用户名: 密码: 验证码:
稀土镁合金组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于对耐蚀、高强韧镁合金材料的需求,本文研究了Gd、Nd和Y等稀土元素对镁合金耐蚀性能和力学性能的影响规律,并具体结合两类不同的稀土镁合金,研究了铸造、热处理和热挤压变形等工艺对合金组织和性能的影响。
     通过研究稀土元素对镁合金耐蚀性的影响机制发现:添加稀土元素后形成的第二相与镁基体的镁合金的电极电位差变小,导致微电偶腐蚀的驱动力相应减弱,微电偶腐蚀的极化电流变小,腐蚀速率降低;稀土元素可以通过改变金属表面氧化膜的结构提高致密度、细化晶粒、改变了镁合金中第二相的组成、形态和分布等,从而改善了镁合金耐腐蚀性。
     稀土镁合金材料制备工艺过程中,保持成分均匀稳定、减少熔剂夹杂和熔体吹洗等途径有利于合金耐蚀性的改善;挤压铸造、金属型铸造和砂型铸造三种方法相比,挤压铸造制备的合金组织晶粒更细、力学性能和耐蚀性更好。
     对两类不同稀土含量的镁合金的压缩应力应变行为的研究表明二者均是正应变速率敏感材料,合金热压缩塑性变形是受热激活控制的。
     对Mg-Nd-Gd-Zn-Zr合金的研究表明,通过成分设计可以实现低稀土含量的镁合金具有良好的耐蚀性,铸态合金通过合理的热处理工艺可以实现强度和伸长率的综合优化;由于稀土含量不高,挤压变形后的合金经时效处理时析出强化效果有限,位错与稀土第二相的交互作用不明显。
     高稀土含量的Mg-xGd-3Y-Zn-0.5Zr合金的铸态组织由α-Mg和β相(Mg_5Gd(Y,Zn))组成,且随着Gd含量的增加,晶粒尺寸呈细化趋势,晶界共晶相由连续网状分布转变为断续状弥散分布,且共晶相数量也相应增加。合金经固溶处理后,合金晶界β相(Mg_5Gd(Y,Zn)分解并生成成分有序和堆垛有序的块状、层片状的14H-LPSO结构相,这些LPSO相是由Mg、Zn、Gd和Y元素组成,而Zn是形成14H-LPSO的关键合金元素。合金时效峰值硬度随Gd含量的增加而增高,到达峰值硬度的时间随Gd含量的增加而缩短;随温度升高,峰值硬度降低,到达峰值硬度的时间缩短。8%wtGd的合金200℃时效析出弥散分布的β'相,而250℃时效未发现明显的弥散析出相。12wt%Gd的合金随时效温度的升高,峰值硬化组织时效析出β'相尺寸增大,数量减少;在200℃和225℃的时效硬化归因为高致密分布的β'相;在250℃的峰值硬化组织析出相是β'相和β1,后随时间延长β'相逐渐向β1转变。
     对铸造Mg-xGd-3Y-Zn-0.5Zr合金的力学性能研究发现,常温抗拉强度接近,伸长率对Gd含量增加而降低。Gd含量不低于10wt%的合金的抗拉强度在室温~200℃呈增加趋势并在200℃附近达到最大,随后逐渐下降。对合金失效断口分析发现,合金在室温的断裂主要是解理断裂且随Gd含量的增加脆性增加,高温断裂表现为准解理断裂。
     Mg-xGd-3Y-Zn-0.5Zr合金经过挤压变形后晶粒显著细化,挤压合金时效强化效应显著,合金力学性能最高时强度和伸长率分别为492MPa和11%,具有良好的塑韧性。
To meet the demand of corrosion-resistant and high-strength magnesium alloy,this paper was engaged in the study of the effects and influence mechanisms of Rareearth (RE) to the corrosion-resistant performance and mechanical properties. Twokinds of alloys with different RE contents were involved to study the influence ofcasting, heat treatment and hot-extrusion deformation processes to the microstructuresand properties of the alloys.
