用户名: 密码: 验证码:
多沙唑嗪光学异构体降低动物膀胱排尿压的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
良性前列腺增生(benign prostatic hyperplasia,BPH)是老年男性常见病,常导致下尿路症状(lower urinary tract symptoms,LUTS),严重影响患者的生活质量。长效α1受体阻断药消旋多沙唑嗪(racemic-doxazosin, rac-DOX)可阻断下尿路α1受体,降低患者排尿阻力,缓解BPH/LUTS症状,是临床治疗BPH/LUTS的常用药物。但是,rac-DOX常引起头晕、头痛和低血压等不良反应。因此,应用α1受体阻断药治疗BPH/LUTS时,应考虑药物的“尿路选择性”。rac-DOX由光学异构体S-多沙唑嗪(S-doxazosin, S-DOX)和R-多沙唑嗪(R-doxazosin, R-DOX)组成。药理学研究结果表明,rac-DOX、S-DOX和R-DOX阻断人前列腺组织中α1受体的pA2值相同。本室研究发现,S-DOX降低动物血压和阻断血管α?受体的作用明显弱于rac-DOX和R-DOX,但S-DOX降低膀胱排尿压的作用与rac-DOX相同。为了分析药物降低动物膀胱排尿压的作用机制,我们采用兔离体膀胱、前列腺及尿道组织,观察了多沙唑嗪及其光学异构体的作用,同时利用老年小鼠观察多沙唑嗪及其光学异构体对前列腺细胞增殖与凋亡的影响。
     第一部分多沙唑嗪光学异构体对兔离体膀胱逼尿肌的作用和作用机制
     本研究观察了S-DOX、R-DOX和rac-DOX对兔离体膀胱逼尿肌收缩反应的影响。利用兔离体背侧和腹侧膀胱逼尿肌标本,分析多沙唑嗪及其光学异构体对药物或神经刺激诱发兔离体膀胱逼尿肌收缩反应的影响并分析其作用机制。
     1背侧、腹侧膀胱逼尿肌对卡巴胆碱和苯肾上腺素诱发收缩反应的比较卡巴胆碱(0.01~30μmol?L-1)使背侧和腹侧膀胱逼尿肌产生浓度依赖性收缩反应,卡巴胆碱的浓度-反应曲线在两种标本上无显著性差异(P>0.05);与卡巴胆碱不同,苯肾上腺素(0.1~300μmol?L-1)仅使背侧膀胱逼尿肌产生浓度依赖性收缩反应,对腹侧膀胱逼尿肌无收缩作用。
     2 S-DOX、R-DOX及rac-DOX对苯肾上腺素诱发兔背侧膀胱逼尿肌收缩反应的影响
     苯肾上腺素使背侧膀胱逼尿肌产生浓度依赖性收缩反应,溶剂对苯肾上腺素诱发的兔背侧膀胱逼尿肌收缩反应无影响(P>0.05)。S-DOX、R-DOX和rac-DOX拮抗苯肾上腺素诱发兔背侧膀胱逼尿肌收缩反应的pKB值分别为7.44±0.19、7.39±0.14和7.38±0.30,三者之间无显著性差异(P>0.05)。
     3 S-DOX、R-DOX及rac-DOX对电场刺激诱发兔背侧、腹侧膀胱逼尿肌收缩反应的影响
     电场刺激诱发兔背侧和腹侧膀胱逼尿肌产生稳定的收缩反应,该收缩反应被0.1μmol?L-1的河豚毒素(TTX)完全阻断。S-DOX、R-DOX和rac-DOX均显著抑制电场刺激诱发的背侧膀胱逼尿肌收缩反应(P<0.01),且三者的抑制作用强度无显著性差异(P>0.05);但是,它们对电场刺激诱发的兔腹侧膀胱逼尿肌收缩反应无影响(P>0.05)。
     上述结果表明,S-DOX、R-DOX和rac-DOX通过阻断膀胱逼尿肌α1受体显著抑制电场刺激诱发的兔背侧膀胱逼尿肌收缩反应,三者的抑制作用强度无显著性差异。
     第二部分多沙唑嗪光学异构体对兔离体前列腺平滑肌收缩反应的影响
     本研究观察了S-DOX、R-DOX和rac-DOX对兔离体前列腺收缩反应的影响。利用兔离体前列腺标本,分析多沙唑嗪及其光学异构体对药物或神经刺激诱发兔离体前列腺收缩反应的影响并分析其作用机制。
     1 S-DOX、R-DOX及rac-DOX对苯肾上腺素诱发兔离体前列腺收缩反应的影响
     苯肾上腺素使前列腺产生浓度依赖性收缩反应,溶剂对苯肾上腺素诱发的兔离体前列腺收缩反应无影响(P>0.05)。0.01μmol·L~(-1)和0.03μmol·L~(-1)的S-DOX、R-DOX或rac-DOX均可使苯肾上腺素量效曲线平行右移,Emax值不变。Schild plot分析结果表明,S-DOX、R-DOX或rac-DOX竞争性拮抗苯肾上腺素诱发的兔离体前列腺收缩反应,其pA2值分别为8.22±0.03、8.25±0.03和8.20±0.04,三者间无显著性差异(P>0.05)。S-DOX、R-DOX和rac-DOX拮抗苯肾上腺素诱发兔前列腺收缩反应的作用强度相同。
     2 S-DOX、R-DOX及rac-DOX对电场刺激诱发兔离体前列腺收缩反应的影响
     电场刺激诱发兔离体前列腺产生稳定的收缩反应,该收缩反应被0.1μmol·L~(-1)的TTX完全阻断。0.01μmol·L~(-1)或0.1μmol·L~(-1)的S-DOX、R-DOX和rac-DOX显著抑制电场刺激诱发的兔前列腺收缩反应(P<0.01),三者对电场刺激诱发兔离体前列腺收缩反应的抑制强度无显著性差异(P>0.05)。
     3 Atr、Phent以及PPADS对电场刺激诱发兔离体前列腺收缩反应的影响
     1μmol·L~(-1)Atr单独应用显著抑制电场刺激诱发的前列腺收缩反应,抑制百分率为62.6±11.7%(P<0.01),联合应用10μmol·L~(-1)的Phent后,二者完全抑制电场刺激诱发的前列腺收缩反应。单独给予10μmol·L~(-1)Phent可显著抑制电场刺激诱发的前列腺收缩反应,抑制百分率为96.7±9.3%(P<0.01),继续给予1μmol·L~(-1)Atr后,二者完全抑制电场刺激诱发的前列腺收缩反应。10μmol·L~(-1)PPADS对电场刺激诱发的前列腺收缩反应无明显影响(P>0.05)。TTX(0.1μmol·L~(-1))完全阻断该条件下电场刺激诱发的收缩反应。
     上述结果表明,多沙唑嗪及其光学异构体显著抑制电场刺激诱发的兔离体前列腺收缩反应,其作用机制与药物阻断突出后α1受体有关,三者对兔离体前列腺α1受体的亲和力相同。
     第三部分多沙唑嗪光学异构体对兔离体尿道环肌收缩功能的影响
     制备兔离体膀胱颈和尿道环肌标本,记录药物或神经刺激诱发的收缩反应。观察多沙唑嗪及其光学异构体对苯肾上腺素诱发兔离体膀胱颈和尿道环肌收缩反应的影响;分析药物对电场刺激诱发兔离体尿道环肌收缩反应的作用及其作用机制。
     1 S-DOX、R-DOX及rac-DOX对苯肾上腺素诱发兔膀胱颈和尿道环肌收缩反应的影响
     苯肾上腺素使膀胱颈和各部位尿道环肌产生浓度依赖性收缩反应,溶剂对苯肾上腺素诱发的兔膀胱颈和尿道环肌收缩反应无影响(P>0.05)。0.03μmol·L~(-1)的S-DOX、R-DOX或rac-DOX拮抗苯肾上腺素诱发的兔离体膀胱颈收缩反应的pKB值分别为7.88±0.23、7.92±0.11和7.87±0.10,三者之间无显著性差异(P>0.05)。同样,在上段尿道、中段尿道和下段尿道,S-DOX、R-DOX和rac-DOX拮抗苯肾上腺素诱发各段尿道环肌收缩反应的pKB值亦无显著性差异(P>0.05)。
