用户名: 密码: 验证码:
晶态和非晶钎料连接ZrO_2与Ti6Al4V的组织与强度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锆具有高硬度、高耐磨性及耐高温氧化腐蚀等特点,但是其加工性能差,易碎、且不能被加工成复杂零部件。Ti–6Al–4V合金具有轻质高强度、较高的拉伸性能和韧性、高抗腐蚀性等特点。将氧化锆与Ti–6Al–4V合金相结合,使二者优势互补,广泛应用于航空航天等领域中。将二者进行钎焊连接采用的钎料大部分是加入2–5wt.%Ti的近共晶成分的银系合金Ag–28wt.%Cu。但是该钎料中含有60–70wt.%的贵金属银,大幅提高了其成本。近年来,非晶合金被广泛作为钎料应用于连接金属和陶瓷。非晶钎料具有不同于晶态钎料的独特延展性和成形加工性能,而且加入活性元素Ti和Zr不但有利于提高其非晶形成能力还有利于提高其与陶瓷的润湿性。非晶钎料有望取代传统的贵金属Ag–Cu–Ti钎料。
     因此,本文对比研究了Ag–Cu–Ti和Ti、Zr、Cu基三种非晶钎料连接ZrO_2陶瓷和Ti–6Al–4V合金。利用X–射线衍射(XRD)、扫描电镜(SEM)、场发射扫描电镜(FESEM)、能谱仪(EDS)以及MTS材料性能测试机等分析检测手段表征了不同钎焊工艺参数对连接处界面微观结构及其演变行为、界面反应机理及界面结合的影响规律及机制。对各种钎料及其钎焊工艺参数影响的界面微观结构与剪切强度的影响规律及两者的内在联系进行了认真的研究和讨论。进而演绎出控制或决定性能的界面结构特征,以及决定界面结构的钎焊工艺参数。建立钎料成分、钎焊工艺及界面结构和界面结合的相互关系。为开发新型非晶钎料及促进其应用奠定了必要的理论基础。本文的主要研究结果如下:
     (1)揭示了晶态Ag–Cu–Ti合金熔体在ZrO_2陶瓷基板上的润湿机制为反应性润湿。润湿过程中发生界面反应产物有TiO、Cu–Ti–O相和Cu–Ti金属间化合物。研究了合金钎料中Ti元素的含量(4–10at%)以及温度对该反应体系的润湿行为以及润湿性变化规律:Ag–Cu–Ti钎料合金在ZrO_2陶瓷基板上的润湿性随Ti含量的增加逐渐改善;Ag_(54)Cu_(43)Ti_4合金熔体在ZrO_2陶瓷基板上的润湿性对温度有明显的反常依赖性。
     (2)研究了ZrO_2/Ag_(53)Cu_(41)Ti6/Ti–6Al–4V体系中钎焊工艺参数对接头界面结构以及接头性能的影响规律。典型界面组织结构为ZrO_2/TiO+Ti_2O+Cu_2Ti_4O反应层/Ag/CuTi+CuTi_2金属间化合物/针状魏氏体组织/Ti–6Al–4V。得出钎焊温度和保温时间及冷却速度不宜过高或者过快,钎焊温度过高保温时间过长,合金钎料中活性元素Ti与母材反应程度加剧,容易导致TiO+Ti_2O+Cu_2Ti_4O反应层和魏氏体组织层厚增加;冷却速度过快,易产生裂纹和孔洞等微观缺陷,均对界面强度造成不利的影响。当钎焊温度为1123K,保温时间为10min,冷却速度为5K/min时接头结合较好,为最佳工艺参数,其钎焊接头剪切强度可以达到178MPa。
     (3)揭示了Cu_(50)Ti_(33)Zr17、Ti_47Zr28Cu14Ni11和Zr_(55)Cu_(30)Al_(10)Ni_5三种非晶熔体在ZrO_2陶瓷基板上的润湿行为及润湿类型均为反应性润湿,对温度有明显的依赖性,高温有助于润湿。反应产物主要有TiO、Cu–Ti–O相和金属间化合物。由于钎料中的活性组元Ti, Zr在界面的富集并参与界面反应,极大地改善了体系的润湿性。但是较高的Zr浓度会抑制元素Ti与ZrO_2反应生成TiO+Ti_2O化合物,从而减弱Ti对反应润湿的促进作用。同时Ti和Zr的含量不宜过高,在较高温度下,产生过多的脆性金属间化合物会导致合金液滴与陶瓷基板的界面处出现微裂纹甚至剥离。Cu和Ni元素可以无限固溶,有利于提高非晶熔体熔化后的流动性。润湿性能由大到小的顺序是:Cu_(50)Ti_(33)Zr17/ZrO_2>Ti_47Zr28Cu14Ni11/ZrO_2> Zr_(55)Cu_(30)Al_(10)Ni_5/ZrO_2。
     (4)建立了三种非晶钎料钎焊体系中工艺参数、界面微观结构与接头剪切强度三者之间的内在联系。总体上,钎焊温度、保温时间及冷却速度决定了反应界面反应层的厚度,金属间化合物和魏氏体组织的数量及分布,进而最终决定了接头的剪切强度。在具体工艺上,钎焊温度对界面反应层的厚度影响较大,界面反应层厚度又是剪切强度的关键。保温时间对金属间化合物和魏氏体组织的分布和数量具有关键的作用;缓慢的冷却速度可以降低残余应力,减少微观缺陷的发生。剪切强度的高低主要取决于界面反应层的厚度、较少的金属间化合物和魏氏体组织以及缓慢的冷却速度。
     (5)总结出了三个体系连接的最佳工艺参数。①ZrO_2/Cu_(50)Ti_(33)Zr17/Ti–6Al–4V体系,当钎焊温度为1173K,保温时间为10min,冷却速度为5K/min为最佳工艺参数,其钎焊接头剪切强度可以达到162MPa。②ZrO_2/Ti_47Zr28Cu14Ni11/Ti–6Al–4V体系,当钎焊温度为1123K,保温时间为45min,冷却速度为5K/min为最佳工艺参数,其钎焊接头剪切强度可以达到85MPa。③ZrO_2/Zr_(55)Cu_(30)Al_(10)Ni_5/Ti–6Al–4V体系,当钎焊温度为1173K,保温时间为10min,冷却速度为5K/min为最佳工艺参数,其钎焊接头剪切强度可以达到95MPa。
Zirconia is a beneficial ceramic material in many structures and devices due to its highstrength, fracture toughness and hardness. However, its brittleness and lack of flexibilitymake the fabrication of complex shaped and/or large-sized components difficult. Manystructural applications of zirconia demonstrate its reliable and durable joining to metals.Among these metals, Ti–6Al–4V alloy is most often introduced to bonding with zirconia.The combination of high specific strength, good tensile strength at moderate temperatureand excellent corrosion resistance make them widely be applied in the aerospace industries.
