用户名: 密码: 验证码:
Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)块体非晶合金的特种焊接行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对传统铸造法制备Ti基块体非晶合金时合金具有较低的玻璃形成能力的问题,采用不同的焊接方法将小尺寸的Ti块体非晶合金连接成大尺寸的Ti基块体非晶合金,对焊件的微观组织和力学性能进行了系统的研究,并对成功焊接Ti基块体非晶合金的机理进行了探讨。
     利用激光焊接技术快速加热和冷却的特点,对不同激光焊接参数下得到的焊件进行了微观组织和性能研究。实验结果表明,在激光功率为3.5kW,焊接速度10m/min时,可以获得完全非晶态的接头,并且该接头的拉伸强度可以达到母材的93%,体现良好的力学性能,断口表面分布大量脉状花样和熔滴。而在其它焊接参数下得到的焊件,其焊缝区和热影响区内均有晶体相析出。通过计算得出Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)块体非晶合金在加热过程中保持非晶态特征的临界加热速度,该值远远小于激光焊接过程中样品的加热速度,因此,Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)块体非晶合金在加热过程中不会发生晶化。进一步计算得出熔合线附近,靠近焊缝区获得非晶态合金的冷却速度约为780K/s,该值远远大于Ti基块体非晶合金的临界冷却速度,原因在于焊接过程不是在真空条件下进行,大气中的氧显著降低了非晶合金的玻璃形成能力。
     采用数值模拟的方法研究了Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)块体非晶合金激光焊接过程中的温度场变化,进一步分析了Ti基非晶合金在激光焊接过程中保持非晶态结构的机理。以高斯面热源+柱热源为热源模型,考虑对流、辐射的影响,测定了材料热物理参数随温度的变化情况。将模拟计算得到的结果与实验结果相对比,验证了模型的准确性。基于此模型,考察了不同焊接参数下Ti基非晶合金的热历史。结果表明,熔合线附近,靠近焊缝区得到的冷却速度与理论计算得到的值相一致;热影响区内,激光焊接过程中样品的加热速度亦远远大于临界加热速度。
     利用块体非晶合金在过冷液相区内具有超塑性的特点,研究了Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)块体非晶合金的摩擦焊接行为。保持顶锻力和顶锻时间不变,在一定摩擦转速和摩擦时间条件下,可以获得完全非晶态的接头,并且完全非晶态的焊件接头拉伸强度可高达1580MPa,约为母材的90%。提高摩擦转速时,摩擦界面处有晶体相析出,晶化产物为β-(Ti, Zr)。研究了焊接参数对于飞边形成的影响,结果表明,飞边的厚度与摩擦压力、顶锻压力以及焊接时间无关,与转速呈正比关系,而飞边的体积与焊接时间成正比关系。对于接头保持非晶态的机理研究表明,非晶合金过冷液相区内粘度的急剧变化与摩擦转速之间可以相互调节以保持摩擦界面处的温度不至于过高。结合摩擦焊接界面的温度分布特征,得到一定转速下,界面处保持非晶态结构所需要的临界摩擦时间公式,计算得到不同摩擦转速下的临界摩擦时间,通过相关实验和模拟验证了该数据的正确性。结果表明,在一定的转速下,当施加的摩擦时间小于临界摩擦时间时界面可以获得完全非晶态结构。
     研究了Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)块体非晶合金电阻点焊行为。在焊接电流5kA,焊接时间2cycles条件下,熔核区能够获得非晶态,然而,热影响区内有晶体相析出。另外,采用完全晶化的样品进行点焊,同样获得了完全非晶态的熔核区。对焊件进行拉剪测试,结果表明,焊件主要以三种断裂模式进行断裂:界面断裂、局部断裂以及纽扣式断裂,其中绝大多数为局部断裂模式。焊件的力学性能与点焊熔核尺寸以及接头处的晶化程度密切相关。对熔合线附近的冷却速度进行计算,得到获得完全非晶态接头所需要的临界冷却速度。
Due to the limited glass formation ability, Ti-based alloy can be only cast into glassysamples with small size via conventional casting process. In the present dissertation,Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)BMG samples with small-size have been successfully welded intolarge-size Ti-based BMG by different welding methods. The microstructure andmechanical behaviors of welded BMG samples have been systematically investigated.The underlying mechanism for the maintenance of a glassy phase in the welded BMGsample has been also discussed.