     2 rac-DOX对电场刺激诱发兔膀胱颈和尿道环肌收缩反应的影响
     溶剂对各标本的频率-反应曲线无明显影响(P>0.05)。不同浓度的rac-DOX(0.01、0.1和1μmol·L~(-1))对电场刺激诱发的兔离体膀胱颈和各段尿道环肌收缩反应无影响(P>0.05)。TTX(0.1μmol·L~(-1))完全阻断该条件下电场刺激诱发的收缩反应。
     3 Pra、Atr及Ind对电场刺激诱发兔膀胱颈和尿道环肌收缩反应的影响
     溶剂对各标本的频率-反应曲线无明显影响(P>0.05),TTX(0.1μmol·L~(-1))完全阻断电场刺激诱发的收缩反应。单独给予1μmol·L~(-1)的Atr显著抑制电场刺激诱发的兔膀胱颈收缩反应(P<0.05)。1μmol·L~(-1)的Pra对电场刺激诱发的膀胱颈收缩反应无显著影响;联合应用1μmol·L~(-1)的Atr后,抑制作用与单独给予Atr无显著性差异;与Pra和Atr联合用药组比,合用1μmol·L~(-1)的Ind进一步抑制了电场刺激诱发的兔离体膀胱颈收缩反应(P<0.01)。
     在上段、中段以及下段尿道,1μmol·L~(-1)的Pra、Atr和Ind单独及联合应用均对电场刺激诱发的收缩反应无显著影响(P>0.05)。
     4 Atr、Phent、Tub、尼古丁、苏拉明及TTX对电场刺激诱发兔尿道环肌收缩反应的影响
     电场刺激诱发兔尿道环肌产生稳定的收缩反应。Atr(0.1~3μmol·L~(-1))和Phent(1~30μmol·L~(-1))对电场刺激诱发的兔尿道环肌收缩反应无影响。0.01μmol·L~(-1)和0.03μmol·L~(-1)的Tub显著抑制电场刺激诱发的收缩反应,抑制百分率分别为11.4±6.2%(P<0.05)和52.1±14.8%(P<0.01)。10μmol·L~(-1)的尼古丁显著抑制电场刺激诱发的收缩反应,抑制百分率为53.7±14.9%(P<0.01)。10、30、和100μmol·L~(-1)的苏拉明显著抑制电场刺激诱发的收缩反应,抑制百分率分别为22.5±3.5%、33.8±5.3%和54.2±5.9%。此外,0.1μmol·L~(-1)的Tub、30μmol·L~(-1)的尼古丁以及0.1μmol·L~(-1)的TTX尚能完全阻断电场刺激诱发的收缩反应。
     5 CCh、Mox、Clo、Ado、ATP、UTP、5-HT和His对兔尿道环肌的作用
     Mox(10μmol·L~(-1))和Clo(10μmol·L~(-1))可诱发尿道环肌产生较小收缩反应,标本最大收缩反应分别为0.20±0.12g和0.11±0.05g。CCh(30μmol·L~(-1))、Ado(30μmol·L~(-1))、ATP(10μmol·L~(-1))、UTP(30μmol·L~(-1))、5-HT(3μmol·L~(-1))和His(30μmol·L~(-1))对尿道标本均无收缩作用。
     上述结果表明,S-DOX、R-DOX和rac-DOX通过阻断α1受体拮抗苯肾上腺素诱发的兔膀胱颈和尿道环肌收缩反应,三者阻断α1受体的作用相同。电场刺激诱发的兔尿道环肌收缩反应具有骨骼肌运动神经兴奋的特性,这一收缩成分同时易被尼古丁或苏拉明阻断。
     第四部分多沙唑嗪光学异构体对老年小鼠前列腺增生的影响
     实验采用老年小鼠长期(12周)灌胃给药法,观察了S-DOX、R-DOX和rac-DOX对老年小鼠前列腺体积、湿重、细胞增殖周期与凋亡百分率的影响。
     1 S-DOX、R-DOX和rac-DOX对前列腺体积和湿重的影响与青年对照组相比,老年组小鼠前列腺体积指数无显著性差异,而S-DOX 6.0mg·kg-1组、R-DOX 6.0mg·kg-1组和R-DOX 0.6mg·kg-1组以及rac-DOX 6.0mg·kg-1组小鼠前列腺体指数显著减小(P<0.05)。
     2 S-DOX、R-DOX和rac-DOX对小鼠前叶前列腺细胞增殖周期及凋亡的影响
     与青年对照组相比,老年组小鼠前叶前列腺G0/G1期细胞周期百分率显著降低(P<0.01), G2/M期细胞周期百分率和增殖指数均显著增高(P<0.01);老年组小鼠前列腺细胞细胞凋亡率无明显改变。与老年组相比,S-DOX、R-DOX和rac-DOX老年小鼠前列腺细胞的增值指数和细胞周期无显著影响。
     上述结果表明,长期(12周)灌胃给予S-DOX、R-DOX和rac-DOX,可能轻度降低老年小鼠前列腺细胞体积指数。
     结论
     S-DOX对心血管系统的抑制作用明显弱于R-DOX和rac-DOX,但是其降低膀胱排尿压的作用与同剂量rac-DOX相同。本研究证明,S-DOX降低动物膀胱排尿压的作用与其抑制去甲肾上腺素能神经兴奋所致的膀胱逼尿肌和前列腺平滑肌收缩反应有关;其作用机制是阻断了上述平滑肌组织的α1受体。S-DOX的上述作用及作用强度与R-DOX相同,说明兔膀胱逼尿肌和前列腺平滑肌细胞膜上的α1受体对多沙唑嗪光学异构体的亲和力相同。
     S-DOX、R-DOX及rac-DOX可阻断兔尿道环肌α1受体,三者的作用强度相同;但是α1受体阻断药rac-DOX及哌唑嗪不影响电场刺激诱发的兔尿道环肌收缩反应。电场刺激诱发的兔尿道环肌收缩反应具有骨骼肌运动神经兴奋的特性,这一收缩成分同时易被尼古丁或苏拉明阻断。
Benign prostatic hyperplasia (BPH) often leads to lower urinary tract symptoms (LUTS). Patients with BPH/LUTS are suffering serious troubles on the quality of life. racemic-Doxazosin (rac-DOX),a long acting selectiveα1-adrenoceptor antagonist, is the current medication for the clinical treatment of BPH/LUTS. Several clinical studies have demonstrated that rac-DOX produces a decrease in urethral resistance and improve in lower urinary tract symptoms by blockingα1-adrenoceptor. However, rac-DOX is limited in the clinical application for BPH/LUTS due to its common adverse effects of dizziness, headache, and orthostatic hypotension. Therefore, the urinary tract selectivity should be necessarily considered whenα1-adrenoceptor antagonists are used for the BPH/LUTS patients.