     One of the mostly widely used filler metal is based on the Ag–Cu–Ti system, namely onthe Ag–28wt.%Cu eutectic composition, with about2–5wt.%of titanium additions.Nevertheless, consumption of a large amount (60-70wt.%) of the noble metal, Ag, in thebrazing filler is the main disadvantage of these alloys. Recently, amorphous alloys have beenused as brazing fillers. The amorphous fillers have significant advantages such as unique offoil form combined with outstanding ductility and flexibility, wide range of width andthickness available. In particular, the amorphous fillers containing active Ti and Zr elementswith good glass forming ability may replace the traditional Ag–Cu–Ti filler alloys in somecases.
     In this paper, the interface reaction mechanism was studied, and the effect of brazingprocess parameters on microstructure and shear strength was investigated when the ZrO_2ceramic and Ti–6Al–4V alloy were brazed with Ag–Cu–Ti and Ti, Zr and Cu–based threekinds of amorphous fillers using by XRD, SEM, FESEM, EDS and the MTS material testingmachine and so on detection means. And then deduce the interface structure of control ordecision properties characteristics, and defines interface microstructure of the brazingprocess parameters. Establish the relationship of filler composition, brazing processparameters and interface microstructure. It provides a necessary theoretical basis andapplications for the development of novel amorphous fillers in the ZrO_2/Ti–6Al–4V joints.The major results of the present study are as follows:
     (1) Reveals the wetting of molten Ag–Cu–Ti metallic glass alloy on the ZrO_2substratebelongs to the reactive wetting. The reaction products are mainly TiO, Cu–Ti–O phases andCu–Ti intermetallic compounds. Study the Ti element content in the alloy filler (4–10at%) and temperature on the reaction system of wetting behavior, and wettability change rule.With the increase in the content of Ti, the wettability of Ag–Cu–Ti/ZrO_2systems areimproved significantly. It is the anomalous dependence of wettability of Ag_(54)Cu43Ti_4/ZrO_2system on the temperatures.
     (2) The ZrO_2/Ag_(53)Cu_(41)Ti6/Ti–6Al–4V system in the brazing process parameters affectthe performance of joint interface microstructure and joint are studied. The interfacestructure was ZrO_2/TiO+Ti_2O+Cu_2Ti_4O/Ag/CuTi+CuTi_2/Widmanst ten/Ti–6Al–4V withAg_(53)Cu_(41)Ti6filler. Brazing temperature, holding time and cooling rate is unfavorable higheror too fast, higher brazing temperature and holding time is too long, active element Ti in thealloy filler with parent metal reaction degree aggravate, easily lead to TiO+Ti_2O+Cu_2Ti_4Oreaction and Widmanst ten layer thickness increases. Cooling rate too fast, easy to producethe micro defects such as cracks and holes, have adverse effects on the interface strength.When the brazing temperature was1123K for10min, the cooling rate of5K/min for theoptimal parameters, the joint is better; the reaction layer thickness is moderate. The shearstrength was178MPa.
     (3) Reveals the wetting of molten Cu_(50)Ti_(33)Zr17, Ti_47Zr28Cu14Ni11and Zr_(55)Cu_(30)Al_(10)Ni_5three amorphous alloys on the ZrO_2substrate belongs to the reactive wetting. The wettabilityof the amorphous fillers on the ZrO_2substrates obvious dependence on temperature, hightemperature helps the wetting. The reaction products are mainly TiO, Cu–Ti–O phases andintermetallic compounds. Due to the active elements of Ti, Zr in the fillers, enrichment andparticipate in the interface and reaction, greatly improve the wettability of the system. Buthigher element Zr concentration would inhibit Ti and ZrO_2reaction generated TiO+Ti_2Ocompounds, thereby weakening Ti wetting role in the reaction. But in the high temperature,high content of Ti and Zr will also generate a large number of brittle phases, resulting in thealloy droplets and ceramic substrate at the interface of micro–crack or even peel. Cu and Nielement can be infinite solid solution, amorphous fillers after the melt flow rate is enhanced.Wettability order: Cu_(50)Ti_(33)Zr17/ZrO_2>Ti_47Zr28Cu14Ni11/ZrO_2> Zr_(55)Cu_(30)Al_(10)Ni_5/ZrO_2.
