用户名: 密码: 验证码:
氢对TC4钛合金焊接接头组织与性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金材料的焊接方法中,电子束焊接是一种先进的高能束流加工技术,具有其他传统焊接方法无法比拟的优点。由于钛合金电子束焊接构件在使用环境中存在氢和循环应力,焊接构件有发生氢致断裂的可能,因而研究氢对电子束焊接头疲劳性能的影响显得十分重要。作为一种新型的固相连接技术,线性摩擦焊接具有优质、高效、节材、无污染等一系列优点,但线性摩擦焊技术也存在焊机吨位大、设备制造复杂的问题,限制了它的应用范围。钛合金置氢加工工艺是把氢作为一种临时合金化元素,通过改变钛合金的相组成和微观结构,进而达到改善钛合金加工性能的目的。应用这一技术可以允分发挥钛合金材料的加工性能,降低合金对设备成型能力的要求。本文以TC4钛合金为研究对象,首先分析了置氢后TC4钛合金室温组织及亚结构的演变规律,然后研究了氢对TC4钛合金电子束焊接头疲劳性能的影响规律,最后研究了置氢TC4钛合金的线性摩擦焊连接性能,并对置氢钛合金线性摩擦焊过程进行了数值模拟。
     钛合金的室温组织是影响其焊接性能以及接头力学性能的主要因索。本文采用光学显微镜、扫描电子显微镜、X射线衍射仪及透射电子显微镜分析了置氢对TC4钛合金室温组织及亚结构的影响规律,并揭示了置氢TC4钛合金中氢化物的析出机制。研究结果表明,随着氢含量的增加,TC4钛合金组织中初生α相的含量逐渐减少,p相的含量逐渐增多,孪晶数量明显增多。当氢含量达到0.25wt%后,在TC4钛合金中观察到了面心立方结构的6氢化物。
     采用置氢C(T)试样对TC4钛合金电子束焊接头的室温疲劳裂纹扩展速率进行J’测定。研究结果得出,置氢母材试样在低速扩展区和失稳快速扩展区的da/dN相对于未氢试样有明显的提高,但不同氢含量之间差别不大。在稳态扩展区(Paris区),氧对试样da/dN的影响很小。对于焊缝试样,置氢试样的da/dN在裂纹扩展的全过程均明显于未置氢试样,并且随着氢含量的增加,裂纹扩展速率提高,只是在氢含量0.054wt%增加到0.101wt%时,提高幅度变小。氢对TC4钛合金母材和焊缝试样断口形貌的影响规律基本相同,在预裂区,随着氢含量的增加,二次裂纹的数量增多。在稳态扩展区,随着氢含量的增加,疲劳条带宽度增大,二次裂纹的数量增多、尺寸增大,农明材料脆性增大。在失稳快速扩展区,不同氢含量的试样都为典型韧性断裂,置氢试样的韧窝较浅、较小。
     采用统计分析的方法研究了氢对TC4钛合金电子束焊接头疲劳寿命的影响。结果表明,氢显著降低了TC4钛合金电子束焊接头试样的疲劳寿命,氢含量0.028wt%钛合金试样的疲劳寿命仅为未置氢试样的1/2,当氢含量增大到0.120wt%时,疲劳寿命降到了未充氢的1/5。疲劳试样多数断于接头的热影响区,造成这一结果的主要原因是热影响区的组织不均匀性和氢含量相对较高。断口的形貌特征表明,氢促进了疲劳裂纹的萌生和增加了裂纹扩展的速度,导致钛合金电子束焊接头的疲劳寿命显著降低。
     本文系统研究了未置氢TC4钛合金的线性摩擦焊连接性能,总结得出,未置氢TC4合金获得成功焊接头并具有优良力学性能的临界工艺参数条件为:f=30Hz,a=2mm,p=4T,t=2s。焊接时需要输入的最小有效功率密度为8×106W/m2。相同焊接工艺参数下置氢TC4钛合金接头的焊合率均高于未置氢钛合金,接头的焊缝宽度也明显小于未置氢钛合金。随着氢含量的增加,置氢钛合金接头的轴向缩短量先显著增加后又稍微降低。氢含量在0.3~0.4wt%之间时,钛合余具有较好的高温塑性,对于提高钛合金的线性摩擦焊连接性能最为有利。置氢-除氢处理过程没有降低TC4钛合金线性摩擦焊接头的室温力学性能。计算得出,置氢TC4钛合金获得成功焊接接头需要要输入的最小有效功率密度为5.5×106W/m2,与未置氢钛合金相比,降低幅度达到了30%。氢主要通过改变钛合金中的两相比例,促进高温变形过程中位错运动和动态再结晶等机制来增加钛合金的高温塑性,从而改善钛合金的线性摩擦焊连接性能。
     采用"COSMAP"有限元数值模拟软件,综合考虑线性摩擦焊过程中温度场、应力场、组织场的三场耦合作用,建立了三维弹塑性有限元模型,较好地对置氧TC4钛合金线性摩擦焊过程中的温度场、应力场以及焊缝区的相变过程进行了数值模拟,并对比分析了氢的影响。通过特定节点温度变化曲线的测量,接头表面残余应力的测量以及焊缝区的组织分析对模拟结果进行了试验验证,结果表明,模拟结果与试验结果吻合较好。此数值模拟结果可为钛合金线性摩擦焊的工艺参数优化与接头质量控制提供参考依据。
In the welding methods of titanium alloys, electron beam welding (EBW) is one kind of advanced high energy density beam processing technology, which has many advantages that other traditional welding methods can't compare with. Because there are hydrogen and cyclic stress in the work environment, the possibility exists that hydrogen-induced fracture will take place in the titanium alloy components welded by EBW. So it will be very important to study effects of hydrogen on fatigue properties of titanium alloy EBW joints. As a new solid-phase welding technology, linear friction welding (LFW) has many advantages such as high quality, high efficiency, material saving, pollution free, etc. However, LFW technology also has its disadvantages, i.e. the application of LFW is limited because of the large tonnage of LFW machine and complex technique for manufacturing equipment. The thermohydrogen processing (THP) is a technique in which hydrogen is used as a temporary alloying element