     rac-DOX is a mixture of S-doxazosin (S-DOX) and R-doxazosin (R-DOX). In a pharmacological study using the human isolated prostate tissue, S-DOX, R-DOX and rac-DOX all competitively antagonized the phenylephrine-induced contractile responses without significant differences in the pA2 values among S-DOX, R-DOX and rac-DOX. Recently, a study in our laboratory showed that the effects of S-DOX on animal blood pressure and onα1-adrenoceptors of the isolated rabbit blood vessels were significantly weaker than rac-DOX and R-DOX. However,the inhibitory effect by S-DOX on vesical micturition pressure was same to rac-DOX. To investigate the mechanisms of decreasing vesical micturition pressure by doxazosin and its enantiomers in animals, we observed the effects of S-DOX, R-DOX and rac-DOX on the contractile responses to drugs and electric field stimulation in the isolated rabbit urinary bladder detrusor, prostate and urethral strips, and the effects of S-DOX, R-DOX and rac-DOX on the prostate cell proliferation and apoptosis in the aged mouse.
     PartⅠEffects of doxazosin and its enantiomers on the contractile responses in the isolated rabbit urinary detrusor strips
     Contractile responses to drugs or electric field stimulation in the dorsal and ventral detrusor strips of the isolated rabbit urinary bladder were recorded to study the effects of S-DOX, R-DOX and rac-DOX on the contractile responses.
     1 Contractile responses to carbachol and phenylephrine in the dorsal and ventral detrusor strips of the isolated rabbit urinary bladder
     Carbachol produced contractile responses concentration-dependently in the dorsal and ventral detrusor strips, and the concentration-response curves for carbachol in the two kinds of strips were not significantly different from each other. Phenylephrine induced contractile responses in a concentration-dependent manner in the dorsal detrusor strips but not in the ventral detrusor strips.
     2 Effects of doxazosin and its enantiomers on the contractile responses to phenylephrine in the dorsal detrusor strips of the isolated rabbit urinary bladder
     Phenylephrine produced contractile responses concentration-dependently in the dorsal detrusor strips, and solvent had no effect on the contractile responses. The pKB values of S-DOX, R-DOX and rac-DOX at 1μmol·L~(-1) against phenylephrine in the dorsal detrusor strips of the isolated rabbit urinary bladder were 7.44±0.19, 7.39±0.14 and 7.38±0.30, respectively, and the pKB values of doxazosin and its enantiomers were not significantly different from each other (P>0.05).
     3 Effects of doxazosin and its enantiomers on the contractile responses to electric field stimulation in the dorsal and ventral detrusor strips of the isolated rabbit urinary bladder
     Electric field stimulation produced a steady contractile responses those were completely inhibited by tetrodotoxin (TTX) at 0.1μmol·L~(-1). S-DOX, R-DOX and rac-DOX significantly inhibited the contractile responses to electric field stimulation in the dorsal detrusor strips of the isolated rabbit urinary bladder (P<0.05), and their inhibitory effects were not significantly different from each other (P>0.05). However, S-DOX, R-DOX and rac-DOX did not affect the responses to electric field stimulation in the ventral detrusor strips.
     These results indicate that S-DOX, R-DOX and rac-DOX significantly inhibit the contractile responses to electric field stimulation in the dorsal detrusor strips of the isolated rabbit urinary bladder via postsynapticα?1-adrenoceptors, and S-DOX inhibits the responses to the same extent as R-DOX and rac-DOX.
     PartⅡEffects of doxazosin and its enantiomers on contractile responses in the isolated rabbit prostate strips
     Contractile responses to drugs or electric field stimulation were recorded to study the effects of S-DOX, R-DOX and rac-DOX on the contractile responses in the isolated rabbit prostate strips.
     1 Effects of doxazosin and its enantiomers on the contractile responses to phenylephrine in the isolated rabbit prostate strips
     Phenylephrine produced contractile responses concentration-dependently in the prostate strips, and solvent did not affect the contractile responses. S-DOX, R-DOX and rac-DOX at 0.01μmol·L~(-1) and 0.03μmol·L~(-1) produced parallel shift of the cumulative concentration-response curves (CCRCs) for phenylephrine to the right in the isolated rabbit prostate, and the values of Emax of CCRCs for phenylephrine were not changed significantly by S-DOX, R-DOX and rac-DOX (P>0.05). The Schild plot analysis indicated that S-DOX, R-DOX and rac-DOX competitively antagonized the phenylephrine-induced contractile responses in the isolated rabbit prostate strips. The pA2 values of S-DOX, R-DOX and rac-DOX were 8.22±0.03, 8.25±0.03 and 8.20±0.04, respectively, and the pA2 values of three agents were not significantly different from each other (P>0.05).
     2 Effects of doxazosin and its enantiomers on the contractile responses to electric field stimulation in the isolated rabbit prostate strips
     Electric field stimulation produced a steady contractile responses, and the responses were completely inhibited by TTX at 0.1μmol·L~(-1). S-DOX, R-DOX and rac-DOX significantly inhibited the contractile responses to electric field stimulation in the isolated rabbit prostate strips (P<0.01), and S-DOX inhibited the responses to the same extent as R-DOX and rac-DOX.
     3 Effects of atropine, phentolamine and PPADS on the contractile responses to electric field stimulation in the isolated rabbit prostate strips
     Atropine (1μmol·L~(-1)) significantly reduced the contractile responses to electric field stimulation by 62.6±11.7%, and co-application with 10μmol·L~(-1) phetolamine abolished the contractile responses to electric field stimulation. Phetolamine (10μmol·L~(-1)) alone markedly reduced the contractile responses to electric field stimulation by 96.7±9.3%, and co-application with 1μmol·L~(-1) atropine abolished the contractile responses to electric field stimulation. PPADS (10μmol·L~(-1)) failed to affect the contraction induced by electric field stimulation in the isolated rabbit prostate strips (P>0.05). TTX (0.1μmol·L~(-1)) abolished the contractile responses.
     These results indicate that doxazosin and its enantiomers significantly inhibit the contractile responses to electric field stimulation via postsynapticα1-adrenoceptors in the isolated rabbit prostate strips. The pA2 values of doxazosin and its enantiomers against phenylephrine are not significantly different from each other in the isolated rabbit prostate strips.