     (4) Set up three kinds of amorphous fillers brazing system of process parameters, theinterface microstructure and the inner link between and among joint shear strength. Overall,the brazing temperature, holding time and cooling rate determines the thickness of theinterfacial reaction layer, intermetallic compounds and Widmanst ten stucture and thenumber of distribution, and finally decided to the shear strength of joint. On the specificprocess, brazing temperature had a greater influence on the thickness of the interfacialreaction layer, is critical in shear strength. Holding time has a key role of intermetalliccompounds and Widmanst ten stucture distribution and the number. Slow cooling rate canreduce the residual stress, reducing the occurrence of the micro defects. Shear strengthmainly depends on the thickness of the interfacial reaction layer, the less of intermetalliccompound and Widmanst ten stucture and the slow cooling rate.
     (5) Summed up the brazing optimal parameters of the three systems:① ZrO_2/Cu_(50)Ti_(33)Zr17/Ti–6Al–4V system, when the brazing temperature was1173K for10min,the cooling rate of5K/min for the optimal parameters, the shear strength was162MPa.②ZrO_2/Ti_47Zr28Cu14Ni11/Ti–6Al–4V system, when the brazing temperature was1173K for10min, the cooling rate of5K/min for the optimal parameters,the shear strength was85MPa.③ZrO_2/Zr_(55)Cu_(30)Al_(10)Ni_5/Ti–6Al–4V system, when the brazing temperature was1173K for10min, the cooling rate of5K/min for the optimal parameters, the shear strength was95MPa.
引文
[1]李成功.新材料研究发展与产生趋势[J].中国机械工程,2000,11(1~2):154–156.
    [2]郭景坤.关于先进结构陶瓷的研究[J].无机材料学报,1999,14(2):193–202.
    [3]李伟群,李树杰.陶瓷与金属的连接工艺[J].航空制造工程,1998,1:17–19.
    [4]邹家生,许志荣,初稚杰.非晶态焊接材料的特性及其应用[J].材料导报,2004,18(4):17–26.
    [5] HANSON W B, IRONSIDE K I, FEMIE J A. Active metal brazing of zirconia [J]. ActaMaterialia,2000,48(18):4673–4676.
    [6] MUNOZ M C, GALLEGO S, BELTRAN J I, CERDA J. Adhesion at metal-ZrO2interfaces [J]. Surface Science Reports,2006,61(7):303–344.
    [7]黄万群,李亚江,王娟,沈孝芹.陶瓷/金属钎焊与扩散连接的研究现状[J].焊接,2007,4:11–13.
    [8] DEWIDAR M, MOHAMED H F, LIM J K. A new approach for manufacturing a highporosity Ti-6Al-4V scaffolds for biomedical applications [J]. Journal of Materials Science&Technology,2008,24(6):931–935.
    [9] ROGER R, COLLINGS E W, WELSCH G, Materials Properties Handbook: Titaniumalloys [M]. Materials Park, OH, ASM International,1994.
    [10] HAO H, WANG Y, JIN Z, WANG X. Joining of zirconia ceramic to stainless steel andto itself using Ag57Cu38Ti5filler metal [J]. Journal of the European Ceramic Society,1995,78:2157–2160.
    [11] MUOLO M L, FERRERA E, MORBELLI L, PASSERONE A. Wetting, spreading andjoining in the alumina-zirconia-Inconel738system [J]. Scripta Materialia,2004,50:325–330.
    [12] SMORYGO O, KIM J S, KIM M D, EOM T G. Evolution of the interlayermicrostructure and the fracture modes of the zirconia/Cu–Ag–Ti filler/Ti active brazingjoints [J]. Materials Letters,2007,61:613–616.
    [13] ZHANG J,ZHANG X M,ZHOU Y, et al. Interfacial microstructure of Si3N4/Si3N4brazing joint with Cu–Zn–Ti filler alloy [J]. Materials Science and Engineering A,2008,495:271–275.
    [14] NAKA M, OKAMOTO I. Amorphous alloy and its application to joining [J]. Materialstransactions JIM,1985,14(2):185–195.
    [15]梁丽萍,高荫木,陈诵英.固体氧化物燃料电池与陶瓷材料[J].材料科学与工程,1997,15(4):9–13.
    [16] MEIER A, CHIDAMBARAM P R, EDWARDS G R. Modelling of the spreadingkinetics of reactive brazing alloys on ceramic substrates: copper-titanium alloys onpolycrystalline alumina [J]. Acta Materialia,1998,46(12):4453–4467.
    [17] UEKI M,NAKA M, OKAMOTO I. Wettability of some metals against zirconiaceramics [J]. Journal of Materials Science Letters,1986,5:1261–1262.
    [18] NIKOLOPOULOS P, SOTIROPOULOU D. Wettability between zirconia ceramics andthe liquid metals copper, nickel and cobalt [J]. Journal of Materials Science Letters,1987,6:1429–1430.
    [19] NIKOLOPOULOS P, ONDRACEK G, SOTIROULOU D, Wettability and interfacialenergies between zirconia ceramic and liquid Metals [J]. Ceramics International,1989,15:201–206.
    [20] DUH J G, CHIEN W S,CHIOU B S. Wettability in ZrO2–Ni and ZrO2–Cu bonding [J].Journal of Materials Science Letters,1989,8:405–408.
    [21] NAKASHIMA K, MATSUMOTO H, MORI K. Effect of additional elements Ni and Cron wetting characteristics of liquid Cu on zirconia ceramics [J]. Acta Materialia,2000,48:4677–4681.
    [22]刘桂武,杨刚宾,乔冠军,王红洁,王继平,卢天健.氧化锆陶瓷润湿及钎焊的研究进展[J].稀有金属材料与工程,2009,(38):406–410.