in titanium alloys by controlling the microstructure and phase structure to improve the mechanical working properties. By using this technology, the workability of titanium alloy can be given to full play, and the requirement to equipment's forming capability can be lowered. In this paper, TC4alloy is the research object. Firstly, the microstructure and sub-structure evolution of TC4alloy after hydrogenation were analyzed. Secondly, effects of hydrogen on fatigue properties of TC4alloy EBW joints were researched. Finally, linear friction welding performance of hydrogenated TC4alloy was researched, and the numerical simulation of hydrogenated TC4alloy during linear friction welding progress was carried out.
     Microstructure of titanium alloys at room temperature has much influence on their welding performance and the mechanical properties of welded joints. Thus optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction analysis (XRD) and Transmission electron microscope (TEM) were used to analyze the influence of hydrogen on the microstructures and substructures of titanium alloy. The precipitation mechanism of titanium hydride in hydrogenated TC4alloy was disclosed. The results show that original α phase fraction decreases gradually, while β phase fraction increases with the increase in hydrogen content. The amounts of twins also increase significantly in the hydrogenated alloy as hydrogen content increasing. When hydrogen content up to0.25wt%,δ titanium hydride having a fee structure can be observed in hydrogenated TC4alloy.
     The hydrogenated C(T) specimens were employed to measure the fatigue crack propagation rate (da/dN) of TC4alloy electron beam welded joints at room temperature. The results indicated that the da/dN of hydrogenated base metal specimens were higher than the non-hydrogenated ones in near-threshold stage and rapid rupture stage, but specimens with various hydrogen contents differed little from each other, and hydrogen showed little effects on da/dN in stable crack propagation stage (Paris stage). Thed da/dN of hydrogenated weld bead specimens were obviously enhanced during the whole crack propagation process and increased with the increment of hydrogen content. But the degree of da/dN increasing became small when hydrogen content increased from0.054wt%to0.101wt%. The analysis results of fracture surface morphologies showed that the weld bead specimens had similar surface morphologies with the base metal specimens. The amount of secondary crack increased with the increase of hydrogen content in the pre-crack region. In the stable crack growth region, the width of fatigue striation, amount and size of secondary crack increased when hydrogen content increasing, which indicated the increase of brittleness of titanium alloy. In the rapid cracking region, the surface morphologies of all specimens consisted of dimples, and the dimples of hydrogenated specimens were shallower and smaller.