     By investigating the influence mechanism of RE elements to thecorrosion-resistant performance of Mg alloy, it shows that, the voltage between theMg matrix and the RE second phases is decreased and the driving force of microelectrical-couple corrosion became weak and corrosion rate was dropped; thecorrosion-resistant performance was improved by the RE elements through the meansof optimizing the structure of the oxidation film to increase the film density, refiningthe grain size, changing the composition, shape and distribution of the second phases.
     The approaches of guaranting the stability of the RE Mg alloy, reducing the fluximpurities and gas purifying the melt were helpful to improve the corrosion-resistantperformance of the RE Mg alloy. Among the three methods of the squeeze casting,metal mold casting and sand casting, the RE Mg alloys prepared by the squeezecasting were provided with the finest grain size, the best mechanical properties andcorrosion-resistant performance.
     The investigation to the compressive stress-strain behavior of two kinds of theRE Mg alloys showed that the RE Mg alloys belong to the materials being sensive topositive strain rate, and the hot-compression plastic deformation of the RE Mg alloyswas up to the thermal activation.
     The investigation to the Mg-Nd-Gd-Zn-Zr alloy shows that, the RE Mg alloyswith favorable corrosion-resistant performance and casting processing performancecould be achieved by composition design and optimization, and the prepared alloy canbe provided with comprehensive properties by reasonable heat treatment. Because oflow-content RE, the precipitate strengthening effect of aging for the extruded alloywas not predominant, and the interaction between the dislocations and the RE secondphases was not obvious.
     The microstructures of the high RE-content as-cast Mg-xGd-3Y-Zn-0.5Zr alloys were consists of α-Mg and βphases(Mg_5Gd(Y,Zn)), and with the increase of the Gdcontent, the grain size of the alloys became finer and the eutectic phases on the grainboundaries transformed from continuous network-shape distribution to discontinuousdispersion distribution and the volume fraction of eutectic phases were also increasedcorrespondingly. During solution treatment, theβphases at the grain boundariesdescomposed and transferred into the block-shaped and lamellar-shaped14H-LPSOstructure phases. These LSPO structure phases were composed of elements of Mg, Zn,Gd and Y, and Zn was the key element for the formation of14H-LPSO structurephases. With the solution time further prolonged, the block-shaped phases alsogradually transferred into lamellar-shaped14H-LPSO structure phases. With the Gdcontent added, the peak hardness increased and the time to reach the peak hardnesswas shortened. With the temperature raised, the peak hardness decreased and the timeto reach the peak hardness was shortened. For Mg-8Gd-3Y-Zn-0.5Zr alloy, the β'phases precipitated and dispersed at200℃aging temperature, but β' phases were notobserved when aging at250℃. For Mg-12Gd-3Y-Zn-0.5Zr alloy, the size of β' phaseswas increased and the quantitiy of β' phases was reduced when aging temperature wasraised, the distributed high-density β' phases were contributed to aging hardeningeffects at200℃and225℃. When aging at250℃, the precipitated phases of theMg-12Gd-3Y-Zn-0.5Zr alloy were composed of β' phases and β1phases, and the β'phases were gradually transformed into β1phases with the aging time prolonged.
     The investigation to the mechanical properties of cast Mg-xGd-3Y-Zn-0.5Zralloys shows that, when Gd content is not below10wt%, the ultimate tensile strengthincreased with the temperature raised between room temperatue and200℃, andreached peak value near200℃and then dropped gradually. At room temperature, thefracture mode of Mg-xGd-3Y-Zn-0.5Zr alloys was cleavage fracture and the plasticityof the alloys was dropped with the increase of Gd content. The fracture mode of thealloys was quasi-cleavage crack at elevated temperature.
     The grain size of the Mg-xGd-3Y-Zn-0.5Zr was obviously refined after hotextrusion and the aging strengthening effect of the extruded alloys was predominant.The peak values of the mechanical properties were492MPa (ultimate tensile strength)and11%(elongation rate). They were endued with favorable plasticity.
引文
[1]陈振华等.镁合金[M].北京:化学工业出版社,2004.
    [2]丁文江等.镁合金科学与技术[M].科学出版社,2007.
    [3]曾荣昌,柯伟,徐永波,等. Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [4]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究,2003,(1):34-37.