    [23] DUROV A V, KOSTJUK B D, SHEVCHENKO A V et al. Joining of zirconia to metalwith Cu–Ga–Ti and Cu–Sn–Pb–Ti fillers [J]. Materials Science and Engineering A,2000,290(1–2):186–189.
    [24] DUROV A V, NAODOCH Y V, KOSTYUK B D. Investigation of interaction of metalmelts and zirconia [J]. Journal of Materials Science,2005,40(9~10):2173–2178.
    [25] XU Q G, WU B L, ZHANG H F, HU Z Q. Wettability of molten Zr55Cu30Al10Ni5onalumina and zirconia [J]. Rare Metals,2007,26(3):213–217.
    [26]郑小红,沈平. Zr55Al10Ni5Cu30非晶钎料熔体与α–Al2O3和ZrO2陶瓷的润湿性[J].焊接学报,2009,30(1):57–60.
    [27]郑小红. Zr55Cu30Al10Ni5非晶熔体与金属及陶瓷的润湿性和界面特征[D].长春:吉林大学,2010.
    [28] ZHU J, KAMIYA A, YAMADA T et al. Surface tension, wettability and reactivity ofmolten titanium in Ti/yttria–stabilized zirconia system [J]. Materials Science andEngineering A,2002,327:117–127.
    [29] SCITI D, BELLOSI A, ESPOSITO L. Bonding of zirconia to superalloy with the activebrazing technique [J]. Journal of the European Ceramic Society,2005,21(1):45–52.
    [30]董雪.氧化锆陶瓷在空气炉中钎焊的研究[D].大连:大连交通大学,2007.
    [31]浩宏奇,金志浩,王笑天.氧化锆陶瓷与不锈钢的钎焊的研究中[J].西安交通大学学报,1995,29(2):85–89.
    [32] SINGH M, SHPARGEL T P, ASTHANA R. Brazing of yttria–stabilized zirconia (YSZ)to stainless steelusing Cu, Ag, and Ti–based brazes [J]. Journal of Materials Science,2008,43:23–32.
    [33] JIANG G Q, MISHLER D, DAVIS R et al. Zirconia to Ti–6Al–4V braze joint forimplantable biomedical device [J]. Journal of Biomedical Materials Reasearch,2005,72B(2):316–321.
    [34] LIU G W, LI W. Microstructures and interfacial behavior of zirconia/stainless steel jointprepared by pressureless active brazing [J]. Journal of Alloys and Compounds,2009,470(1-2):163–167.
    [35] HAO H Q, WANG Y L. Joining of zirconia to zirconia using Ag–Cu–Ti filler metal[J].Journal of Materials Processing Technology,1995,52(2–4):238–247.
    [36] IWAMOTO W. Joining of zirconia using zirconium–based Alloys [J]. Journal ofMaterials Science,1992,27:441–447.
    [37] CHUANG T H, YEH M S, CHAI Y H. Brazing of zirconia with AgCuTi and SnAgTiactive filler metals [J]. Metallurgical and Materials Transactions A,2000,31A:1591–1597.
    [38]马天军. TC4合金真空钎焊的发展[J].焊接技术,2004,5:4–6.
    [39]周荣林等.相变扩散连接工艺参数对钛与不锈钢接头强度的影响[J].中国有色金属学报,1997,4(12):663–667.
    [40]中国航空材料手册编辑委员会编.中国航空材料手册(4)[M].北京,中国标准出版社,2002.
    [41] HE P, ZHANG J H, ZHOU R L et al. Diffusion bonding technology of a titanium alloyto a stainless steel web with an Ni interlayer [J]. Materials Characterization,1999,43:287–292.
    [42] ORHAN N, KHAN T I, ERGTLU M. Diffusion bonding of a microduplex stainlesssteel toTi–6Al–4V [J]. Scripta Materialia,2001,45:441–446.
    [43] ZHOU R L, ZHANG J H, TIAN X T. The effect thermal cycle on joint of Ti/stainlesssteel phase transformation diffusion bonding [J]. China Welding,2001,1(10):14–18.
    [44] CHEN C C. An investigation of diffusion bonding of titanium to stainless steel [J].Titanium,1980,4(80):2379–2388.
    [45] Naka M et.al. Phase reaction and diffusion path at the SiC/Ti system [J]. Metallurgicaland Materials Transactions A,1997,28A:1385–1390.
    [46]顾怡红,万菊林. Ti6Al4V/Al2O3的扩散连接及界面问题的初步研究[J].机械工程材料,1996,1(20):14–17.
    [47] SHIMOO T, OKAMURA K, ADACHI S. Interaction of Si3N4with titanium at elevatedtemperatures [J]. Journal of Materials Science,1997,32:3031–3036.
    [48] WICKMAN H A, CHIN E S C. Diffusion bonding of titanium–titaniumaluminide–alumina sandwich [C]. Proceedings of the TMS’95Annual Meeting on GammaTitanium Aluminides, Nevada, USA,1995:499–505.
    [49] KLIAUGA A M, TRAVESSA D, FERRANTE M. Al2O3/Ti interlayer AISI304diffusion bonded joint microstructural characteristic of the two interfaces [J]. MaterialsCharacterization,2001,46:65–74.
    [50] WENZEL R, GOESMANN F, SCHMID–FETZER R. Bulk diffusion studies ofmetallizations on titanium–based contacts at600℃[J]. Materials Science and EngineeringB,1998,52:175–179.
    [51] BARBOZA M J R, MOURA NEBO C, SILVA C R M. Creep mechanisms and physicalmodeling for Ti–6Al–4V [J]. Materials Science and Engineering A,2004,369:201–209.