     The effects of hydrogen on fatigue life values of TC4titanium alloy electron beam welded joints were evaluated by statistic approach. The fatigue fracture positions of joints as well as the fracture surface morphologies of specimens were observed and analyzed. It was found that the fatigue life was evidently reduced by hydrogen charging. The fatigue life of joint with0.028wt%hydrogen was just half of the hydrogen-free joint. When hydrogen content was0.120wt%, the fatigue life of hydrogen-charged joint decreased to one fifth of the hydrogen-free joint. The fracture occurred at heat affected zone (HAZ) of most fatigue specimens. This was due to the structure inhomogeneity and the higher hydrogen content of materials at HAZ. The fractographic observation results indicate that hydrogen accelerates the fatigue crack initiation and increases the speed of crack propagation, which leads to the obvious decrease of fatigues lives of TC4titanium alloy joints welded by electron beam welding.
     Systematic researches on linear friction welding performance of TC4alloy were carried out.The results show that the critical parameters for unhydrogenated TC4alloy to obtain a successful LFW joint having excellent mechanical properties are:f=30Hz, a=2mm, p=4T, t=2s. The minimum effective power density needed is8.0×106W/m2. Under the same welding parameters condition, the bonding rates of all hydrogenated TC4alloy LFW joints are higher than the unhydrogenated alloy joints, and the widths of weld bead of hydrogenated TC4alloy joints are narrower than the unhydrogenated joints. As hydrogen content increases, the axial shortening of hydrogenated TC4alloy first increases obviously and then decreases slightly. It can be concluded that TC4alloy containing0.3~0.4wt%hydrogen has better high temperature plasticity, which resultes in the optimum welding performance improvement of LFW. The THP process doesn't reduce the mechanical properties of TC4alloy LFW joints. The minimum effective power density needed for hydrogenated TC4alloy to obtain a success LFW joint is calculated to be5.5×106W/m2. Comparing with the unhydrogenated TC4alloy, the reduce rate is up to30%. The high temperature plasticity of titanium alloy is enhanced by hydrogen mainly through mechanisms:changing phase proportion of α and β, promoting dislocation movement and dynamic recrystallization. As a result, the linear friction welding performance is improved by hydrogenation.
     By use of finite clement simulation (FHM) code COSMAP, the mathematical model synthetically concerning the coupled effects of temperature field, stress field and phase structure was established. Moreover, a three-dimensional elastic-plastic FHM model was established. Then the linear friction welding process of hydrogenated TC4alloy was well simulated, and the law of variation and distribution of temperature and stress fields as well as phase structure was obtained. Furthermore, the effects of hydrogen on the three fields were analyzed by comparative analysis method. By performing the measurement of temperature variation of a specific node and residual stress distribution at surface of the joint as well as observation of microstructure at weld bead zone, the simulation results were experimentally verified. By comparison, the calculation data obtained from this numerical simulation work was in good agreement with the experimental data. This numerical simulation result can be used to provide a reference for parameters optimization and joint quality control of titanium alloy in linear friction welding technology.