    [5]訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004,28(1):229-232.
    [6]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002,(10):37-39,53.
    [7]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报,2004,22(1):40-47.
    [8] Pekguleryuz M O, Avedesian M M. Magnesium alloying, some potentials foralloy development[J]. Journal of Japan Institute of Light Metals,1992,42(12):679-686.
    [9] Nishikawa Y. Development of electric products using magnesium alloy[J].Function and Materials,1999,19(6):21-27.
    [10]刘正,王越,王中光,等.镁基轻质材料的研究与应用[J].材料研究学报,2000,14(5):449-456.
    [11]黄晓锋,周宏,何镇明.镁合金的防燃研究及其进展[J].中国有色金属学报,2000,10(S1):271-274.
    [12]曾荣昌,柯伟,徐永波,等. Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [13]翟春泉,曾小勤,丁文江,等.镁合金的开发与应用[J].机械工程材料,2001,25(1):6-10.
    [14] Luo A A. Recent magnesium alloy development for elevated temperatureapplications[J]. International Materials Reviews,2004,49(1):13-30.
    [15]中国机械工程学会铸造专业学会.铸造手册(第3卷)[M].北京:机械工业出版社,1993.
    [16]冯端.金属物理学第三卷:金属力学性质[M].北京:科学出版社,1999.
    [17]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [18] Ardell A J. Precipitation hardening[J]. Metallugrical and MaterialsTransactions A,1985,16(2):2131-2165.
    [19] Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperatureapplications[J]. Journal of Materials Science,1994,29(20):5259-5271.
    [20]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983.
    [21]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004.
    [22] Han B Q, Dunand D C. Microstructure and mechanical properties ofmagnesium containing high volume fractions of yttria dispersoids[J]. MaterialsScience and Engineering A,2000,277(1-2):297-304.
    [23]陈振华,夏伟军,严红革,等.变形镁合金[M].北京:化学工业出版社,2005.
    [24] Bohlen J, Chmelik F, Dobron P, et al. Orientation effects on acoustic emissionduring tensile deformation of hot rolled magnesium alloy AZ31[J]. Journal ofAlloys Comppounds,2004,378(1-2):207-213.
    [25]陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1-11.
    [26] Jager A, Lukac P, Gartnerova V, et al. Tensile properties of hot rolled AZ31Mg alloy sheets at elevated temperatures[J]. Journal of Alloys and Compounds,2004,378(1-2):184-187.
    [27] Mathis K, Trojanova Z, Lukac P, et al. Modeling of hardening and softeningprocesses in Mg alloys[J]. Journal of Alloys and Compouds,2004,378(1-2):176-179.
    [28] Klimanek P, Potzsch A. Microstructure evolution under compressive plasticdeformation of magnesium at different temperatures and strain rates[J].Materials Science and Engineering A,2002,324(1-2):145-150.
    [29] Caceres C H, Sumitomo T, Veidt M. Pseudoelastic behavior of cast magnesiumAZ91alloy under cyclic loading-unloading[J]. Acta Materialia,2003,51(20):6211-6218.
    [30] Perex-Prado M T, Valle J A, Ruano O A. Effect of sheet thickness on themicrostructural evolution of an Mg AZ61alloy during larger hot rolling[J].Scripta Materialia,2004,50(5):667-671.
    [31] Friedrich H E, Mordike B L. Magnesium Technology: Metallurgy, Design Data,Applications[M]. Verlag Berlin Heidelberg: Springer,2006.
    [32] Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties ofwarm-extruded Mg-Zn-Gd alloy with coherent14H long periodic stackingordered structure precipitate[J]. Scripta Materialia,2005,53(7):799-803.
    [33] Hosokawa H, Chino Y, Shimojima K, et al. Mechanical properties and blowforming of rolled AZ31Mg alloy sheet[J]. Materials Transactions,2003,44(4):484-489.
    [34] Li L, Zhang X M. Hot compression deformation behavior and processingparameters of a cast Mg-Gd-Y-Zr alloy[J]. Materials Science and EngineeringA,528(3):1396-1401.