    [52] ALEMAN B, GUTIERREZ I, URCOLA I J. The use of kirkendall effect for calculatingintrinsic diffusion coefficients in a316L/Ti6242diffusion bonding couple [J]. ScriptaMaterialia,1997,5(36):509–515.
    [53] CHEN Z, CAO M S, ZHAO Q Z, ZOU J S. Interfacial microstructure and strength ofpartial transient liquid–phase bonding of silicon nitride with Ti/Ni multi–interlayer[J].Materials Science and Engineering A,2004,380:394–401.
    [54]李小强,李元元,邵明.加镍过渡层钛合金/不锈钢网的扩散连接技术[J].华南理工大学学报(自然科学板),2003,6(31):51–55.
    [55] LEE B J. Predictive analysis of Ti/AIN interfacial reactive using diffusion imulation [J].Scripta Materialia,1998,3(38):499–507.
    [56]有年雅敏,冲田更三. Friction welding of copper–tungstern sintered alloy to puretitanium [C].溶接学会论文集,1991.
    [57] GLATZ W, CLEMENT H. Diffusion bonding of intermetallic Ti–47Al–2Cr–0.2Si sheetmaterial and mechanical properties of joints at room temperature and elevatedtemperatures[J]. Intermetallics,1997,5:415–423.
    [58] SINGHA M, MORSCHERA G N, SHPARGEL T P. Active metal brazing of titanium tohigh–conductivity carbon–based sandwich structures [J]. Materials Science and EngineeringA,2008,498:31–36.
    [59] HONG I T, KOO CH. Vacuum–furnace brazing of C103and Ti–6Al–4V withTi–15Cu–15Ni filler–metal [J]. Materials Science and Engineering A,2005,398:113–127.
    [60] BOTSTEIN O, SCHWARZMAN A, RABINKIN A. Induction brazing of Ti–6Al–4Valloy with amorphous25Ti–25Zr–50Cu brazing filler metal [J]. Materials Science andEngineering A.,1995, A206:14–23.
    [61] ELREFAEY A, TILLMANN W. Effect of brazing parameters on microstructure andmechanical properties of titanium joints [J]. Journal of Materials Processing Technology,2009,209(10):4842–4849.
    [62] SHIUE R K, WU S K, CHEN Y T et al. Infrared brazing of Ti50Al50and Ti–6Al–4Vusing two Ti-based filler metals [J]. Intermetallics,2008,16:1083–1089.
    [63] CHANG C T, DU Y C, SHIUE RK., C.S.Chang. Infrared brazing of high-strengthtitanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils [J]. Materials Science andEngineering A.2006, A420:155–164.
    [64] ASTHANA R, SINGH M. Joining of partially sintered alumina to alumina, titanium,hastealloy and C–SiC composite using Ag–Cu brazes [J]. Journal of the European CeramicSociety,2008,28(6):617–631.
    [65] CHANG C T, SHIUE R K. Infrared brazing Ti–6Al–4V and Mo using theTi–15Cu–15Ni braze alloy [J]. International Journal of Refractory Metals&Hard Materials,2005,23:161–170.
    [66] YUE X, HE P, FENG J C et al. Microstructure and interfacial reactions of vacuumbrazing titanium alloy to stainless steel using an AgCuTi filler metal [J]. MaterialsCharacterization,2008,59:1721–1727.
    [67] HONG I T, KOO C H. Microstructural evolution and shear strength of brazing C103and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal [J]. International Journal ofRefractory Metals&Hard Materials,2006,24:247–252.
    [68] CHANG C T, WU Z Y, SHIUE R K, CHANG C S. Infrared brazing Ti–6Al–4V andSP–700alloys using the Ti–20Zr–20Cu–20Ni braze alloy [J]. Materials Letters,2007,61:842–845.
    [69] CHAN H Y, LIAW D W, SHIUE R K. The microstructural observation of brazingTi–6Al–4V and TZM using the BAg–8braze alloy [J]. International Journal of RefractoryMetals&Hard Materials,2004,22:27–33.
    [70] LIAW D W, WU Z Y, SHIUE R K, CHANG C S. Infrared vacuum brazing ofTi–6Al–4V and Nb using the Ti–15Cu–15Ni foil [J]. Materials Science and Engineering A,2007, A454–455:104–113.
    [71] CHAN H Y, LIAW D W, SHIUE R K. Microstructural evolution of brazing Ti–6Al–4Vand TZM using silver-based braze alloy [J]. Materials Letters,2004,58:1141–1146.
    [72] HONG I T, KOO C H. The study of vacuum-furnace brazing of C103and Ti–6Al–4Vusing Ti–15Cu–15Ni foil [J]. Materials Chemistry and Physics,2005,94:131–140.
    [73] TORUN O. Microstructure and bond strength of diffusion–bonded nickelaluminide–yitanium joints [J]. Intermetallics,2009,17:179–181.
    [74] TORUN O, CELIKYUREK I. Boriding of diffusion bonded joints of pure nickel tocommercially pure titanium [J]. Materials and Design,2009,30:1830–1834.
    [75] ELREFAEY A, TILLMANN W. Solid state diffusion bonding of titanium to steel usinga copper base alloy as interlayer [J]. Journal of Materials Processing Technology.2009,209:2746–2752.
    [76]朱友生,陈国余.自动TIG焊在钛合金拼板焊中的应用[J].稀有金属快报,2008,27(12):22–25.
    [77]王纯.钛合金活性焊剂钨极氩弧焊焊缝成形[J].现代焊接,2008,5:15–20.
    [78]陈俐,巩水利,姚伟.活性剂对钛合金激光焊焊缝成形影响[J].焊接,2008,11:32–37.