     The microstructures and mechanical properties of BMG samples welded by variousprocessing parameters have been investigated, based on the rapid heating and coolingcharacteristics of laser welding. The results indicated that a joint with fully amorphousfeature could be achieved using a welding speed of10m/min and a laser power of3.5kW. The sound joint exhibits a high tensile strength,93%of the base alloy,demonstrating a perfect bonding. Well-developed vein patterns, typical of the fracturefeature for amorphous metals, were observed over the whole fractured surfaces. For thecase of the samples welded from other welding parameters, crystalline phases wereobserved both in weld fusion zone and heat affected zone. The critical heating ratekeeping Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)BMG without crystallization during the heating processwas calculated. The calculated critical heating rate was much lower than the heating rateexperienced during laser welding, suggesting that no devitrification occurs duringheating process for Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)BMG. The cooling rate in the weld fusion zonehas been further calculated to be780K/s, much larger than the critical cooling rate ofcast BMG sample. This phenomenon can be attributed to the fact that that the laserwelding was carried out under atmosphere condition. Thus, the introduction of oxygencould seriously suppress the formation of amorphous phase, leading to the highercritical cooling rate for glass formation during laser welding.
     Temperature fields during laser welding have been studied by numericalsimulations, in order to further discuss the mechanism of successful welding of theTi_(40)Zr_(25)Ni_3Cu_(12)Be_(20)BMG. Heat source model with the cylinder and Gaussian wasselected. Material properties were detected as temperature-dependent functions, afterconsidering the effect of convection and radiation on heat transfer. Calculation resultsagree well with the experimental data through comparing of the weld width and poolshape, confirming the accuracy of heat source model. Based on the model, thetemperature fileds of the Ti-based BMG at different parameters were calculated. Thecooling rates measured around the fusion line, and near the weld fusion zone accordwell with the calculation values. For heat affected zone, the heating rate of sample was also much larger than the critical heating rate.
     Friction welding of Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)BMG rods have been performed, utilizingthe unique superplastic deformation feature within supercooled liquid region of BMGs.Joint with fully amorphous structure can be obtained by selecting proper friction timeand rotational speed under constant upsetting force and upsetting time. The glassy jointobtained exhibits a high tensile strength (1580MPa),90%of the base alloy. Withincreasing the rotational speed, numerous crystals embedded in the interface wereobserved under different friction times, the crystal phases are indentified as β-(Ti, Zr).The influence of welding parameters on the formation of protrusion has been studied.The friction time and upsetting force exert no influence on the thickness of theprotrusion, whereas the rotational speed has great influence on the thickness of theprotrusion. However, the volume of protrusion is proportional to the friction time. Themechanism for the maintenance of a glassy phase in joint has been interpreted. Due tothe decrease of the viscosity resulting from the deformation of supercooled liquid andthe rotational speed, the temperature of the interface can be self-controlled so as not toover-heat. Based on the analysis of the temperature distribution during the frictionwelding, an equation mentioning the critical friction time for retaining amorphousstructure has been established. The experimental results varify the reasonability of theequation. Under constant rotational speed, the joint with fully amorphous structure canbe obtained when the friction time is lower than the critical friction time.
     Ti_(40)Zr_(25)Ni_3Cu_(12)Be_(20)metallic glass has been welded by using resistance spotwelding. Under5kA welding current and2welding cycles, the nugget zone was foundto retain its original amorphous structure. However, crystals embeded in the matrix wereobserved in heat affected zone. Moreover, fully crystallized Ti-based alloy sheets wereprepared and then welded under5kA welding current and2welding cycles. Amorphousfeature was also obtained from the WFZ of the crystallized Ti-based alloy sample,during the tensile-shearing tests, the fracture occurs following three distinctive fracturemodes: interfacial failure, partial failure, and button pullout failure. Meanwhile, thefracture mainly took place via partial failure mode. The mechanical performance of thejoint was closely related to the nugget size and crystallization volume fraction.Moreover, the critical cooling rate for preserving the amorphous phase has beenobtained by calculating the cooling rate around the weld line.
引文
1Kramer J. The Preparation of Amorphous Sb by Vapor Deposition in Vacuum[J].Annals Physics,1934,19:37-41.