    [35] Liu X B, Chen R S, Han E H. High temperature deformations of Mg-Y-Ndalloys fabricated by different routes[J]. Materials Science and Engineering:A,2008,497(1-2):326-332.
    [36] Rost H J, Ashby M F. Deformation Mechanism Maps[M]. Oxford: Pergamon,1982.
    [37] Gartnerova V, Trojanov Z, Jager A, et al. Deformation behaviour of Mg-0.7wt.%Nd alloy[J]. Journal of Alloys and Compounds,2004,378(1-2):180-183.
    [38] Zhao X, Zhang K, Li X G, et al. Deformation behavior and dynamicrecrystallization of Mg-Y-Nd-Gd-Zr alloy[J]. Journal of Rare Earths,2008,26(6):846-850.
    [39]李永兵,李廷斌. AZ31镁合金的热模拟和挤压[J].热加工工艺,2010,39(10):73-75.
    [40]徐光宪.稀土[M].北京:化学工业出版社,1995.
    [41]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报,2004,22(1):40-47.
    [42] Pekguleryuz M O, Avedesian M M. Magnesium alloying, some potentials foralloy development[J]. Journal of Japan Institute of Light Metals,1992,42(12):679-686.
    [43]张景怀,唐定骧,张洪杰,等.稀土元素在镁合金中的作用及其应用[J].稀有金属,2008,32(5):659-667.
    [44]郭旭涛.稀土在镁合金中的行为及作用机制[D].北京:清华大学,2004.
    [45]许越,陈湘,吕祖舜,等. AZ91镁合金表面稀土转化膜的制备及耐腐蚀性能研究[j].中国稀土学报,2005,23(1):40-43.
    [46]刘生发,王慧源,徐萍.钕对AZ91镁合金腐蚀性能的影响[J].铸造,2006,55(3):296-299.
    [47] Wang Q D, Lv Y Z, Zeng X Q, et al. Effect of RE on microstructure andproperties of AZ91magnesium alloy[J]. Transactions of Nonferrous MetalsSociety of China,2000,10(2):235-239.
    [48]张诗昌,魏伯康,林汉同,等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报,2001,11(S2):99-102.
    [49] Liu S F, Kang L G, Han H, et al. Influence of electromagnetic stirring onmicrostructure of AZ91-0.8%Ce magnesium alloy[J]. Journal of Central SouthUniversity of Technology,2006,13(6):613-617.
    [50]杨洁,易丹青,邓姝皓.微量稀土Nd对AZ91微观组织及腐蚀性能的影响[J].材料科学与工程学报,2008,26(2):251-255.
    [51] Song Y L, Liu Y H, Yu S R, et al. Effect of Neodymium on microstructure andcorrosion resistance of AZ91magnesium alloy[J]. Journal of Materials Science,2007,42(12):4435-4440.
    [52]樊昱,吴国华,高洪涛,等. La对AZ91D镁合金力学性能和腐蚀性能的影响[J].金属学报,2006,42(1):35-40.
    [53] Fan Y, Wu G H, Gao H T, et al. Influence of Lanthanum on the microstructure,mechanical property and corrosion resistance of magnesium alloy[J]. Journal ofMaterials Science,2006,41(17):5409-5416.
    [54] Fan Y, Wu G H, Zhai C Q. Influence of Cerium on the microstructure,mechanical properties and corrosion resistance of magnesium alloy[J].Materials Science and Engineering A,2006,433(1-2):208-215.
    [55]吴国华,李冠群,樊昱,等. Y对AZ91D镁合金组织及力学性能的响[J].特种铸造及有色合金,2006,26(5):260-263.
    [56]王忠军,张彩碚,邵晓宏,等.添加稀土Er与熔剂中对铸态AZ91镁合金组织与性能的影响[J].中国有色金属学报,2007,17(2):181-187.
    [57]肖代红,黄伯云.铒对AZ91镁合金铸态组织与力学性能的影响[J].中国稀土学报,2008,26(1):78-81.
    [58]刘楚明,葛位维,李慧中,等. Er对铸态AZ91镁合金显微组织和耐蚀性能的影响[J].中国有色金属学报,2009,19(5):847-853.