引文
[1]李成功,傅恒志,于翘等.航空航天材料.北京:国防工业出版社,2002:42-44
    [2]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005:26-62
    [3]赵树萍,吕双坤.钛合金在航空航天领域中的应用.钛工业进展[J],2002,6:18-21
    [4]赵永庆,奚正平,曲恒磊.我国航空用钛合金材料研究现状.航空材料学报[J],2003,23:215-219
    [5]彭艳萍,曾凡昌,王俊杰等.国外航空钛合金的发展应用及其特点分析.材料工程,1997(3):22
    [6]Fishgoit A V, Kolachev B A. Effect of hydrogen on fatigue-crack growth in titanium and its alloys, Soviet Materials Science.1983,19(5):29-35
    [7]Van Leeuwen H P. A quantitative analysis of hydrogen induced cracking. National Technical Service, N77-25307
    [8]Senkov O N, Jonas J J, Froes F H. Recent advances in the thermohydrogen processing of titamium alloys. JOM,1996,48(7):42-47
    [9]王亚军.高能束流加工技术-电子束焊接.机电信息,1998(2):13-15
    [10]王清,徐然,孙东立.氢处理对TA15钛合金焊缝组织和性能的影响.焊接学报,2008,29(10):19-22
    [11]陈芙蓉,霍立兴,张玉风等.钛合金电子束焊接接头疲劳试验数据统计分析.内蒙古工业大学学报,2003,22(1):39-43
    [12]张田仓,韦依,周梦慰.线性摩擦焊在整体叶盘制造中的应用.航空制造技术,2004(11):56-58
    [13]张田仓.李晶,季亚娟等.TC4钛合金线性摩擦焊接头组织和力学性能.焊接学报,2010,31(2):53-56
    [14]Eliasb R J, Corsoa H L, Gervasoni J L. Fundamental aspects of the Ti-H System:theoretical and experimental behaviour. International Journal of Hydrogen Energy,2002,27(1):91-97
    [15]Wang W. Thermodynamic evaluation of the titanium-hydrogen system. Journal of Alloys and Compounds,1996,238:6-12
    [16]Mitrokhin S V, Bezuglaya T N, Verbetsky V N. Structure and hydrogen sorption properties of (Ti,Zr)-Mn-V alloys. Journal of Alloys and Compounds,2002,330-332:146-151
    [17]Uno M, Takahashi K, Maruyama T, et al. Hydrogen solubility of BCC titanium alloys. Journal of Alloys and Compounds,2004.366(1-2):213-216
    [18]Bhosle V, Baburaj E G, Miranova M, et al. Dehydrogenation of TiH2. Materials and Engineering A, 2003,356(1-2):190-199
    [19]Arbuzov V L, Vykhodets V B, Raspopova G A. The trapping of hydrogen ions in vanadium and titanium. Journal of Nuclear Materials,1995,233-237:442-446
    [20]Gabidullin E R, Nosov Y K, Llin A A. Kinetic parameters of interaction of hydrogen and titanium. Russian Metallurgy,1995(6):61-65
    [21]Miyoshi T, Naito S, Yamamoto M. Diffusion of hydrogen in titanium Ti-88A1-12 and Ti3Al. Journal of the Chemical Society-Faraday Transactions,1996,92(3):483-486
    [22]赵林若,张少卿,颜鸣臬.氢对Al和V在β纯Ti中扩散的影响.材料科学进展,1990,4(3):237-240
    [23]褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社出版,1988,10:50-354
    [24]Wanderwalker D M. Hydride formation on dislocations in titanium. Physica Status Solidi.1989, 112(1):73-78
    [25]Wanderwalker D M.The formation of hydrides in titanium. Physica Status Solidi.1988,105:77-80
    [26]Fernadez J F, Cuevas F, Alguero M, et al. Influence of the preparation conditions of titanium hydride and dcuteride TiHx(DX) (X≈2.00) on the specific heat around the δ-ε Transition. Journal of Alloys and Compounds,1995,231:78-84
    [27]莫畏,邓国珠,罗方承.钛冶金.北京:冶金工业出版社,1998,6
    [28]刘春飞,张益坤.电子束焊接技术发展历史、现状及展望(Ⅲ).航天制造技术,2003,3:27-29
    [29]刘金合.高能密度焊.西安:西北工业大学出版社,1995:15-24,26,65,72
    [30]宫平.影响TC4钛合金电子束焊缝形状因素的研究.大连:大连交通大学硕士学位论文.2007.12.29
    [31]关桥.从欧共体的科研计划看高能束流焊接技术的发展.航空工艺技术,1992,1:1-3
    [32]李志远,钱乙余,张九海.先进连接方法.北京:机械工业出版社,2000:99-103
    [33]周琦.电子束焊接动态特性研究.北京:北京航空航天大学博士论文,2005:1-3
    [34]Keclaru L, Lerf R, Eschler P Y, et al. Corrosion behavior of a welded stainless-steel orthopedic implant. Biomaterials,2001,22:269-279