    2Brenner A, Couch D E, Williams E K. Electro Deposition of Alloys of Phosphorusand Nickel or Cobalt[J]. Journal of Research Nature Bureau Stands,1950,44:109-112.
    3Klement W, Willens R H, Duwez P. Non-Crystalline Structure in SolidifiedGold-Silicon Alloys[J]. Nature,1960,187:869-870.
    4Chen H S. Thermodynamic Considerations on the Formation and Stability ofMetallic Glass[J]. Acta Metallurgica,1974,22:1505-1510.
    5Drehman A L, Greer A L, Turnbull D. Bulk Formation of Metallic Glass:Pd40Ni40P20[J]. Applied Physics Letters,1982,41:716-717.
    6Inoue A, Nakamura T, Sugita T, Zhang T, Masumoto T. Bulky La-Al-TM(TM=Transition Metal) Amorphous Alloys with High Tensile Strength Produced bya High-Pressure Die Casting Method[J]. Materials Transactions, JIM,1993,34(4):351-358.
    7Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Preparation of16mmDiameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5Alloy[J]. Materials Transactions,JIM,1993,34(12):1234-1237.
    8Inoue A, Nishiyama N, Kimura H. Preparation and Thermal Stability of BulkAmorphous Pd40Cu30Ni10P20Alloy Cylinder of72mm in Diameter[J]. MaterialsTransactions, JIM,1997,38(2):179-183.
    9Peker A, Johnson W L. A Highly Processable Metallic GlassZr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters,1993,63(17):2342-2344.
    10Zhang T, Inoue A. Ti-based Amorphous Alloys with a Large Supercooled LiquidRegion[J]. Materials Science and Engineering: A,2001,304-306:771-774.
    11Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C. Bulk Metallic GlassFormation in Binary Cu-Rich Alloy Series-Cu10-xZrx(x=34,36,38.2,40at.%) andMechanical Properties of Bulk Cu64Zr36Glass[J]. Acta Materialia,2004,52(9):2621-2624.
    12Inoue A, Kohinate K, Ohtera K. Mg-Ni-La Amorphous with a Wide SupercooledRegion[J]. Materials Transactions, JIM,1989,30:378-381.
    13Xu D H, Duan G, Johnson W L, Garland C. Formation and Properties of NewNi-Based Amorphous Alloys with Critical Casting Thickness up to5mm[J]. ActaMaterialia.2004,52(12):3493-3497.
    14He Y, Poon S J, Shiflet G J. Synthesis and Properties of Metallic Glasses thatContain Aluminum[J]. Science,1988,241:1640-1642.
    15Inoue A, Zhang T, Takeuchi A. Bulk Amorphous Alloys with High MechanicalStrength and Good Soft Magnetic Properties in Fe-TMB(TM=IV-VIII GroupTransition Metal) System[J]. Applied Physics Letters,1997,71(4):464-466.
    16Poon S J, Shiflet G J, Guo F Q, Ponnambalam V. Glass Formability of Ferrous-andAluminum-based Structural Metallic Alloys[J]. Journal of Non-Crystalline Solids,2003,317(1):1-9.
    17Guo F Q, Poon S J, Shiflet G J. CaAl-based Bulk Metallic Glasses with HighThermal Stability[J]. Applied Physics Letters,2004,84:37-39.
    18Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R. Cobalt-based Bulk GlassyAlloy with Ultrahigh Strength and Soft Magnetic Properties[J]. Nature Materials,2003,2:661-663.
    19Qiu K Q, Zhang H F, Wang A M, Ding B Z, Hu Z Q. Glass-forming Ability andThermal Stability of Nd70xFe20Al10YxAlloys[J]. Acta Materialia,.2002,50:3567-3578.
    20Zhang B, Pan M X, Zhao D Q, Wang W H.“Soft” Bulk Metallic Glasses Based onCerium[J]. Appllied Physics Letters,2004,85(1):61-63.
    21Lu Z P, Goh T T, Li Y, Ng S C. Glass Formation in La-based La-Al-Ni-Cu-(Co)Alloys by Bridgman Solidification and their Glass Forming Ability[J]. ActaMaterialia,1999,47(7):2215-2224.