    [59]许越,腾玉洁,张勇,等. AZ91镁合金稀土表面改性研究[J].稀土,2004,25(5):13-14,29.
    [60]黄亮,黄元伟,王晨,等.含稀土元素的Mg-Al合金在NaCl溶液中腐蚀产物膜的研究[J].中国腐蚀与防护学报,2002,22(3):167-171.
    [61]王喜峰,齐公台,蔡启舟,等.混合稀土对AZ91镁合金在NaCl溶液中的腐蚀行为影响[J].材料开发与应用,2002,17(5):34-36.
    [62]周灵展,王玉良,朱秀荣,等.稀土元素对Mg-Zn合金耐蚀性的影响[J].兵器材料科学与工程,2008,31(2):83-86.
    [63] Mordike B L. Development of highly creep resistant magnesium alloys[J].Journal of Materials Processing Technology,2001,117(3):391-394.
    [64] Smola A, Stulikova I, Buch F, et al. Stuctural aspects of high performance Mgalloys design[J]. Material Science and Engineering A,2002,324(1-2):113-117.
    [65]刘光华,孙洪志,李红英.稀土材料与应用技术[M].北京:化学工业出版社,2005.
    [66]杨国超,艾云龙,张剑平.稀土镁合金研究现状[J].中国材料科技与设备,2007,(2):17-19.
    [67]杨遇春,金红.稀土有色金属材料及其发展前景[J].材料工程,1993,(6):45-48.
    [68]余昆,黎文献,李松瑞,等.含稀土镁合金的研究与开发[j].特种铸造及有色合金,2001,(1):41-44.
    [69] Socjusz-Podosek M, Litynska L. Effect of yttrium on structure and mechanicalproperties of Mg alloys[J]. Materials Chemistry and Physics,2003,80(2):472–475.
    [70] Suzuki M, Sato H, Maruyama K, et al. Creep behavior and deformationmicrostructures of Mg–Y alloys at550K[J]. Materials Science and EngineeringA,1998,252(2):248-255.
    [71] Suzuki M, Sato H, Maruyama K, et al. Creep deformation behavior anddislocation substructures of Mg–Y binary alloys[J]. Materials Science andEngineering A,2001,319-321:751-755.
    [72] Mordike B L. Creep-resistant magnesium alloys[J]. Materials Science andEngineering A,2002,324(1-2):103-112.
    [73] Rokhlin L L, Nikitina N I. Recovery after ageing of Mg–Y and Mg–Gdalloys[J]. Journal of Alloys and Compounds,1998,279(2):166-170.
    [74] Socjusz-Podosek M, Litynska L. Effect of yttrium on structure and mechanicalproperties of Mg alloys[J]. Materials Chemistry and Physics,2003,80(2):472–475.
    [75] Vostry P, Smola B. Microstructure evolution in isochronally heat treatedMg-Gd alloy[J]. Physica Status Solidi A,1999,175(2):491-500.
    [76] Peng Q M,Wu Y M,Fang D Q,et al. Microstructures and properties ofMg-7Gd alloy containing Y[J]. Journal of Alloys and Compounds,2007,430(1-2):252-256.
    [77] Gao Y, Wang Q D, Gu J H, et al. Comparison of microstructure inMg-10Y-5Gd-0.5Zr and Mg-10Y-5Gd-2Zn-0.5Zr alloys by conventionalcasting[J]. Journal of Alloys and Compounds,2009,477(1-2):374-378.
    [78] Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgyMg97Zn1Y2alloys with excellent tensile yield strength above600MPa[J].Materials Transactions,2001,42(7):1172-1176.
    [79] Inoue A, Kawamura Y, Matsusita M, et al. Novel hexagonal structure andultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J].Journal of Materials Research,2001,16(7):1894-1900.
    [80] Itoi T, Seimiya T, Kawamura Y, et al. Long period stacking structures observedin Mg97Zn1Y2alloy[J]. Scripta Materialia,2004,51(2):107-111.
    [81] Suzuki M, Kimura T, Koike J, et al. Strengthening effect of Zn in heat resistantMg-Y-Zn solid solution alloys[J]. Scripta Materialia,2003,48(8):997-1002.