    [79]杜汉斌.钛合金激光焊接及其熔池流动场数值模拟[D].武汉:华中科技大学,2003.
    [80] CHEN Y C, NAKATA K. Microstructural characterization and mechanical properties infriction stir welding of aluminum and titanium dissimilar alloys [J]. Materials and Design,2009,30:469–474.
    [81]赵红凯,肖锋,任飞等.TC4钛合金高转速惯性摩擦焊接头组织及性能分析[J].焊接,2008,11:46–49.
    [82]王快社,张小龙,沈洋等.TC4钛合金搅拌摩擦焊连接组织形貌研究[J].稀有金属材料与工程,2008,37(11):2045–2048.
    [83] AKBARI MOUSAVI S A A, FARHADI SARTANGI P. Experimental investigation ofexplosive welding of Cp–titanium/AISI304stainless steel [J]. Materials and Design,2009,30:459–468.
    [84]夏明星,郑欣.TC4钛合金与Nb–W–Mo–Zr铌合金的真空电子束焊接工艺研究[J].稀有金属快报,2008,27(12):22–25.
    [85]杨尚磊,楼松年.7715D高温钛合金的电子束焊接[J].青岛科技大学学报,2008,29(6):530–532.
    [86]张汇文,岳鑫,张九海,冯吉才.钛合金与不锈钢的钎焊和扩散焊技术研究现状及发展趋势[J].焊接,2006,1:11–16.
    [87]庄东汉.扩散接合技术探讨[J].机械月刊,1995,21(12):198–209.
    [88]郭伟.Ti–6Al–4V/QAl10–3–1.5异种材料扩散连接研究[D].长春:吉林大学,2006.
    [89]宋敏霞.异种材料Ti–6Al–4V/ZQSn10–10扩散连接研究[D].长春:吉林大学,2007.
    [90]陈铮.陶瓷–金属活性金属钎焊研究的现状和进展[J].华东船舶工业学院学报(自然科学版),2001,15(2):1–7.
    [91] XUE X M, WANG J T, SUI Z T. Wettability and interfacial reaction of alumina andzirconia by reactive silver–indium base alloy at mid-temperatures. Journal of MaterialsScience [J].1993,28(5):1317–1322.
    [92] WU Y Q, GAO L Q, HU M H. The interfacial structure and mechanism of ZrO2ceramicto copper joining [J]. Vacuum Electronics,1995,(4):1–7.
    [93] WANG L D, WANG Y H, LI W Z, LI H D et al. Reaction behavior of ZrO2/Ti interfacein joining zirconia ceramics and stainless steel304with Ti foil [J]. Acta Metallurgica Sinica,1997,33:756–762.
    [94] PEYTOUR C, BERTHET P, BARBIER F et al. Interface microstructure and mechanicalbehavior of brazed Ti6Al4V/zirconia joints [J]. Journal of Materials Science Letters,1990,9(10):1129–3154.
    [95] LIN K F, LIN C C. Interfacial reactions between zirconia and titanium [J]. ScriptaMaterialia,1998,39(10):1333–1338.
    [96] EMILIANO J V, CORREIA R N, MORETTO P, PETEVES S D. zirconia–titanium jointinterfaces [J]. Materials Science Forum,1996,207–209:145–148.
    [97] CHAKRAVARTY L, GUPTA S P. Formation of intermetallics during brazing ofalumina with Fe, Ni and Cr using Ag–30Cu–10Sn as filler metal [J]. MaterialsCharacterization,2003,51(4):235–241.
    [98] KALININ G M, KRESTNIKOV N S, JAROVINSKIY YU L. Microstructureinvestigation of bronze/steel brazed joints proposed for HHF components ofintermanufacturing [J]. Fusion Engineering and Design,2008,83(10–12):1521–1523.
    [99] NASCIMENTO R M, MARTINELLI A E, BUSCHINELLI A J A et al. Interfacemicrostructure of alumina mechanically metallized with Ti brazed to Fe–Ni–Co usingdifferent fillers [J]. Materials Science and Engineering A,2007,466(1–2):195–200.
    [100] JIAN Y X, KANG C Y, KIM M B. Microstructure and XRD analysis of brazing jointfor duplex stainless steel using a Ni–Si–B filler metal [J]. Materials Characterization,2009,60(9):923–931.
    [101] TILLMANN W, LUGSHEIDER E. Kinetic and microstructure aspects of the reactionlayer at ceramic/metal brazed joints [J]. Journal of Materials Science,1996,31:445–452.
    [102] OLIVEIRA F J, SILVA R F. VIEIRA J M. Thermochemistry of contacts betweensilicon nitride ceramics and steels [J]. Acta.Materialia,2000,48:4659–4665.
    [103]刘多.基于AgCu–Ni中间层的SiO2陶瓷与TC4钛合金钎焊工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2009.
    [104] LIU J Y. Brazing of vanadium and carbon–carbon composites to stainless steel forfusion reactor applications [J]. Journal of Nuclear Materials,1994,212–1:1590–1593.
    [105] LIU J Y. Brazing of carbon-carbon composites filler metals and techniques for brazingC–C composite to metals[M]. PH.D research,1993.
    [106] NASCIMENTO R M D, MARTINELLI A E, BUSGHINELL A J D A, et al. BrazingAl2O3to sintered Fe–Ni–Co alloys [J]. Journal of Materials Science,1999,34:5839–5845.
    [107] NING H L, GENG Z T. Joining of sapphire and hot pressed Al2O3usingAg70.5Cu27.5Ti2brazing filler metal [J]. Ceramics International,2003,29(6):689–694.