    22Guo F Q, Poon S J, Shiflet G J. Metallic Glass Ingots Based on Yttrium[J]. AppliedPhysics Letters,2003,83(13):2575-2577.
    23Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W.Pd20Pt20Cu20Ni20P20High-Entropy Alloy as a Bulk Metallic Glass in theCentimeter[J]. Intermetallics.2011,19(10):1546-1554.
    24Shen J, Chen Q J, Sun J F, Fan H B, Wang G. Exceptionally High Glass-FormingAbility of an FeCoCrMoCBY Alloy[J]. Applied Physics Letters,2005,86(15):151907-1-3.
    25Jiang Q K, Zhang G Q, Yang L, Wang X D, Saksl K, Franz H, Wunderlich R, FechtH, Jiang J Z. La-based Bulk Metallic Glasses with Critical Diameter up to30mm[J].Acta Materialia,2007,55:4409-4418.
    26Ma H, Shi L L, Xua J, Li Y, Ma E. Discovering Inch-Diameter Metallic Glasses inThree-Dimensional Composition Space[J]. Applied Physics Letters,2005,87(18):181915.
    27Tanner L E, Ray R. Metallic Glass Formation and Properties in Zr and Ti Alloyedwith Be-I the Binary Zr-Be and Ti-Be Systems[J]. Acta Materialia,1979,27:1727-1747.
    28Polk D E, Calka A, Giessen B C. The Preparation and Thermal and MechanicalProperties of New Titanium Rich Metallic Glasses[J]. Acta Materialia,1978,26:1097-1103.
    29Tanner L E, Ray R. Physical Properties of Ti50Be40Zr10Glass[J]. Scripta Materialia,1977,11(9):783-789.
    30Amiya K, Nishiyama N, Inoue A,Masumoto T. Mechanical Strength and ThermalStability of Ti-based Amorphous Alloys with Large Glass-Forming Ability[J].Materials Science and Engineering: A,1994,179-180:692-696.
    31Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T. Ti-Based AmorphousAlloys with a Wide Supercooled Liquid Region[J]. Materials Letters,1994,19:131-135.
    32Zhang T, Inoue A. Thermal and Mechanical Properties of Ti-Ni-Cu-Sn AmorphousAlloys with a Wide Supercooled Liquid Region before Crystallization[J]. MaterialsTransaction, JIM,1998,39(10):1001-1006.
    33Zhang T, Inoue A. Preparation of Ti-Cu-Ni-Si-B Amorphous Alloys with a LargeSupercooled Liquid Region[J]. Materials Transaction, JIM,1999,40(4):301-306.
    34Kim Y C, Kim W T and Kim D H. A Development of Ti-based Bulk MetallicGlass[J]. Materials Science and Engineering: A,2004,375-377:127-135.
    35Ma C L, Ishihara S, Soejima H, Nishiyama N, Inoue A. Formation of New Ti-basedMetallic Glassy Alloys[J]. Materials Transaction, JIM,2004,45(5):1802-1806.
    36Park J M, Chang H J, Han K H, Kim W T, Kim D H. Enhancement of Plasticity inTi-rich Ti-Zr-Be-Cu-Ni Bulk Metallic Glasses[J]. Scripta Materialia.2005,53(1):1-6.
    37Men H, Pang S J, Inoue A, Zhang T. New Ti-based Bulk Metallic Glasses withSignificant Plasticity[J]. Materials Transaction, JIM,2005,46(10):2218-2220.
    38Guo F Q, Wang H J, Poon S J, Shiflet G J. Ductile Titanium-based Glassy AlloyIngots[J]. Applied Physics Letters,2005,86:091907.
    39Hao G J, Zhang Y, Lin J P, Wang Y L, Lin Z, Chen G L. Bulk Metallic GlassFormation of Ti-based Alloys from Low Purity Elements[J]. Materials Letters,2006,60:1256-1260.
    40Huang Y J, Shen J, Sun J F, Yu X B. A New Ti-Zr-Hf-Cu-Ni-Si-Sn Bulk AmorphousAlloy with High Glass-Forming Ability[J]. Journal of Alloys and Compounds,2007,427:171-175.
    41Duan G, Wiest A, Lind M L, Kahl A, Johnson W L. Lightweight Ti-based BulkMetallic Glasses Excluding Late Transition Metals[J]. Scripta Materialia,2008,58:465-468.