    [35]陈芙蓉,霍立兴,张玉凤.电子束焊接技术及其接头质量评定.焊接,2001,(11):21
    [36]勃拉图辛AT,柯拉契夫BA,萨得柯夫BB等.匕机钛合金结构制造技术.北京航空工艺研究所,1998
    [37]李远睿,黄本多.何庆兵.氢对Ti-Al-V钛合金的冲击韧性及组织的影响.重庆大学学报,2003,26(2):127-131
    [38]何晓,沈保罗.曹建玲等.氢对两种新型钛合金强度和塑性的影响.稀有金属材料与工程,2003,32(5):390-393
    [39]徐济进.严铿.蒋成禹.氢对T225NG钛合金力学性能影响.华乐船舶工业学院学报,2003,17(5):85-88
    [40]Yeh M S, Huang J H. Internal hydrogen-induced subcritical crack growth in Ti-6A1-4V, Scripta Materialia,1997,36(12):1415-1421.
    [41]Morasch K R, Bahr D F. The effect of hydrogen on deformation and cross slip in a BCC titanium alloy, Scripta Materialia,2001,45:839-845
    [42]Michailov et al. Calculation of the hydrogen distribution during electron beam welding of titanium alloy TiAl6V4. Schweisen and Schneiden.1994,46
    [43]Michailov et al. Caculation of hydrogen distribution during welding. Schweiden and schneiden. 1991,11
    [44]Lenets Y et al. Sustained-load cracking in mill annealed Ti-6A1-4V at room temperature. Proceedings of the 1997 ASME international Mechanical Engineering Congress and Exposition.1997,369
    [45]王亚军,唐晓青,刘皓等.钛合金电子束焊接接头的氢行为.焊接学报,2005,26(11):93-96
    [46]孟鑫,陈春焕,姚向军等.Ti55合金电子束焊缝氢致延迟裂纹的扩展机理.焊接学报,2002,23(4):21-23
    [47]刘浩.Ti1023钛合金电子束焊接氢致延迟开裂倾向的研究.北京航空工艺研究所倾士论文,1999
    [48]张田仓,韦依.周梦慰等.线性摩控焊在整体叶盘制造中的应用.航空制造技术,2004,15(6):56-58
    [49]陈光.一种整体叶盘的加工方法一线性摩擦焊.航空工程与维修,1999,(4):14-15
    [50]朱瑞峰,白钢,苏利龙等.线性摩擦焊及其研究应用现状.热加工艺,2009,38(9):100-103
    [51]陈亮,李文亚,马铁军.线性摩擦焊技术研究进展与展望.航空工程进展,2010,1(2):178-183
    [52]段立宇,刘金合,杜随更.摩擦焊接物理研究进展.西北工业大学学报,1993,11(增刊):9-16
    [53]杜随更.摩擦焊节过程中焊合区金属的动态再结晶.西北工业大学工学博士学位论文.1997,3
    [54]刘军(译).摩擦焊在美国的应用与发展.焊接技术,1995,(4):46-47
    [55]Vairis A, Frost M High frequency linear welding of a titanium alloy. Materials Science and Engineering,1998,26(5):117-131
    [56]VAris A, Frost M. On the extrusion stage of linear friction welding of Ti6A14V. Materials Science and Engineering,1999,27A(1):477-484
    [57]Kavallaris, Lacey N I, Nikolopoulos A A, et al. Behaviour of a non-local equation modeling linear friction welding. IMA J Appl Math,2007,72(5):597-616
    [58]Wanjara P, Jahazi M. Linear friction welding of Ti6A14V:processing, microstructure and mechanical-property inter-relations. Metallurgical and Materials Transactions,2005.36A(8):2149-2164
    159] Karadgca M, Preussa M, Lovellb C, et al. Texture development in Ti 6A1-4V linear friction weld. Materials Science and Engineering,2007,A(495):182-191
    [60]Karadgea M, Preussa M, Withersa P J, et al. Importance of crystal orientation in linear friction joining of singles crystal to polycrystalline nickel-based superalloys. Materials Science and Engineering,2008,491: 446-453
    [61]Preussa M, Quinta J, Fonsecaa D A, et al. Residual stresses in linear friction welded imi550. Journal of Neutron Research,2004,12(1-3):165-173
    [62]Daymond, Bonner. Measurement of strain in a titanium linear friction weld by neutron diffraction. Physica B,2003(325):130-137
    [63]Jun, Tea-Sung, Rotundo, et al. A study of residual stresses in AI/SiCp linear friction weldment by energy-dispersive neutron diffraction[J]. Key Eng Mat,2008,385-387:517-520
    [64]Rothkirch, Andre, Lenser, et al. Imaging diffraction using maxim at G3/hasylab spatial resolved strain measurements on linear friction welded dissimilar materials (AA7020-T6/Ti6AIV)[J]. Materials Science Forum,2008,571-572:237-242.