     PartⅢEffects of doxazosin and its enantiomers on the contractile responses in the isolated rabbit urethral strips
     In the urinary bladder neck strip and proximal, medial and distal urethral strips of the rabbit, the contractile responses to drugs and electric field stimulation were recorded. The effects of S-DOX, R-DOX and rac-DOX on the contractile responses to phenylephrine in the urinary bladdr neck strip and proximal, medial and distal urethral strips were observed. The pharmacological prolife of contractile responses to electric field stimulation in the urethral strips were investigated.
     1 Effects of doxazosin and its enantiomers on the contractile responses to phenylephrine in the isolated rabbit urinary bladder neck strip and urethral strips
     Phenylephrine produced contractile responses concentration-dependently in the isolated rabbit urinary bladder neck strip and the urethral strips, and solvent did not affect the contractile responses (P>0.05). The pKB values of S-DOX, R-DOX and rac-DOX against phenylephrine in the bladder neck were 7.88±0.23, 7.92±0.11 and 7.87±0.10, respectively, and the pKB values of the three agents were not significantly different from each other (P>0.05). The pKB values of doxazosin and its enantiomers against phenylephrine were not significantly different in the proximal, medial and distal urethral strips.
     2 Effects of rac-DOX on the contractile responses to electric field stimulation in the isolated rabbit urinary bladder neck strip and proximal, medial and distal urethral strips
     Solvent did not affect the frequency-response curves for electric field stimulation in the isolated rabbit urinary bladder neck strip and urethral strips. rac-DOX (0.01-1μmol·L~(-1)) was ineffective against the contractions induced by electric field stimulation in the isolated urinary bladder neck strip and proximal, medial and distal urethral strips, even though TTX at 0.1μmol·L~(-1) completely inhibited the responses.
     3 Effects of prazosin, atropine and indomethacin on the contractile responses to electric field stimulation in the isolated rabbit urinary bladder neck strip and proximal, medial and distal urethral strips
     Solvent did not affect the frequency-response curves for electric field stimulation in the isolated rabbit urinary bladder neck strip and urethral strips. Prazosin (1μmol·L~(-1)) was ineffective against the contractile responses to electric field stimulation (P>0.05), while atropine (1μmol·L~(-1)) significantly reduced the contractions (P<0.01). Co-application of prazosin and atropine caused an inhibition to the same extent as atropine alone (P>0.05). A treatment with the combination of prazosin, atropine and indomethacin decreased the contractile responses more potently than a treatment with a combination of prazosin and atropine (P<0.01). In the proximal, medial and distal urethral strips of the rabbit, prazosin, atropine or indomethacin did not affect the contractile responses to electric field stimulation, even though TTX at 0.1μmol·L~(-1) abolished the responses.
     4 Effects of atropine, phentolamine, tubocurarine, nicotine, suramin and tetrodotoxin on the contractile responses to electric field stimulation in the isolated rabbit urethral strips
     Electric field stimulation produced a steady contractile response in the isolated rabbit urethral strips. Atropine (0.1-3μmol·L~(-1)) or phentolamine (1-30μmol·L~(-1)) did not affect the contraction induced by electric field stimulation in the isolated rabbit urethral strips. Tubocurarine significantly inhibited the contraction at 0.01μmol·L~(-1) and 0.03μmol·L~(-1) by 11.4±6.2% and 52.1±14.8%, respectively. Nicotine at 10μmol·L~(-1) significantly inhibited the contraction by 53.7±14.9%. Suramin at 10, 30 and 100μmol·L~(-1) significantly inhibited the contraction by 22.5±3.5%, 33.8±5.3% and 54.2±5.9%, respectively.
     Tubocurarine (0.1μmol·L~(-1)), Nicotine (30μmol·L~(-1)) and TTX (0.1μmol·L~(-1)) abolished the contractile responses to electric field stimulation in the isolated rabbit urethral strips. 5 Responses of the isolated rabbit urethral strips to carbachol, moxonidine, clonidine, adenosine, ATP, UTP, 5-HT and histamine
     Moxonidine (10μmol·L~(-1)) and clonidine (10μmol·L~(-1)) produced small contractions in the isolated rabbit urethral strips, and the contractile force was 0.20±0.12g and 0.11±0.05g, respectively. Carbachol (30μmol·L-1), adenosine (30μmol·L~(-1)), ATP (10μmol·L~(-1)), UTP (30μmol·L~(-1)), 5-HT (3μmol·L~(-1)) and histamine (30μmol·L~(-1)) could not produce any contractile responses in the urethral strips.
     These results indicate that doxazosin and its enantiomers antagonize the phenylephrine-induced contractile responses in the isolated rabbit urinary bladder neck strips and proximal, medial and distal urethral strips via postsynapticα1-adrenoceptors, and the pKB values of doxazosin and its enantiomers are not significantly different from each other.
     Neurogenic contractile responses to electric field stimulation are motor neuron-evoked contractions with characteristics of highly sensitive to nicotine and suramine, and the neurogenic contractions are not affected by rac-DOX and prazosin.
     PartⅣEffects of doxazosin and its enantiomers on the volume and cell proliferation of the prostate in aged mouse
     The male mouse at 13 months of age was used to study the effects of long-term (12 weeks) intragastrical administration of doxazosin and its enantiomers on the volume and wet weight of the prostate, and the effects on the cell proliferation and apoptosis of the anterior lobe prostatic cells in aged mouse.
     1 Effects of doxazosin and its enantiomers on the volume and wet weight of the prostate in aged mouse
     In comparison with young mouse, the volume index of the prostate in aged mouse did not change significantly (P>0.05), but the volume index of the prostate in aged mouse treated with S-DOX (6.0mg·kg-1), R-DOX (6.0mg·kg-1), R-DOX (0.6mg·kg-1) or rac-DOX (6.0mg·kg-1) was significantly decreased (P<0.05).
     2 Effects of doxazosin and its enantiomers on the cell cycle, proliferation and apoptosis of the anterior lobe cells of the prostate in aged mouse
     In comparison with young mouse, the total G0/G1-phase of the cells of the anterior lobe of the prostate were significantly decreased (P<0.01), and the total G2/M-phase cells of the anterior lobe of the prostate and the proliferation index of the prostatic cells were significantly increased in aged mouse (P<0.01).
     In comparison with aged mouse, the proliferation index and cell cycle distribution of the anterior prostatic lobe in aged mouse treated by S-DOX, R-DOX and rac-DOX did not change significantly (P>0.05).
     These results indicate that doxazosin and its enantiomers slightly decrease the volume index of the prostate in aged mouse by long-term intragastrical administration.
     Conclusion
     The inhibitory effects by S-DOX on cardiovascular system are significantly weaker than those by rac-DOX and R-DOX, while S-DOX inhibits the vesical micturition pressure to the same extent as rac-DOX. Results of the present study suggest that a decrease in vesical micturition pressure induced by S-DOX is related to the reduction in contractile responses to electric field stimulation via its blocking action on the postsynapticα1-adrenoceptors in the urinary bladder detrusor smooth muscle and prostate smooth muscle, and S-DOX has the same affinity forα1-adrenoceptors as R-DOX in the isolated rabbit urinary bladder detrusor smooth muscle and prostate smooth muscle.