    42Zhu S L, Wang X M, Inoue A. Glass-Forming Ability and Mechanical Properties ofTi-based Bulk Glassy Alloys with Large Diameters of up to1cm[J]. Intermetallics.2008,16:1031-1035.
    43Xie K F, Yao K F, Huang T Y. A Ti-based Bulk Glassy Alloy with High Strengthand Good Glass Forming Ability[J]. Intermetallics.2010,18(10):1-5.
    44Hao G J, Lin J P, Zhang Y, Chen G L, Lu Z P. Ti-Zr-Be Ternary Bulk MetallicGlasses Correlated with Binary Eutectic Clusters[J]. Materials Science andEngineering: A,2010,527:6248-6250.
    45Tang M Q, Zhang H F, Zhu Z W, Fu H M, Wang A M, Li H, Hu Z Q. TiZr-baseBulk Metallic Glass with over50mm in Diameter[J]. Journal of Materials Scienceand Technology,2010,26(6):481-486.
    46Kawamura Y. Liquid Phase and Supercooled Liquid Phase Welding of BulkMetallic Glasses[J]. Materials Science and Engineering: A,2004,375-377:112-119.
    47王丽,熊建钢,李志远.块体非晶合金的应用与连接[J].电焊机,2007,37:29-37.
    48陈彦宾.现代激光焊接技术[M].科学出版社,2005:49-65.
    49Li B, Li Z Y, Xiong J G, Xing L, Wang D, Li Y. Laser Welding of Zr45Cu48Al7Bulk Glassy Alloy[J]. Journal of Alloys and Compounds,2006,413:118-121.
    50叶斌,熊建钢,李波,李志远. Zr基大块非晶合金的激光焊接[J].中国激光,2006,33:423-427.
    51Kim J H, Lee C, Lee D M, Sun J H, Shin S Y, Bae J C. Pulsed Nd:YAG LaserWelding of Cu54Ni6Zr22Ti18Bulk Metallic Glass[J]. Materials Science andEngineering: A,2007,449-451:872-875.
    52Louzguine-Luzgin D V, Xie G Q, Tsumura T, Fukuda H, Nakata K, Kimura H M,Inoue A. Structural Investigation of Ni–Nb–Ti–Zr–Co–Cu Glassy Samples Preparedby Different Welding Techniques[J]. Materials Science and Engineering: B,2008,148:88-91.
    53Kawahito Y, Terajima T, Kimura H, Kuroda T, Nakata K, Katayama S, Inoue A.High-Power Fiber Laser Welding and its Application to Metallic GlassZr55Al10Ni5Cu30[J]. Materials Science and Engineering: B,2008,148:105-109.
    54Terajima T, Kimura H, Inoue A. Butt Welding of Mg-Cu-Gd Bulk Metallic Glassusing a High-Brightness Fiber Laser[J]. Transaction of JWRI.2010,39:61-64.
    55Wang H S, Chiou M S, Chen H G, Jang J S C. The Effects of Initial WeldingTemperature and Welding Parameters on the Crystallization Behaviors of Laser SpotWelded Zr-based Bulk Metallic Glass[J]. Materials Chemistry and Physics,2011,129:547-552.
    56Kawamura Y, Ohno Y. Successful Electron-Beam Welding of Bulk MetallicGlass[J]. Materials Transactions, JIM,2001,42(11):2476-2478.
    57Kagao S, Kawamura Y, Ohno Y. Electron-Beam Welding of Zr-based Bulk MetallicGlasses[J]. Materials Science and Engineering: A,2004,375-377:312-316.
    58Yokoyama Y, Abe N, Fukaura K, Shinohara T, Inoue A. Electron-Beam Welding ofZr50Cu30Ni10Al10Bulk Glassy Alloys[J]. Materials Science and Engineering: A,2004,375-377:422-426.
    59Kim J H, Kawamura Y. Electron Beam Welding of the Dissimilar Zr-based BulkMetallic Glass and Ti Metal[J]. Scripta Materialia,2007,56:709-712.
    60Kim J H, Kawamura Y. Electron Beam Welding of Zr-based BMG/Ni Joints: Effectof Beam Irradiation Position on Mechanical and Microstructural Properties[J].Journal of Materials Processing Technology,2008,207:112-117.