    [65]Vairis A, Frost M. Modelling the linear friction welding of titanium blocks[J]. Materials Science and Engineering,2000,28A(2):8-17
    [66]刘金和,杨思乾,马铁军.钛合金TC4线性摩擦焊初步研究[J].航空航天焊接国际论坛.2004,398-401
    [67]刘金和,杨思乾,马铁军.钛合金TC4线性摩擦焊的工艺探索.第十一次全国焊接会议论文集
    [68]温国栋,马铁军,张勇等.TC4线性摩擦焊接头氧化物的组织特征[J].金属铸锻焊技术,2008,38(15):102-97
    [69]马铁军,张学军,杨思乾.TC4钛合金线性摩擦焊接头的冲击韧性及断口特征[J].航空材料学报,2007,27(6):39-44
    [70]马铁军,史栋刚,张勇等.TC4/TC17线性摩擦焊接头的微观组织与力学性能.航空材料学报,2009:8
    [71]马铁军,杨思乾,张勇等.LC9超硬铝线性摩擦焊研究.焊接技术,2007,36(11):14-15
    [72]张田仓,李晶,季亚娟等.TC4钛合金线性摩擦焊接头组织和力学性能[J].焊接学报,2010,31(2):53-56
    [73]孙成彬,张田仓,陶军等.高温钛合金Ti60线性摩擦焊接头形貌特征及接头性能分析[J].电焊机,2008,38(11):1-5
    [74]季亚娟.张田仓,李晓红.焊后热处理对TC4钛合金线性摩擦焊接头组织和性能的影响.热加工工艺,2010,39(23):197-199
    [75]杜随史,王庆,傅莉.线性摩擦焊接过程三维热力耦合有限元分析[J].西北工业大学学报,2002,20(2):180-185
    [76]王庆,杜随更,傅莉等.线性摩擦焊机振动模型及动力学分析[J].航空制造技术,2002,(8):33-36
    [77]刘佳涛.钛合金Ti6A14V线性摩擦焊接数值模拟研究.西北工业大学硕十学位论文,2007.3
    [78]许全周.马铁军,张勇等.45钢线性摩擦焊接头温度场的数值模拟与实验验证[J].电焊机,2007,37(10):39-44
    [79i陶军,孙成彬,张田仓.钛合金线性摩擦焊接头缺陷形成机理分析[J].航空制造技术,2009,10:139-142
    [80]Tao J, Zhang T C, Liu P T, et al. Numerical computation of a linear friction welding process[J]. Materials Science Forum,2008,575-578:811-815
    [81]Lenning G A, Berger L W, Jaffee R I. Effect of hydrogen on the mechanical properties of titanium and titanium alloys[R]. ADA9523374. Watertown Arsenal Labs., MA., U.S.,1955
    [82]Burte H M. Hydrogen Contamination in titanium and titanium alloys. PartⅢ Strain Aging Hydrogen Embrittlement in alpha-beta Titanium Alloys[R]. ADI104397. U.S.,1956
    [831 Yeh M S, Huang J H. Hydrogen-induced subcritical crack growth in Ti-6A1-4V alloy. Materials Science and Engineering A,1998,242(1-2):96-107
    [84]Evans W J, Bache M R, McElhone M, et al. Environmental interactions with fatigue crack growth in alpha/beta titanium alloys. International Journal of Fatigue,1997, (19):177-182
    [85]Llyin A A, Polkin I S, Moamonov A M. Thermohydrogen treatment—the base of hydrogen technology of titanium alloys.Titanium'95:Science and Technology,1995:2462-2469
    [86]Kerr W R. Hydrogen as an alloying element in titanium (hydrovac)[A]. Titanium'80 Science and Technology [C], Kyoto, Japan,1980:2477-2486
    [87]侯红亮,李志强,王亚军等.钛合金热氢处理技术及其应用前景.中国有色金属学报,2003,13(3):533-549
    [88]Senkov O N, Froes F H. Thermohydrogen processing of titanium alloys[J]. International Journal of Hydrogen Energy,1999,24(6):565-576