    [82] Nie J F,Gao X,Zhu S M. Enhanced age hardening response and creepresistance of Mg-Gd alloys containing Zn[J]. Scripta Materialia,2005,53(9):1049-1053.
    [83] Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties ofwarm-extruded Mg-Zn-Gd alloy with coherent14H long periodic stackingordered structure precipitate[J]. Scripta Materialia,2005,53(7):799-803.
    [84] Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties ofwarm-extruded Mg-Zn-Gd alloy with coherent14H long periodic stackingordered structure precipitate[J]. Scripta Materialia,2005,53(7):799-803.
    [85] Zheng K Y,Dong J,Zeng X Q,et al. Precipitation and its effect on themechanical properties of a cast Mg-Gd-Nd-Zr alloy[J]. Materials Science andEngineering A,2007,489(1-2):44-54.
    [86] Smola B, Stulikova I, Ocenasek V, et al. Annealing effects in Al–Sc alloys[J].Materials Science and Engineering A,2007,462(1-2):370-374.
    [87] Bastow T J,Celotto S. Clustering and formation of nano-precipitates in dilutealuminium and magnesium alloys[J]. Materials Science and Engineering C,2003,23(6-8):757-762.
    [88] Royset J,Ryum N. Scandium in aluminium alloys[J]. International MaterialsReviews,2005,50(1):19-44.
    [89] Grobner J,Schmid-Fetzer R. Selection of promising quaternary candidatesfrom Mg-Mn-(Sc,Gd,Y,Zr) for development of creep-resistant magnesiumalloys[J]. Journal of Alloys and Compouds,2001,320(2):296-301.
    [90] Buch V F,Lietzau J,Mordike B L,et al. Development of Mg-Sc-Mn alloys[J].Materials Science and Engineering A,1999,263(1):1-7.
    [91] Mordike B L, Stulikova I, Smola B. Mechanisms of creep deformation inMg-Sc–based alloys[J]. Metallurgical and Materials Transactions A,2005,36(7):1729-1736.
    [92] Friedrich H E, Mordike B L. Magnesium Technology: Metallurgy, Design Data,Applications[M]. Verlag Berlin Heidelberg: Springer,2006.
    [93]王渠东,吕宜振,曾小勤,等.稀土在铸造镁合金中的应用[J].特种铸造及有色金属,2002,(S1):292-295,299.
    [94]张诗昌,段汉桥,蔡启舟,等.镁合金的熔炼工艺现状及发展趋势[J].特种铸造及有色合金,2000,(6):51-54.
    [95]欧阳义芳,张邦维,廖树帜,等.稀土镁合金的热力学性质研究[J].稀土金属材料与工程,1995,24(6):32-37.
    [96]李杰华,介万奇,杨光昱等.稀土Gd对Mg-Nd-Zn-Zr镁合金组织和性能的影响[J].稀有金属材料与工程,2008,37(10):1751-1755.
    [97]蒋海燕,付彭怀,彭立明,等. Mg-3Nd-0.2Zn-0.4Zr合金的显微组织与力学性能[J].特种铸造及有色合金,2008,(S1):254-258.
    [98]马鸣龙,张奎,李兴刚,等.铸态Mg-7Gd-5Y-1.2Nd-Zr镁合金热变形行为研究[J].特种铸造及有色合金,2008,(S1):249-253.
    [99]马志新,李德福,李彦利. Mg-Y-Nd-Zr合金加工工艺与组织演化的研究[J].稀有金属,2006,30(6):719-723.
    [100] Emely E F. Principles of Magnesium Technology[M]. Oxford: Pergamon Press,1996.
    [101] Ben-Hamu G, Eliezer D, Shin K S, et al. The relation between microstructureand corrosion behavior of Mg-Y-RE-Zr alloys[J]. Journal of Alloys andCompounds,2007,431(1-2):269-276.
    [102] Peng Y H, Li D Y, Wang Y C, et al. Numerical study on the low pressuredie-casting of AZ91D wheel hub[J]. Materials Science Forum,2005,488-489:393-396.