    61Kim J H, Kawamura Y. Dissimilar Welding of Zr41Be23Ti14Cu12Ni10Bulk MetallicGlass and Stainless Steel[J]. Scripta Materialia,2011,65(12):1033-1036.
    62Kawamura Y, Ohno Y. Superplastic Bonding of Bulk Metallic Glasses usingFriction[J]. Scripta Materialia,2001,45:279-285.
    63Wong C H, Shek C H. Friction Welding of Zr41Ti14Cu12.5Ni10Be22.5Bulk MetallicGlass[J]. Scripta Materialia,2003,49:393-397.
    64Shoji T, Kawamura Y, Ohno Y. Friction Welding of Bulk Metallic Glasses toDifferent Ones[J]. Materials Science and Engineering: A,2004,375-377:394-398.
    65Shin H S, Jeong Y J, Choi H Y, Kato H, Inoue A. Joining of Zr-based Bulk MetallicGlasses using the Friction Welding Method[J]. Journal of Alloys and Compounds,2007,434-435:102-105.
    66Shin H S, Park J S, Jung Y C, Ahn J H, Yokoyamac Y, Inoue A. Similar andDissimilar Friction Welding of Zr–Cu–Al Bulk Glassy Alloys[J]. Journal of Alloysand Compounds,2009,483:182-185.
    67Shin H S, Park J S, Yokoyama Y. Dissimilar Friction Welding of Tubular Zr-basedBulk Metallic Glasses[J]. Journal of Alloys and Compounds,2010,504: S275-S278.
    68栾国红.搅拌摩擦焊技术在飞机制造中的基础研究和验证[J].航空焊接技术,2009:120-125.
    69熊建坤,童彦刚.搅拌摩擦焊接技术的研究进展和应用[J].电焊机,2008,38:33-37.
    70Kobata J, Takigawa Y, Chung S W, Tsuda H, Kimura H, Higashi K. NanoscaleAmorphous “Band-Like” Structure Induced by Friction Stir Processing inZr55Cu30Al10Ni5Bulk Metallic Glass[J]. Materials Letters,2007,61:3771-3773.
    71Wang D, Xiao B L, Ma Z Y, Zhang H F. Friction Stir Welding of Zr55Cu30Ni5Al10Bulk Metallic Glass to Al-Zn-Mg-Cu Alloy[J]. Scripta Materialia,2009,60:112-115.
    72Qin Z X, Li C H, Zhang H F, Wang Z G, Hu Z Q, Liu Z Q. Friction Stir Welding ofZr55Al10Ni5Cu30Bulk Metallic Glass to Crystalline Aluminum[J]. Journal ofMaterials Science and Technology,2009,25(6):853-856.
    73Sun Y F, Ji Y S, Fujii H, Nakata K, Nogi K. Microstructure and MechanicalProperties of Friction Stir Welded Joint of Zr55Cu30Al10Ni5Bulk Metallic Glass withPure Copper[J]. Materials Science and Engineering: A,2010,527:3427-3432.
    74Shin H S, Jung Y C. Characteristics of Dissimilar Friction Stir Spot Welding ofBulk Metallic Glass to Lightweight Crystalline Metals[J]. Intermetallics,2010,18:2000-2004.
    75Kawamura Y, Ohno Y. Sparking Welding Zr55Cu30Ni5Al10Bulk Metallic Glasses[J].Scripta Materialia,2001,45:127-132.
    76Somekawa H, Inoue A, Higashi K. Superplastic and Diffusion Bonding Behavior onZr-Al-Ni-Cu Metallic Glass in Supercooled Liquid Region[J]. Scripta Materialia,2004,50:1395-1399.
    77Swiston Jr A J, Hufnagel T C, Weihs T P, Joining Bulk Metallic Glass usingReactive Multilayer Foils[J]. Scripta Materialia,2003,48:1575-1580.
    78彭德林,马丽华,孙剑飞,沈军,陈玉勇. Zr基块体非晶合金过冷液相的快速粘滞流动[J].稀有金属材料与工程,2006,35(4):605-608.