    [89]Froes F H, Senkov O N, Qazi J I. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing [J]. International Materials Reviews,2004,49(3-4):227-245
    [90]孙东立,韩潇.王清等.氢处理对钛合金组织性能的影响及其机理.宇航工艺材料.2005,3:11-16
    [91]Klachev B V, Nosov V K. Hydrogen plasticization in hot deforming of titanium alloys[A]. Titanium'85:Science and Technology[C].1984.625-631
    [92]徐振声.宫波,张彩锫等.氢对Ti-6A1-4V合金高温增塑作用[J].金属学报,1991.27:A270-A275
    [93]Zhang C B, Kang Q, Lai Z H. The microstructure modification, lattice and mechanical properties of hydrogenated/dehydrogenated alpha Ti[J]. Acta Mater,1996,44:1077-1083
    [94]Senkov O N. Jonas J J. Effect of phase composition and hydrogen levelon the deformation behavior of titanium hydrogen alloys[J], Metall MaterTrans,1996,27:1869-1877.
    [95]徐振声,宫波,张彩锫等.氢对TC4钛合金高温拉伸行为的影响[J].稀有金属,1993,17(3):205-208
    [96]廖际常.含氢热加工技术在耐热钛介金中应用前景[J].钛工业进展,2002(1):25-27
    [97]Kerr W R, Gurrey F J, Martorrwll I A. Pilot plant forging of hydrogenated Ti-6A1-4V[R]. AD A089107, Air Force Wright Aeronautical Laboratories,1980
    [98]Senkov O N, Jonas J J, Froes F H. Thermally flow of beta titanium and titanium-hydrogen alloys[J]. Philosophical Magazine A,2000,80:2813-2825
    [99]张勇.钛合金及Ti3Al基合金的氢处理研究[D].北京:北京航空材料研究院,1996
    [100]张少卿.氢在钛合金热加工中的作用.材料工程,1992,(2):24-29
    [101]Anisimova L I. Reversible alloying with hydrogen and deformation of the titanium alloy VT6. Metal Science and Heat Treatment,1992,34(2):143-147
    [102]张勇,张少卿,陶春虎.氢化Ti-25A1-10Nb-3V-1Mo铸态合金的热压缩行为及其显微组织[J].金属学报,1996,32(3):235-240
    [103]张勇,张少卿,陶春虎.Ti-25A1-10Nb-3V-1Mo合金的氢化行为及其热压缩行为[J].中国有色金属学报,1995,5(增刊):218-224
    [104]韩潇.氢处理对TC4钛合金组织和热变形行为的影响[D].哈尔滨:哈尔滨工业大学,2004
    [105]German R M. Powder metallurgy science. Princeton, NJ:Metal Powder Industries Federation,1994
    [106]李慎升,米振丽,唐荻.退火工艺对TWIP钢显微组织的影响.材料热处理技术,2008,9(18):64-66
    [107]Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals:A constitutive description. Acta Materialia,2001, (49):4025-4039
    [108]Schur D V. Phase transformations in titanium hydrides. International Journal of Hydrogen Energy, 1996,21(11-12):1121-1124
    [109]Nakasa K, Satoh H. The effect of hydrogen-charging on the fatigue crack propagation behavior of β-titanium alloys. Corrosion Science,1996,38(3):457-468
    [110]唐志平,彭楚峰,何晓等.氢对Ti-2Al-2.5Zr钛合金疲劳裂纹扩展速率的影响[J].核动力工程1999,24(6):555-558.