     S-DOX, R-DOX and rac-DOX inhibit theα1-adrenoceptor activity to the same extent in the isolated rabbit urethral strips. However,α1-adrenoceptor antagonists of rac-DOX and prazosin are not able to affect the neurogenic contractions induced by electric field stimulation in the urethral strips. Neurogenic contractile responses to electric field stimulation in the isolated rabbit urethral strips are motor neuron-evoked contractions with characteristics of highly sensitive to nicotine and suramine.
引文
1 Fawzy A, Hendry A, Cook E, et al. Long-term (4 year) efficacy and tolerability of doxazosin for the treatment of concurrent benign prostatic hyperplasia and hypertension. Int J Urol, 1999, 6(7):346~354
    2 Chung BH, Hong SJ. Long-term follow-up study to evaluate the efficacy and safety of the doxazosin gastrointestinal therapeutic system in patients with benign prostatic hyperplasia with or without concomitant hypertension. BJU Int, 2006, 97(1):90~95
    3 Owens PK, Fell AF, Coleman MW, et al. Chiral recognition in liquid chromatography utilizing chargeable cyclodextrins for resolution of doxazosin enantiomers. Chirality, 1997, 9(2):184~190
    4 Niu CQ, Ren LM. Chiral separation and preparation of three new antagonists of α1-adrenoceptors by chiral mobile phase HPLC. Acta Pharmac Sin(药学学报), 2002, 37(6):450~453
    5 Ma SP, Ren LM, Zhao D, et al. Chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats. Acta Pharmac Sin, 2006, 27(11):1423~1430
    6 Tian HL, Ren LM, He DW, et al. Effects of doxazosin enantiomers on blood pressure and urinary bladder function in anesthetized rats. Chin Pharmacol Bull(中国药理学通报), 2007, 23(2):240~246
    7 Tian HL, Ren LM. Effects of doxazosin enantiomers by different routes of administration on urinary bladder function in guinea pigs. Chin J Pharmacol Toxical(中国药理学与毒理学杂志), 2007, 21(2):118~123
    8 Chou EC, Capello SA, Levin RM, et al. Excitatory α1-adrenergic receptors predominated over inhibitory β-receptors in rabbit dorsal detrusor. J Urol, 2003, 170(6 Pt 1):2503~2507
    9 Capello SA, Chou EC, Longhurst PA. Regional differences in responses of rabbit detrusor to electrical and adrenergic stimulation: influence of outlet obstruction. BJU Int, 2005, 95(1):157~162
    10 Argyle SA, McGrath JC. An α1A/ α1L-adrenoceptor mediates contraction of canine subcutaneous resistance arteries. J Pharmacol Exp Ther, 2000, 295(2):627~633
    11 Wang M, Zhao D, Zhao QH, et al. Effects of adenosine triphosphate on motility of isolated gastric smooth muscle in rats. Chin Pharmacol Bull(中国药理学通报), 2005, 21(3):351~355
    12 Shi CX, Ren LM, Li JX. Effects of tetrodotoxin on biphasic vasoconstrictive responses to electric stimulation in rabbit saphenous artery. Chin Pharmacol Bul(l中国药理学通报), 2005, 21(9):1123~1128
    13 Kirby RS, Andersen M, Gratzke P, et al. A combined analysis of double- blind trial of the efficacy and tolerability of doxazosin-gastrointestinal therapeutic system, doxazosin, standard and placebo in patients with BPH. BJU Int, 2001, 87 (3): 192~200
    14 Levin RM, Wein AJ. Distribution and function of adrenergic receptors in the urinary bladder of the rabbit. Mol Pharmacol, 1979, 16(2): 441~448
    15 Andersson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev, 1993, 45(3):253~308
    1 Wei JT, Calhoun E, Jacobsen SJ. Urologic diseases in america project: benign prostatic hyperplasia. J Urol, 2005, 173(4):1256~1261
    2 Bujdak P, Bardos A, Brutenic J, et al. Current issues of BPH treatment. Bratisl Lek Listy, 2003, 104(4~5):161
    3 Sarma AV, Jacobson DJ, McGree ME, et al. A population based study of incidence and treatment of benign prostatic hyperplasia among residents of Olmsted County Minnesota: 1987 to 1997. J Urol, 2005, 173(6): 2048~2053
    4 Sung JC, Curtis LH, Schulman KA, et al. Geographic variations in the use of medical and surgical therapies for benign prostatic hyperplasia. J Urol, 2006, 175(3 pt 1):1023~1027
    5 Chapple CR. Selective α1-adrenoceptor antagonists in benign prostatic hyperplasia: rationale and clinical experience. Eur Urol, 1996,29(2):129~144
    6 AUA Practice Guidelines Committee. AUA guideline on management of benign prostatic hyperplasia. Chapter 1: Diagnosis and treatment recommendations. J Urol, 2003, 1 70(2 pt 1):530~547
    7 Caine M. The present role of alpha-adrenergic blockers in the treatment of benign prostatic hypertrophy. J Urol, 1986, 136(1):1~4
    8 Shapiro E, Hartanto V, Lepor H. The response to alpha blockade in benign prostatic hyperplasia is related to the percent area density of prostate smooth muscle. Prostate, 1992, 21(4):297~307
    9 MacDonald R, Wilt TJ, Howe RW. Doxazosin for treating lower tract symptoms compatible with benign prostatic obstruction:a systematic review of efficacy and adverse effects. BJU Int, 2004, 94(9):1263~1270
    10 Owens PK, Fell AF, Coleman MW, et al. Chiral recognition in liquid chromatography utilizing chargeable cyclodextrins for resolution of doxazosin enantiomers. Chirality, 1997, 9(2):184~190
    11 Niu CQ, Ren LM. Chiral separation and preparation of three new antagonists of α1-adrenoceptors by chiral mobile phase HPLC. Acta Pharm Sin(药学学报), 2002, 37(6):450~453
    12 Hatano A, Tang R, Walden PD, et al. The alpha-adrenoceptor antagonist properties of the enantiomers of doxazosin in human prostate. Eur J Pharmacol, 1996, 313(1-2):135~143
    13 Niu CQ, Zhao D, Jia XM, Ren LM. α1-Adrenoceptor antagonist profile of doxazosin and its enantiomers in isolated rabbit blood vessels. Chin J Pharmacol Toxical(中国药理学与毒理学杂志), 2003,17 (5):354~359
    14 Lu HG, Liu LF, Ren LM, et, al. Effects of doxazosin enantiomers on α-adrenoceptors of the rabbit isolated blood vessels. Acta Pharm Sin (药学学报), 2007,42(2):145~151
    15 Ma SP, Ren LM, Zhao D, et al. Chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats. Acta Pharmacol Sin, 2006, 27(11): 1423~1430
    16 Tian HL, Ren LM, He DW, et al. Effects of doxazosin enantiomers onblood pressure and urinary bladder function in anesthetized rats. Chin Pharmacol Bull(中国药理学通报), 2007, 23(2):240~246
    17 Seki N, Suzuki H. Electrical and mechanical activity of rabbit prostate smooth muscles in response to nerve stimulation. J Physiol, 1989, 419(1):651~663
    18 Forray C, Bard JA, Wetzel JM, et al. The α1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human α1C subtype. Mol Pharmacol, 1994, 45(4):703~708