    [108] TUCKER M C, JACOBSON C P, VISCO Z J, et al. A braze system formetal–supported solid oxide fuel cell [J]. Journal of Power Sources,2006,160:1049–1057.
    [109] BARIER F, PEYTOUR C, REVCOLECSCH A. Microstructural study of the brazedjoint between Alumina and Ti–6Al–4V alloy [J]. Journal of the American Society,1990,73:1582–1586.
    [110] KLIAUGA A M, FERRANCE M. Interfce compounds formed during the diffusionbonding of Al2O3to Ti [J]. Journal of Mterials Science,2000,35:4243–4249.
    [111] KIM J Y, HARDY J S, WEIL K S. Novel metal–ceramic joing for planar SOFCs [J].Journal of the Electrochemical Society,2005,152: J52–J58.
    [112] HAMMOND J P, PAVID S A, SANTELLA M L. Brazing ceramic oxide to metals atlow temperature [J]. Welding Journal,1988,67:227s–232s.
    [113] CHAI Y C, CHUANG T H. Brazing of zirconia ceramic with supperalloys by activefiller metal [J]. Journal of Metarials Science,1995,27:171–177.
    [114] KIM J H, YOO Y C. Bonding of alumina to metals with Ag–Cu–Zr brazing alloy [J].Journal of Mateials Science Letters,1997,16:1212–1215.
    [115] LIN C C, CHEN R B, SHIUE R K. A wettability study of Cu/Sn/Ti active braze alloyson alumina [J]. Journal of Materials Science,2001,36:2145–2150.
    [116] YU Z S, WU M F, LIANG C, WANG F J, et al. Interfacial morphology and strengthof Al2O3/Nb joint brazed with Cu–Ti–Zr.filler metal [J]. Materials Science and Technology,2002,18:99–102.
    [117] YOO Y C, KIM J H, PARK K. Microstructural characterization of Al2O3/AISI8650steel joint brazed with Ag–Cu–Sn–Zr alloy [J]. Materials Letters,2000,42(6):362–366.
    [118]邹家生,吴斌,赵其章等.活性Cu–Ni–Ti钎料对Si3N4陶瓷浸润性的影响[J].华东船舶工业学院学报,2000,14(4):77–82.
    [119] RAO X, SI P C, WAND J N, et al. Preparation and mechanical properties of a newZr–Al–Ti–Cu–Ni–Be bulk metallic glass [J]. Materials Letters,2001,50(5–6):279–283.
    [120] INOUE A, ZHANG W, ZHANG T, et al. High–strength Cu–based bulk glassy alloysin Cu–Zr–Ti and Cu–Hf–Ti ternary systems [J]. Acta Materialia,2001,49(14):2645–2652.
    [121] SHEN J, CHEN O J, SUN J F, et al. Exceptionally high glass–forming ability of aFeCoCrMoCBY alloy [J]. Applied Physics Letters,2005,86(15):151907.
    [122]孙军,张国君,刘刚.大块非晶合金力学性能研究进展[J].西安交通大学学报,2001,35(6):640–645.
    [123] OTT R T, FAN C, LI J, et al. Structure and properties of Zr–Cu–Ni–Al bulk metallicglasses and metallic glass matrix composities [J]. Journal of Non Crystalline Solids,2003,317(1–2):158–163.
    [124] KAWAMURAA Y, MANOA H, INOUEA A. Nanocrystalline aluminum bulk alloywith a high strength of1420MPa produced by the consolidation of amorphous powers [J].Scripta Materialia,2001,44(8–9):1599–1604.
    [125] SHEN B L, INOUA A.(Fe,Co,Ni)–B–Si–Nb bulk glassy alloy with super–highstrength and some ductility [J]. Journal of Materials Research,2005,20(1):1–5.
    [126] MA H, SHI L L, XU J, et al. Discovering inch–diameter metallic glasses inthree–dimensional composition space [J]. Applied Physics Letters,2005,87(18):181915.
    [127] FAN G J, LOSER W, ROTH S, et al. Glass–forning ability of RE–Al–TM alloys(RE=Sm, Y; TM=Fe,Co,Cu)[J]. Acta Materialia,2000,48(15):3823–3825.
    [128] MAKINO A, INOUE A. Soft magnetic properties of Fe–Based bulk amorphous alloys[J]. Materials Transactions, JIM,2000,41(11):1471–1477.
    [129] MIZUSHIMA T, MAKINO A. Thermal stability and magnetic properties ofFe–Al–Ga–P–C–B–Si amorphous thich sheets [J]. IEEE Thansactions on Magnetics,1997,33(5):3784–3786.
    [130] ZHANG J, QIU K Q, WANG A M, et al. Pressure-induced nanocrystallization ofZr55Al10Ni5Cu30bulk metallic glass [J]. Journal of Materials Research,2002,17(11):2935–2939.
    [131] SCHROERS J, WU Y, BUSCH R, et al. Transition from nucleation controlled togrowth controlled crystallization in Pd43Ni10Cu27P20melts [J]. Acta Materialis,2001,49(14):2773–2781.
    [132] GEBERT A, ECKERT J, SCHULTZ L, et al. Effect of oxygen on phase formation andthermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10metallic glass [J]. Acta Materialia,1998,46(15):5475–5482.
    [133] RABINKIN A. Amorphous brazing foil at age of maturity [C]. Proceedings of the3rdInternational Brazing and Soldering Conference,2006.
    [134] DECRISTOFARO N J. Rapidly solidified filler metals in brazing and solderingapplications [M]. USA: AWS,1985.
    [135] SILVA D, THOMAS L. Ductile brazing foil for cast superalloys: US.4160854[P].1979–07–10.