    [111]何晓,沈保罗.氢对Ti-4Al-2V钛合金疲劳裂纹扩展速率的影响[J].中国有色金属学报,2003,13(4):924-927.
    [112]Boyer R R, Spurr W F. Characteristics of sustained-load cracking and hydrogen effects in Ti-6A1-4V[J]. Metallurgical and Materials Transaction A,1978,9(1):23-29.
    [113]Clarke C F, Hardie D, Ikeda B M. The effect of hydrogen content on the fracture of pre-cracked titanium specimens[J]. Corrosion Science,1994,36(3):487-509.
    [114]Nakasa K, Horita M, Satoh H. Effects of hydrogen-charging on the fatigue crack propagation behavior of Ti-13V-11Cr-3Al alloy[J]. Japan Society of Materials Science,1992,41:1248-1254.
    [115]Nakasa k, Shimizu T. Effects of hydrogen-charging on the fatigue crack initiation and propagation behavior of Ti-15 pct V-3 pct Cr-3 pet Al-3 pct Sn alloy[J]. Journal Japan Institute of Light Metals.1995, 45(11):643-648.
    [116]刘昌奎,刘新灵.TA15钛合金焊缝及热影响区流劳扩展行为[J].火效分析与预防,2007,5(1):10-13
    [117]褚武扬.氢损伤与氢致开裂.北京:冶金出版社,1988
    [118]Essmann U, Gosele U, Mughrabi H. A model of extrusions and intrusions in fatigued metals, Part I:Point-defect production and the growth of extrusions[J]. Philosophical Magazine A,1981,44:405-426.
    [119]束德林.工程材料力学性能.北京:机械工业出版社,2005
    [120]张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009,1:106-107
    [121]钟群鹏.断口学.北京:高等教育出版社,2006,6:251
    [122]谭晓礼,顾海澄.Ti单晶及多晶与孪晶相关的疲劳裂纹萌生.材料研究学报,1996,2(1):25
    [123]Zong Y Y, Shan D B, Lv Y, et al. Effect of 0.3 wt%H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy. Hydrogen Energy,2007
    [1241 Senkov O N. Jonas J J. Effect of hydrogen content on the deformation behavior of titanium-hydrogen alloys[C]. Titanium'95-Science and Technology,1995:1026-1033
    [125]杜随更,吴诗,段立宁等.初始动态再结晶过程中的位错动态行为.西北工业大学学报,1997,15(3):333-337.
    [126]Zong Y Y, Shan D B, Lu Y, et al. Effect of 0.3 wt% H addition on the high temperature deformation behaviors of Ti-6Al-4V alloy. Hydrogen Energy,2007,32(16):3936-3940
    [127]Ju D Y. Inoue T. On the material process simulation code COSMAP-simulated examples and its experimental verification. Key Engineering Materials 2007, (345-346):955-958
    [128]Johoson W A. Mehl R F. Reaction kinetics in processes of nuclcation and growth[J]. Trans. AIME, 1939.135:416-458.
    [129]Magee C L. Nucleation of Martensite[J]. ASM, New York:1968.
    [130]JU D Y. Zhang W M. Zhang Y. Modeling and experimental verification of martensitic transformation plastic behavior in carbon steel for quenching process. Materials Science and Engineering, 2006,438-440:246-250
    [131]李红,侯红亮.孙中刚.氢对TC4合金物理力学性能的影响及其与切削性能的相关性[J].航空制造技术,2008.(20):80-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700