    79Wang S H, Kuo P H, Tsung H, Jeng R R, Lin Y L. The Influence of Sc Addition onthe Welding Microstructure of Zr-based Bulk Metallic Glass: The Stability of theAmorphous Phase[J]. Applied Physics Letters,2007,91:171902.
    80Liu K X, Liu W D, Wang J T, Yan H H, Li X J, Huang Y J, Wei X S, Shen J.Atomic-Scale Bonding of Bulk Metallic Glass to Crystalline Aluminum[J]. AppliedPhysics Letters,2008,93:081918.
    81Chiba A, Kawamura Y, Nishida M. Explosive Welding of ZrTiCuNiBe BulkMetallic Glass to Crystalline Metallic Plates[J]. Materials Science Forum,2008,556:119-124.
    82Maeda M, Takahashi Y, Fukuhara M, Wang X M, Inoue A. Ultrasonic Bonding ofZr55Cu30Ni5Al10Metallic Glass[J]. Materials Science and Engineering: B,2008,148:141-144.
    83Fujiwara K, Fukumoto S, Yokoyama Y, Nishijima M, Yamamoto A. Weldability ofZr50Cu30Al10Ni10Bulk Glassy Alloy by Small-Scale Resistance Spot Welding[J].Materials Science and Engineering: A,2008,498:302-307.
    84Hagy H E. Experimental Evaluation of Beam-Bending Method of DeterminingGlass Viscosities in the Range108to1015Poises[J]. Journal of American CeramicsSociety,1963,46:93-96.
    85陈平昌,朱六妹,李赞.材料成形原理[M].机械工业出版社,2005:108-111.
    86Kim Y C, Park J M, Lee J K, Bae D H, Kim W T, Kim D H. Amorphous andIcosahedral Phases in Ti–Zr–Cu–Ni–Be Alloys[J]. Materials Science andEngineering: A,2004,375-377:749-753.
    87Soubeyrouxa J L, Mei J N. Neutron in Situ Crystallization Studies of Ti-basedBMGs[J]. Journal of Alloys and Compounds,2010,504:239-242.
    88黄永江. TiZrNiCuBe块体非晶合金的力学行为[D].哈尔滨:哈尔滨工业大学,2008:50-53.
    89Zhang Z F, He G, Eckert J, Schultz L. Fracture Mechanisms in Bulk Metallic GlassyMaterials[J]. Physical Review Letters,2003,91(4):045504.
    90Zhang Z F, Eckert J, Schultz L. Difference in Compressive and Tensile FractureMechanisms of Zr59Cu20Al10Ni8Ti3Bulk Metallic Glass[J]. Acta Materialia,2003,51(4):1167-1179.
    91Zhang Z F, Eckert J, Schultz L. Tensile and Fatigue Fracture Mechanisms of aZr-based Bulk Metallic Glass[J]. Journal of Materials Research,2003,18(2):456-465.
    92Zhang Z F, Eckert J, Schultz L. Fatigue and Fracture Behavior of Bulk MetallicGlass[J]. Metallurgical and Materials Transactions A,2004,35(11):3489-3498.
    93Zhang Z H, Xie J X. Influence of Relaxation and Crystallization on Micro-Hardnessand Deformation of Bulk Metallic Glass[J]. Materials Science and Engineering: A,2005,407:161-166.
    94Yang B, Liu C T, Nieh T G. Unified Equation for the Strength of Bulk MetallicGlasses[J]. Applied Physics Letters,2006,88:221911.
    95Chen N, Yao K F,Fang R,Yang Y Q. The Influence of Cooling Rate on theHardness of Pd-Si Binary Glassy Alloys[J]. Materials Science and Engineering: A,2008,473:274-278.
    96Xiao Y H, Wu Y, Liu Z Y, Wu H H, Lu Z P. Effects of Cooling Rates on theMechanical Properties of a Ti-based Bulk Metallic Glass[J]. Science China Physics,Meshanics&Astronomy,2010,53:394-398.
    97Schroers J, Masuhr A, Johnson W L, Busch R. Pronounced Asymmetry in theCrystallization Behavior during Constant Heating and Cooling of a Bulk MetallicGlass-Forming Liquid[J]. Physical Review B,1999,60(17):11855-11858.
    98刘江龙,邹至荣.高能束热处理[M].机械工业出版社,1997,46-48.
