D A, Jain R K. Deen W M. Diffusion and partitioning of proteins in charged agarose gels. Biophys. J., 1995, 68:1561-1568
    190.林元藻,黄清松,李春梅,邹燕.抗加特纳杆菌卵黄免疫球蛋白(IgY)的研究.广东药学院学报.2004,20:517~519
    
    191. Regnier F E. The role of protein structure in chromatographic behavior. Science, 1987, 238: 319-323
    
    192. Mahn A, Lienqueo M E, Asenjo J A. Effect of surface hydrophobicity distribution on retention of ribonucleases in hydrophobic interaction chromatography. J. Chromagr. A, 2004, 1043: 47-55
    
    193. Hofmeister F. Zur lehre von der wirkung der salze. Arch. Expt. Pathol. Pharmakol., 1888, 24: 247-260
    
    194. Arve B H, Liapis A I. Modeling and analysis of biospecific adsorption in a finite bath. AIChE J., 1987,33:179-193
    
    195. Wright P R, Muzzio F J, Glasser B J. Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption. Biotechnol. Prog., 1998,14: 913-921
    
    196. Yoshida H, Yoshikawa M, Kataoka T. Parallel transport of BSA by surface and pore diffusion in strongly basic chitosan. AIChE J., 1994,40:2034-2044
    
    197. Yoshida H, Maekawa M, Nango M. Parallel transport by surface and pore diffusion in a porous membrane. Chem. Eng. Sci., 1991,46: 429-438
    
    198. Chang C, Lenhoff A M. Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. J. Chromatogr. A, 1998, 827:281-293
    
    199. Doherty P, Benedek G B. The effect of electric charge on the diffusion of macromolecules. Chem. Phys., 1975,61: 5426-5434
    
    200. Mattisson C, Roger P, Jonsson B, Axelsson A, Zacchi G. Diffusion of lysozyme in gels and liquids:A general approach for the determination of diffusion coefficients using holographic laser interometry.J.Chromatogr.B,2000,743:151-167
    201.Young M E,Carroad P A,Bell R L.Estimation of diffusion coefficients of proteins.Biotechnol.Bioeng.,1980,22:947-955
    202.Philips T M,in:Hage D S.(Ed.) Handbook of Affinity Chromatography.CRC Press,USA,2005
    203.Huse K,Bohme H J,Scholz G H.Purification of antibodies by affinity chromatography.J.Biochem.Biophys.Methods,2002,51:217-231
    204.Hober S,Nord K,Linhult M.Protein A chromatography for antibody purification.J.Chromatogr.B,2007,848:40-47
    205.Martin W G,Vandegaer J E,Cook W H.Fractionation of livetin and the molecular weights of the alpha-and beta-components.Can.J.Biochem.Physiol.,1957,35:241-250
    206.Concetti A,Ripani E,Barboni L.Immunorecognition of ring skeietion of taxanes by chicken egg yolk antibodies.Biol.Chem.Hoppe-seyler,1994,375:419-423
    207.钟青萍,陈红兵,熊勇华,杨荣鉴,杨宁生.一种新型的食品添加剂-鸡卵黄免疫球蛋白.中国食品添加剂.1997,3:50-52
    208.FU C Y,Huang H,Wang X M,Liu Y G,Wang Z G,Cui S J,Gao H L,Li Z,Li J P,Kong X G.Preparation and evaluation of anti-SARS coronavirus IgY from yolks of immunized SPF chickens.J.Virol.Methods,2006,133:112-115
    209.李建武,萧能庚,余瑞元,袁明秀,陈丽蓉,陈雅惠,陈来同.生物化学实验原理和方法(第一版).北京:北京大学出版社.1994
    210.Hatta H,Kim M,Yamamoto T.A Novel Isolation Method for Hen Egg Yolk Antibody,"IgY".Agric.Biol.Chem.,1990,54:2531-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700