    [103]刘斌,刘顺华,金文中.稀土在镁合金中的作用及影响[J].上海有色金属,2003,24(1):27-31.
    [104] Drits M E, Dobatkina T V. Developments in studies of the phase diagrams ofmagnesium alloys[J]. Magnesium alloy for modern techniques,1992,(6):53-59.
    [105]魏世丞,徐滨士,付东兴,等.军用装备镁合金表面防腐蚀技术研究[J].装甲兵工程学院学报,2006,20(6):79-83.
    [106]张津,孙智富,汪菘扬,等.镁合金表面热喷涂工艺及防腐蚀性研究[J].表面技术,2003,32(3):8-9,37.
    [107]李海宏,陈体军,郝远,等. pH值对触变成形和金属型铸造AZ91D镁合金试样应力腐蚀行为的影响[J].铸造,2006,55(8):835-838.
    [108] Rost H J, Ashby M F. Deformation Mechanism Maps[M]. Oxford: Pergamon,1982.
    [109] Duan Y P,, Li P, Xue K M, et al. Flow behavior and microstructure evolutionof TB8alloy during hot deformation process[J]. Transactions of the NonferrousMetals Society of China,2007,17(6):1199-1204.
    [110] Mcqueen H J, MyshlaevM, Sauerborn M, et al. Flow stress microstructures andmodeling in hot extrusion of magnesium alloys[C]. Magnesium Technology2000, Wrendale,2000:355-362.
    [111] Li Q, Wang Q D, Zhou H T, et al. High strength extrudedMg–5Zn–2Nd–1.5Y–0.6Zr–0.4Ca alloy produced by electromagnetic casting[J].Materials Letters,2005,59(19-20):2549-2554.
    [112]张娅. Mg-Zn-YZr变形镁合金组织、性能及变形行为研究[D].上海:上海交通大学,2005.
    [113] Nie J F. Effects of precipitate shape and orientation on dispersion strengtheningin magnesium alloys[J]. Scripta Materialia,2003,48(8):1009-1015.
    [114] Fu P H, Peng L M, Jiang H Y, et al. Effects of heat treatments on themicrostructures and mechanicalproperties of Mg–3Nd–0.2Zn–0.4Zr (wt.%)alloy[J]. Materials Science and Engineering A,2008,486(1-2):183–192.
    [115] Li D J, Zeng X Q, Dong J, et al. Microstructure evolution ofMg–10Gd–3Y–1.2Zn–0.4Zr alloy during heat-treatment at773K[J]. Journal ofAlloys and Compounds,2009,468(1-2):164-169.
    [116] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the agehardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J]. Acta Materialia,2007,55(12):4137-4150.
    [117]吴玉娟,丁文江,彭立明,等.高性能稀土镁合金的研究进展[J].中国材料进展,2011,30(2):1-9.
    [118] Nie J F, Muddle B C. Characterisation of strengthening precipitate phases in aMg-Y-Nd alloy[J]. Acta materialia,2000,48(8):1691-1703.
    [119] Gao X, He S M, Zeng X Q, et al. Microstructure evolution in aMg–15Gd–0.5Zr (wt.%) alloy during isothermal aging at250℃[J]. MaterialsScience and Engineering A,2006,431(1-2):322-327.
    [120] Zheng K Y,Dong J,Zeng X Q,et al. Precipitation and its effect on themechanical properties of a cast Mg-Gd-Nd-Zr alloy[J]. Materials Science andEngineering A,2007,489(1-2):44-54.
    [121] Anthony A I, Kamado, S, Kojima Y. Aging characteristice and hightemperature tensile properties of Mg-Gd-Y-Zr alloys[J]. Materials Transactions,2001,42(7):1206-1211.
    [122] Nie J F, Muddle B C. Precipitation in magnesium alloy WE54duringisothermal ageing at250℃[J]. Scripta Materialia,1999,40(10):1089–1094.
    [123] Nicholas E D. Developments in the friction stir welding of metal[C]. The JapanInstitute of Light Metal,1998:139-151
    [124] Lee W B, Yeon Y M, Jung S B. Joint properties of friction stir welded AZ31B–H24magnesium alloy[J]. Materials Science and Technology,2003,19(6):785-790
    [125]张华,林三宝,吴林,等. AZ31镁合金搅拌摩擦焊接头力学性能[J].焊接学报,2003,24(5):65-68.