    19 Lepro H, Shapiro E. Prostatic alphra adrenoceptors. Prog Clin Biol Res, 1994, 386:271~277
    20 Andersson K E, Lepor H, Wyllie M G. Prostatic α1-adrenoceptors and uroselectivity. Prostate, 1997, 30(3):202~215
    21 Lau WAK, Ventura S, Pennefather JN. Pharmacology of neurotransmission to the smooth muscle of the rat and the guinea-pig prostate glands. J Auton Pharmacol, 1998, 18(6):349~356
    22 Lau WAK, Pennefather JN, Mitchelson FJ. Cholinergic facilitation of neurotransmission to the smooth muscle of the guinea-pig prostate gland. Br J Pharmacol, 2000, 130(5):1013~1020
    23 Burnstock G. Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol, 1995, 46:365~384
    24 Ventura S, Dewalagama RK, Lau LCL. Adenosine 5’-triphosphate (ATP) is an excitatory cotransmitter with noradrenaline to the smooth muscle of the rat prostate gland. Br J Pharmacol, 2003,138(7):1277~1284
    1 Andersson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev, 1993, 45(3):253~308
    2 Mattiasson A, Andersson KE, Sjogren C. Adrenoceptors and cholinoceptors controlling noradrenaline release from adrenergic nerves in the urethra of rabbit and man. J Urol, 1984, 131(6):1190~1195
    3 Sun ZY. Adenoreceptor and lower urinary tract symptoms. Jiangsu Med J (江苏医药), 2005, 31(3):214~215
    4 Zeng PQ. α1-AR and lower urinary tract symptoms. J New Medicine (医学新知杂志), 2005, 15(1):7~9
    5 AUA Practice Guidelines Committee. AUA guideline on management of benign prostatic hyperplasia. Chapter 1: Diagnosis and treatment recommendations. J Urol, 2003, 170(2pt1):530~547
    6 Fawzy A, Hendry A, Cook E, et al. Long-term (4 year) efficacy and tolerability of doxazosin for the treatment of concurrent benign prostatic hyperplasia and hypertension. Int J Urol, 1999, 6(7):346~354
    7 Chung BH, Hong SJ. Long-term follow-up study to evaluate the efficacy and safety of the doxazosin gastrointestinal therapeutic system in patients with benign prostatic hyperplasia with or without concomitant hypertension. BJU Int, 2006, 97(1):90~95
    8 Niu CQ, Ren LM. Chiral separation and preparation of three new antagonists of α1-adrenoceptors by chiral mobile phase HPLC. Acta Pharma Sin(药学学报), 2002, 37(6):450~453
    9 Argyle SA, McGrath JC. An α1A/ α1L-adrenoceptor mediates contraction of canine subcutaneous resistance arteries. J Pharmacol Exp Ther, 2000, 295(2):627~633
    10 McMurray G, Casey JH, Naylor AM. Animal models in urological disease and sexual dysfunction. Br J Pharmacol, 2006, 147(Suppl): S62~S79
    11 O’Neill AB, Buckner SA, Brune ME, et al. Pharmacological propertiesof A-204176, a novel and selective α1A adrenergic agonist, in vitro and in vivo models of urethral function. Life Sci, 2001, 70(2):181~197
    12 Conley RK, Williams TJ, Ford APDW, et al. The role of α1-adrenoceptors and 5-HT1A receptors in the control of the micturition reflex in male anaesthetized rats. Br J Pharmacol, 2001, 133(1): 61~72
    13 Zhao D, Ren LM, Lu HG, et al. Potentiation by yohimbine of α-adrenoceptor-mediated vasoconstriction to clonidine in the rabbit ear vein. Eur J Pharmacol, 2008(in press)
    14 Niu CQ, Zhao D, Jia XM, et al. α1-Adrenoceptor antagonist profile of doxazosin and its enantiomers in isolated rabbit blood vessels. Chin J Pharmacol Toxical (中国药理学与毒理学杂志), 2003,17(5):354~359
    15 Lu HG, Liu LF, Ren LM, et, al. Effects of doxazosin enantiomers on α-adrenoceptors of the rabbit isolated blood vessels. Acta Pharm Sin (药学学报), 2007,42(2):145~151
    16 Ren LM, Nakane T, Chiba S. Characteristics of the responses of isolated and perfused canine splenic arteries to vasoactive substances and to periarterially electrical stimulation. Jpn J Pharmacol, 1994, 64(1):19~25
    17 Pharmacological characteristics of longitudinal smooth muscle obtained from the different regions of the rabbit upper gastric body in response to various receptor agonists (本室研究生王雪硕士学位论文)
    18 Du GH. Current opinion on the female urinary sphincter and pathophysiology of stress urinary incontinence. Journal of Clinical Urology(临床泌尿外科杂志), 2007, 22(4):241~243
    19 Koff SA. Striated muscle determinants of intraurethral resistance. Invest Urol, 1977, 15(2):147~148
    20 von Heyden B, Riemer RK, Nunes L, et al. Response of guinea pig smooth and striated urethral sphincter to cromakalim, prazosin, nifedipine, nitroprusside, and electrical stimulation. Neurourol Urodyn. 1995, 14(2):153~168
    1 Wei JT, Calhoun E, Jacobsen SJ. Urologic Diseases in America Project: Benign prostatic hyperplasia. J Urol, 2005, 173 (4):1256~1261
    2 Bujdak P, Bardos A, Brutenic J, et al. Current issues of BPH treatment. Bratisl Lek Listy, 2003, 104(4-5):161
    3 Lee KL, Peehl DM. Molecular and cellular pathogenesis of benign prostatic hyperplasia. J Urol, 2004, 172(5):1784~1791
    4 Kyprianou N, Tu H, Jacobs SC. Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Hum Pathol, 1996, 27(7): 668~675
    5 Chung BH, Hong SJ. Long-term follow-up study to evaluate the efficacy and safety of the doxazosin gastrointestinal therapeutic system in patients with benign prostatic hyperplasia with or without concomitant hypertension. BJU Int, 2006, 97(1):90~95
    6 Kumar VL, Dewan S. Alpha adrenergic blockers in the treatment of benign hyperplasia of the prostate. Int Urol Nephrol, 2000, 32(1):67~71
    7 Kyprianou N, Chon J, Benning CM. Effects of α1-adrenoceptor antagonists on cell proliferation and apoptosis in the prostate: therapeutic implications in prostatic disease. Prostate Suppl, 2000, 9:42~46
    8 Takao T, Tsujimura A, Coetzee S, et al. Stromal/epithelial interactions of murine prostatic cell lines in vivo: a model for benign prostatic hyperplasia and the effect of doxazosin on tissue size. Prostate, 2003, 54(1):17~24
    9 Zhang ZG, Xu XH, Du HY. Correlation between the age-related memory impairment andthe level of free Ca2+ in brain synaptosomes. Acta Physiol Sin(生理学报)2000, 52(1):85~88
    10 Sun LM, Jia JM. An experimental study of the effect of XLTB on the DNA synthesis of rats prostatic epithelial cells. J Modern Urol(现代泌尿外科杂志), 1998, 3(3):129~131
    11 Claus S, Berges R, Senge T, et al. Cell Kinetic Inepithclium and Stroma of Benign Prostatic Hyperplasia. J Urol, 1997, 158(1):217~221
    12 Xie QX, Wang H, Miao YR, et al. Expression of bcl-2 and bax in benign prostatic hyperplasia. Chin J of Urol(中华泌尿外科杂志), 1998, 19(2):98~100