    [136]石保庆.钎焊技术发展动向[J].焊接技术,1998,1:37–39.
    [137] YUSHI S, MASAHARU A, et al. Study of joining interface between Si3N4andAg–Cu–Ti active metal [J]. Journal of the Ceramic Society of Japan,1988,6(9):930–934.
    [138] MASAKO N, TAKEDA S M. Transient liquid phase bonding for MarM–247andIN939[J]. Journal of the Japan Institute of Metals,1990,54(7):826–831.
    [139] TAMAI T, NAKA M. Ag effect on microstructures and strength of Si3N4/Si3N4jointbrazed with Cu–Ag–Ti filler metals [J]. Journal of Mateials Science Letters,1996,15:1353–1354.
    [140] TAMAI T, Naka M. Ti effect on microstruemtes and strength of Si3N4/Si3N4andSiC/SiC joint brazed with Cu–Ag–Ti filler metals [J]. Journal of Mateials Science Letters,1996,15:1203–1204.
    [141]冯本政等.金属–陶瓷钎焊用铜-钛合金钎料的研究[J].稀有金属材料与工程,1990,5:46–50.
    [142]邹贵生,吴爱萍,任家烈等.耐高温陶瓷接头的合金化–用Al/Ni/Al复合层连接Si3N4陶瓷[J].材料导报,2000,14(4):61–63.
    [143]邹贵生,吴爱萍,任家烈等.连接压力在Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷中的作用机制[J].航空材料工艺,2000,5:76–80.
    [144]熊华平. CuNiTi急冷钎料对Si3N4陶瓷的连接[J].中国有色金属报,1999,9(4):764–768.
    [145]熊华平,万传庚,周振丰. Cu–Ni–Ti合金钎料对Si3N4陶瓷的润湿和连接[J].金属学报,1999,35(5):527–530.
    [146]熊华平,毛唯,程耀永,李晓红.几种钴基钎料对SiC陶瓷的润湿与界面结合[J].金属学报,2001,37(9):991–996.
    [147] SHAPIRO A, RABINKIN A. State of the art of titanium–based brazing filler metals [J].Welding Journal,2003,82(10):36–43.
    [148] WANG Y L, XU J. Ti (Zr)–Cu–Ni bulk metallic glasses with optimal glass–formingability and their compressive properties [J]. Metallurgical and Materials Transactions A,2008,39(12):2990–2997.
    [149]邹家生,许志荣,蒋志国等. Ti–Zr–Ni–Cu非晶钎料的制备和性能[J].焊接学报,2005,26(10):51–53.
    [150]许志荣. Si3N4部分高温钎焊用Ti–Zr–Ni–Cu系钎料研究[D].江苏:江苏科技大学材料学院,2005.
    [151]蒋志国,罗新锋,邹家生. Ti–Zr–Ni–Cu非晶钎料在Si3N4陶瓷上的润湿性研究[J].焊接设备与材料,2006,35(6):37–41.
    [152]蒋志国,邹家生. Ti–Zr–Ni–Cu非晶钎料钎焊Si3N4陶瓷的连接强度[J].中国有色金属学报,2006,16(11):1955–1959.
    [153] BOTSTEIN O, RABINKIN A. Brazing of titanium–based alloys with amorphous25wt.%Ti–25wt.%Zr–50wt.%Cu filler metal [J]. Materials science and Engineering A,1994,188(1–2):305–315.
    [154] VOYTOVYCH R, ROBAUT F, EUSTATHOPOULOS N. The relation betweenwetting and interfacial chemistry in the CuAgTi/alumina system [J]. Acta Materialia,2006,54:2205–2214.
    [155] MANDAL S, RAY A K, RAY A K. Correlation between the mechanical properties andthe microstructural behaviour of Al2O3–(Ag–Cu–Ti) brazed joints [J]. Materials Science andEngineering A,2004,383(2):235–244.
    [156] MURRAY J L. Phase diagrams of binary titanium alloys [M]. ASM International,Metals Park, OH,1987.
    [157] RAYMUNDO A. Thermodynamics and kinetics of ceramic/metal interfacialinteractions [D]. US: Massachusetts Institute of Technology,2004.
    [158] ARROYAVE R, EAGAR T W, KAUFMAN L. Thermodynamic assessment of theCu–Ti–Zr system [J]. Journal of Alloys and Compounds,2003,351:158–170.
    [159]秦优琼.C/C复合材料与TC4钎焊接头组织及性能研究[D].哈尔滨:哈尔滨工业大学,2007.
    [160]WU Z Y, SHIUE R K, CHANG C S. Transmission electron microscopy study of theinfrared brazed high-strength titanium alloy [J]. Journal of Materials Science&Technology,2010,26(4):311–316.
    [161]黄小丽,林实,肖纪美.界面反应层厚度对Ti/ZrO2钎焊接头强度的影响[J].河北理工学院学报,1998,20(4):6–10.
    [162] LEE J G, CHOI Y H, LEE J K, et al. Low–temperature of titanium by the applicationof a Zr–Ti–Ni–Cu–Be bulk metallic glass (BMG) alloy as a filler [J]. Intermetallics,2010,18(1):70–73.
    [163] INOUE A, ZHANG T. Fabrication of bulk glass Zr55Al10Ni5Cu30alloy of30mm indiameter by suction casting method [J]. Materials Transactions JIM,1996,37(2):185–187.
    [164] XING L Q, ECKERT J, SCHULTZ L. Effect of cooling rate on the precipitation ofquasicrystals from the Zr–Cu–Al–Ni–Ti amorphous alloy [J]. Applied Physics Letters,1998,73(15):2110–2112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700