    [126] Seidel T U. The development of a friction stir welding process model usingcomputational fluid dynamics [D]. USA: University of South Carolina,2002.
    [127] Berbon P B, Bingel W H, Mishra R S, et al. Friction stir processing: a tool tohomogenize nanocomposite aluminum alloys[J]. Scripta Materialia,2001,44(1):61-66.
    [128] Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Scienceand Engineering R,2005,50(1-2):71-78.
    [129] Woo W, Choo H, Prime M B, et al. Microstructure, texture and residual stressin a friction-stir-processed AZ31B magnesium alloy[J]. Acta Materialia,2008,56(8):1701-1711.
    [130] Esparza J A, Davis W C, Trillo E A, et al. Friction-stir welding of magnesiumalloy AZ31B[J]. Journal of Materials Science Letters,2002,21(12):917-920.
    [131] Chang C I, Lee C J, Huang J C. Relationship between grain andZener-Holloman parameter during friction stir processing in AZ31Mg alloys[J].Scripta Materialia,2004,51(6):509-514.
    [132] Wang Y N, Chang C I, Lee C J, et al. Texture and weak grain size dependencein friction stir processed Mg-Al-Zn alloy[J]. Scripta Materialia,2006,55(7):637-640.
    [133] Wang X H, Wang K S. Microstructure and properties of friction stirbutt-welded AZ31magnesium alloy[J]. Materials Science and Engineering A,2006,431(1-2):114-117.
    [134] Lee W B, Yeon Y M, Jung S B. Joint properties of friction stir weldedAZ31B-H24magnesium alloy[J]. Materials Science and Technology,2003,19(6):785-790.
    [135] Somasekharan A C, Murr L E. Microstructures in friction-stir welded dissimilarmagnesium alloys to6061-T6aluminum alloy[J]. Materials Characterization,2004,52(1):49-64.
    [136] Lim S, Kim S, Lee C, et al. Tensile behavior of friction-stir-welded AZ31-H24Mg alloy[J]. Metallurgical and Materials Transactions A,2005,36(6):1609-1612.
    [137] Afrin N, Chen D L, Cao X, et al. Microstructure and tensile properties offriction stir welded AZ31B magnesium alloy[J]. Materials Science andEngineering A,2008,472(1-2):179-186.
    [138] Park S H C, Sato Y S, Kokawa H. Basal plane texture and flow pattern infriction stir weld of a magnesium alloy[J]. Metallurgical and MaterialsTransactions A,2003,34(4):987-994.
    [139] Park S H C, Sato Y S, Kokawa H. Effect of micro-texture on fracture locationin friction stir weld of Mg alloy AZ61during tensile test[J]. Scripta Materialia,2003,49(2):161-166.
    [140] Woo W, Choo H, Brown D W, et al. Texture variation and its influence on thetensile behavior of a friction-stir processed magnesium alloy[J]. ScriptaMaterialia,2006,54(11):1859-1864.
    [141] Sato Y S, Park S H C, Matsunaga A, et al. Novel production for highlyformable Mg alloy plate[J]. Journal of Materials Science,2005,40(3):637-642.
    [142] Lee C J, Huang J C, Hsieh P J. Mg based nano-composites fabricated byfriction stir processing[J]. Scripta Materialia,2006,54(7):1415-1420.
    [143] Morisada Y, Fujii H, Nagaoka T, et al. Effect of friction stir processing withSiC particles on microstructure and hardness of AZ31[J]. Materials Science andEngineering A,2006,433(1-2):50-54.
    [144] Santella M, Frederick A, Degen C, et al. The use of friction-stir technology tomodify the surface of AM60B magnesium die castings[J]. JOM,2006,58(5):56-61.
    [145] Feng A H, Ma Z Y. Enhanced mechanical properties of Mg-Al-Zn cast alloyvia friction stir processing[J]. Scripta Materialia,2007,56(5):397-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700