    13 Yang JR, Huang X, Yang ZL. Study of apoptosis and expression of Bcl-2, Bax genes in benign prostatic hyperplasia and prostatic cancer. Chin J of Urol(中华泌尿外科杂志), 2000, 21(8):485~487
    14 Tenniswood M. Apoptosis, tumour invasion and prostate cancer. Br J Urol, 1997, 79 (suppl 2):72~34
    15 Kyprianou N, Litvak JP, Borkowski A, et al. Induction of prostate apoptosis by doxazosin in benign prostatic hyperplasia. J Urol, 1998, 159(6):1810~1815
    16 Chon JK, Borkowski A, Partin AW, et al. α1-Adrenoceptor antagonists terazosin and doxazosin induce prostate apoptosis without affecting cell proliferation in patients with benign prostatic hyperplasia. J Urol, 1999, 161(6):2002~2008
    17 Foster Jr HE, Yono M, Shin D, et al. Effects of chronic administration of doxazosin on α1-adrenoceptors in the rat prostate. J Urol, 2004,172 (6):2465~2470
    1 Morrison J, Birder L, Craggs M, et al. Neural control. In: Incontinence. Abrams P, Cardozo L, Khoury, S & Wein A [Eds], Jersey: Health Publications, 2005, pp:363~422
    2 Morgan CW, de Groat WC, Felkins LA, et al. Intracellular injection of neurobiotin or horseradish peroxidase reveals separate types of preganglionic neurons in the sacral parasympathetic nucleus of the cat. J Comp Neurol, 1993, 331:161~182
    3 de Groat WC, Booth AM. Synaptic transmission in pelvic ganglia. In: Nervous Control of the Urogenital System. Maggi CA [Ed], London: Harwood Academic Publishers, 1993, pp:291~347
    4 Andersson KE. Pharmacology of lower urinary tract smooth muscle and penile erection tissues. Pharmacol Rev, 1993, 45:253~308
    5 Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev, 2004, 84:935~986
    6 Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Physiol Rev, 1998, 50:413~492
    7 Matsui M, Motomura D, Karasawa H, et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholinereceptor gene for the M3 subtype. Proc Natl Acad Sci, 2000, 97:9579~9584
    8 Matsui M, Motomura D, Fujikawa T, et al. Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci, 2002, 22:10627~10632
    9 Keast JR, de Groat WC. Immunohistochemical characterization of pelvic neurons which project to the bladder, colon or penis in rats. J Comp Neurol, 1989, 288:387~400
    10 Tran LV, Somogyi GT, de Groat WC. Inhibitory effects of neuropeptide Y on cholinergic and adrenergic transmission in the rat urinary bladder and urethra. Am J Physiol, 1994, 266:R1411~R1417
    11 Somogyi GT, Tanowitz M, Zernova G, et al. M1 muscarinic receptor facilitation of ACh and noradrenaline release in the rat urinary bladder is mediated by protein kinase C. J Physiol, 1996, 496:245~254
    12 Maggi CA. The dual sensory and efferent functions of the capsaicin-sensitive primary sensory neurons in the urinary bladder and urethra. In: Nervous Control of The Urogenital System, ed. Maggi CA [Ed], London: Harwood Academic Publishers, 1993, pp:383~422
    13 Chuang Y, Fraser MO, YU Y, et al. The role of bladder afferent pathways in the bladder hyperactivity induced by intravesical administration of nerve growth factor. J Urol, 2001, 165:975~979
    14 Rong W, Spyer KM, Burnstock G. Activation and senstitization of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol, 2002, 541:591~600
    15 Zhong Y, Banning AS, Cockayne DA, et al. Bladder and cutaneous sensory neurons of the rat express different functional P2X receptors. Neuroscience, 2003, 120:667~675
    16 Sculptoreanu A, de Groat WC. Protein kinase C is involved in neurokinin receptor modulation of N- and L-type Ca2+ channels in dorsal root ganglion neurons of the adult rat. J Neurophysiol, 2003, 90:21~31
    17 Ogawa T, Kamo I, Pflug BR, et al. Differential roles of peripheral andspinal endothelin receptors in the micturition reflex in rats. J Urol, 2004, 172:1533~1537
    18 Ferguson DR, Kennedy I, Burton TJ. ATP is released from rabbit urinary bladder cells by hydrostatic pressure changes–a possible sensory mechanism? J Physiol, 1997, 505:503~511
    19 Birder LA, Apodaca G, de Groat WC, et al. Adrenergic and capsaicin evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am J Physiol, 1998, 275, F226~F229
    20 Birder LA, Kanai AJ, de Groat WC, et al. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci, 2001, 98:13396~13401
    21 Birder LA, Nealon M, Kiss S, et al. β-Adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci, 2002, 22:8063~8070
    22 de Groat WC. The urothelium in overactive bladder: passive bystander or active participant? Urology, 2004, 64(6 Suppl 1):7~11
    23 Stein RJ, Santos S, Nagatomi J, et al. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol, 2004, 172:1175~1178
    24 Beckel JM, Kanai A, Lee SJ, et al. Expression of functional nicotinic acetylcholine receptors in rat urinary bladder epithelial cells. Am J Physiol Renal Physiol, 2006, 290:F103~10
    25 Beckel JM, Meyers S, Giesselman BR, et al. Acetylcholine release from rat bladder epithelial cells and cholinergic modulation of bladder reflexes. Exp Biol Abstracts, 2005, 863:2
    26 Choppa B, Barrick SR, Meyers S, et al. Expression and function of bradykinin B1/B2 receptors in the rat urinary bladder urothelium. J Physiol, 2005, 562:859~871
    27 Sun Y, Keay S, de Deyne PG, et al. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. J Urol, 2001, 166:1951~1956
    28 Birder LA, Barrick S, Roppolo JR, et al. Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. Am J Physiol, 2003, 285:F423~F429
    29 Cockayne DA, Hamilton SG, Zhu, QM, et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature, 2000, 407:1011~1015
    30 Smith CP, Franks ME, Mcneil BK, et al. Effect of botulinum toxin A on the autonomic nervous system of the rat lower urinary tract. J Urol, 2003, 169:1896~1900
    31 Khera M, Somogyi GT, Kiss S, et al. Botulinum toxin A inhibits ATP release from bladder urothelium after chronic spinal cord injury. Neurochem Int, 2004, 45:987~993
    32 Barrick S, de Groat WC, Birder LA. Regulation of chemical and mechanical-evoked ATP release from urinary bladder urothelium by botulinum toxin A. Soc Neurosci Abstract Viewer, 2004, 541:5
    33 Vemulakonda VM, Somogyi GT, Kiss S, et al. Inhibitory effect of intravesically applied botulinum toxin A in chronic bladder inflammation. J Urol, 2005, 173:621~624
    34 Ozawa H, Chancellor MB, Jung SY, et al. Effect of intravesical nitric oxide therapy on cyclophosphamide-induced cystitis. J Urol, 1999, 162:2211~2216
    35 Pandita RK, Mizusawa H, Andersson KE. Intravesical oxyhemoglobin initiates bladder overactivity in conscious, normal rats. J Urol, 2000, 164:545~550
    36 Templeman L, Chappple CR, Chess-Williams R. Urothelium derived inhibitory factor and cross-talk among receptors in the trigone of the bladder of the pig. J Urol, 2002, 167:742~745
    37 Hawthorn MH, Chapple CR, Cock M, et al. Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. Br J Pharmacol, 2000, 129:416~419
    38 Beckel JM, Barrick SR, Keast JR, et al. Expression and function ofurothelial muscarinic receptors and interactions with bladder nerves. Soc Neurosci Abstract Viewer, 2004, 846:23
    39 de Groat WC, Giesselman B, Sun L, et al. Role of urothelial muscarinic receptors in the control of voiding in rats. Soc Neurosci Abstract Viewer, 2004, 950:19
    40 Kim YT, Yoshimra N, Masuda H, et al. Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder afferent pathways. Urology, 2004, 65:238~242
    41 Ungerer T, Roppolo JR, Tai C, et al. Influence of urothelial and suburothelial muscarinic receptors on voiding in the spinal cord injured cat. Soc Neurosci Abstract Viewer, 2005, 104:7
    42 Cheng CL, Liu JC, Chang SY, et al. Effect of capsaicin on the micturition reflex in normal and chronic spinal cord-injured cats. Am J Physiol, 1999, 277:R786~R794
    43 Klapproth H, Reinheimer T, Metzen J, et al. Non-neuronal acetylcholine, a signaling molecule synthesized by surface cells of rat and man. Naunyn-Schmeidebergs Arch Pharmacol, 1997, 355:515~523
    44 Yoshida M, Miyamae K, Iwashita H, et al. Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology, 2004, 63:17~23
    45 de Groat WC, Booth AM. Synaptic transmission in pelvic ganglia. In: Nervous Control of the Urogenital System. Maggi CA [Ed], London: Harwood Academic Publishers, 1993, pp:227~289
    46 Mallory BS, Roppolo JR, de Groat WC. Pharmacological modulation of the pontine micturition center. Brain Res, 1991, 546:310~320
    47 Mcguire E, Morrissey S, Zhang S, et al. Control of reflex detrusor activity in normal and spinal cord injured non-human primates. J Urol, 1983, 129:197~199
    48 de Groat WC, Fraser MO, Yoshiyama M, et al. Neural control of the urethra. Scand J Urol Nephrol, 2001, 35(Suppl 201):35~43
    49 Yokoyama O, Yoshiyama M, Namiki M, et al. Role of the forebrain inbladder hyperactivity following cerebral infarction in the rat. Exp Neurol, 2000, 163:469~476
    50 Yokoyama O, Yoshiyama M, Namiki M, et al. Interaction between D2 dopaminergic and glutamatergic excitatory influences on lower urinary tract function in normal and cerebral infarcted rats. Exp Neurol, 2001, 169:148~155
    51 de Groat WC. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia, 1995, 33:493~505
    52 de Groat WC, Kawatani M, Hisamitsu T, et al. Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J Autonom Nerv Sys, 1990, 30:S71~S78
    53 Geirsson G, Fall M, Lindstrom S. The ice-water test–a simple and valuable supplement to routine cystometry. Br J Urol, 1993, 71:681~685
    54 Balmaseda JR, Reynolds HT, Gordon C. The value of the ice water test in the management of the neurogenic bladder. Am J Phys Med Rehabil, 1988, 67:225~227
    55 Ronzonl G, Menchinelli P, Manca A, et al. The ice-water test in the diagnosis and treatment if the neurogenic bladder. Br J Urol, 1997, 79:698~701
    56 Geirsson G, Fall M, Sullivan L. Clinical and urodynamic effects of intravesical capsaicin treatment in patients with chronic traumatic spinal detrusor hyperreflexia. J Urol, 1995, 154:1825~1829
    57 Ishigooka M, Hashimoto T, Hayami S, et al. Ice water test in patients with overactive bladder due to cerebrovascular accidents and bladder outlet obstruction. Urol Int, 1997, 58:84~87
    58 Ismael SS, Epstein T, Bayle B, et al. Bladder cooling reflex in patients with multiple sclerosis. J Urol, 2000, 164:1280~1284
    59 Gardiner JC, Westbrook S. Characterisation of a cold-induced micturition reflexin the anaesthetised guinea-pig, Abstract Viewer/Itinerary Planner. Washington DC: Society for Neuroscience,2003, Online, Program No. 189.5
    60 de Groat WC, Yoshimura N. Pharmacology of the lower urinary tract. Ann Rev Pharmacol Toxicol, 2001, 41:691~721
    61 Dmochowski RR, Miklos JR, Norton PA, et al. Duloxetine versus placebo for the treatment of North American women stress urinary incontinence. J Urol, 2003, 170:1259~1263
    62 Millard RJ, Moore K, Rencker R, et al. Duloxetine vs placebo in the treatment of stress urinary incontinence: a four-continent randomized clinical trial. BJU I nt, 2004, 93:311~318
    63 Thor KB, Katofiasc MA. Effects of duloxetine, a combined serotonin and norepinepherine reuptake inhibitor, on central neural control of lower urinary tract function in the chloraloseanesthetized female cat. J Pharmacol Exp Ther, 1995, 274:1014
    64 Thor KB, Katofiasc MA, Danuser H, et al. The role of 5-HT1A receptors in control of lower urinary tract function in cats. Brain Res, 2002, 946:290~297
    65 de Groat WC. Influence of central serotonergic mechanisms on lower urinary tract function. Urology, 2002, 59(Suppl 5A):30~36
    66 Burgard EC, Fraser MO, Thor KB. Serotonergic modulation of bladder afferent pathways. Urology, 2003, 62(Suppl 4A):10~15
    67 Lee SJ, Nakamura Y, de Groat WC. Effect of (7)-epibatidine, a nicotinic agonist, on the central pathways controlling voiding function in the rat. Am J Physiol, 2003, 285:R84~R90
    68 Ishiura Y, Yoshiyama M, Yokoyama O, et al. Central muscarinic mechanisms regulating voiding in rats. J Pharmacol Exp Ther, 2001, 297:933~939
    69 Nakamura Y, Ishiura Y, Yokoyama O, et al. Role of protein kinase C in central muscarinic inhibitory mechanisms regulating voiding in rats. Neuroscience, 2003, 116:477~484
    70 Yoshimura N, Mizuuta E, Kuna S, et al. The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey withparkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology, 1993, 32:315~321
    71 Yoshimura N, Mizuuta E, Yoshida O, et al. Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl -4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther, 1998, 286:228~233
    72 Yokoyama O, Yoshiyama M, Namiki M, et al. Changes in dopaminergic and glutamatergic excitatory mechanisms of the micturition reflex after middle cerebral artery occlusion in conscious rats. Exp Neurol, 2002, 173:129~135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700