    99Waniuk T A, Schroers J, Johnson W L. Critical Cooling Rate and Thermal Stabilityof Zr–Ti–Cu–Ni–Be Alloys[J]. Applied Physics Letters,2001,78:1213-1215.
    100Barandiaran J M, Colmenero J. Continuous Cooling Approximation for theFormation of a Glass[J]. Journal of Non-Crystalline Solids,1981,46(3):277-282.
    101Rosenthal D. Mathematical Theory of Heat Distribution during Welding andCutting[J]. Welding Journal,1941,20:220-234.
    102Adams C M. Cooling Rates and Peak Temperatures in Fusion Welding[J]. WeldingResearch Supplement,1958,37:210s-215s.
    103Wang Y X, Yang H, Lim G, Li Y. Glass Formation Enhanced by Oxygen in BinaryZr–Cu System[J]. Scripta Materialia,2010,62:62682-685.
    104Gebert A, Eckert J, Schultz L. Effect of Oxygen on Phase Formation and ThermalStability of Slowly Cooled Zr65Al7.5Cu17.5Ni10Metallic Glass[J]. Acta Materialia,1998,46(15):5475-5482.
    105Liu C T, Chisholm M F, Miller M K. Oxygen Impurity and Microalloying Effect ina Zr-based Bulk Metallic Glass Alloy[J]. Intermetallics,2002,10:1105-1112.
    106陈火红,杨剑,薛小香,王朋波.新编Marc有限元实例教程[M].北京:机械工业出版社,2007:3-4.
    107Pavelie V, Tanbakuchi R, Auyehara O. Experimental and Computed TemperatureHistorips in Gas Tungsten Arc Welding of Thin Plates[J]. Welding ResearchSupplement,1969,48:295-305.
    108Du H B, Hu L J, Liu J H, Hu X Y. A Study on the Metal Flow in Full PenetrationLaser Beam Welding for Titanium Alloy[J]. Computational Materials Science,2004,29:419-427.
    109Goldak J. A New Finite Model for Welding Heat Source[J]. MetallurgicalTransactions B,1984,15B (2):299-305.
    110Sonti N, Amateau M F. Finite-element Modeling of Heat Flow in Deep-penetrationLaser Welds in Aluminum Alloys[J]. Numerical Heat Transactions A,1989,16:351-378.
    111王庆,张彦华.高温合金电子束焊接温度场数值模拟[J].金属学报,2007,28:97-104.
    112熊智军,赵熹华,李永强,李云峰.激光深熔焊接热源模型的研究进展[J].焊接,2006,12:12-15.
    113Charg W S, Na S J. A Study on the Prediction of the Laser Weld Shape with VaryHeat Source Equations and the Thermal Distortion of a Small Structure inMicro-Joining[J]. Journal of Materials Processing Technology,2002,120(1):208-214.
    114Bachorski A, Painter M J, Smailes A J, Wahab M A. Finite-element Prediction ofDistortion during Gas Metal Arc Welding using the Shrinkage Volume Approach[J].Journal of Materials Processing Technology,1999,92-93:405-409.
    115封小松,陈彦宾,李俐群.镀锌板激光钎焊温度场的数值模拟[J].金属学报,2006,42(8):882-886.
    116张新戈.不等厚板双光束激光焊接温度场及应力应变场分析[D].哈尔滨:哈尔滨工业大学,2006:19-28.
    117封小松.激光焊接钛合金T-型接头温度场及应力应变场分析[D].哈尔滨:哈尔滨工业大学,2003:26-27.
    118Yamasaki M, Kagao S, Kawamura Y, Yoshimura K. Thermal Diffusivity andConductivity of Supercooled Liquid in Zr41Ti14Cu12Ni10Be23Metallic Glass[J].Applied Physics Letters,2004,84:4653-4655.
    119Yamasaki M, Kagao S, Kawamura Y. Thermal Diffusivity and Conductivity ofZr55Al10Ni5Cu30Bulk Metallic Glass[J]. Scripta Materialia,2005,53:63–67.
    120Kong F, Kovacevic R.3D finite element modeling of the thermally induced residualstress in the hybrid laser/arc welding of lap joint[J]. Journal of Materials ProcessingTechnology,2010,210:941-950.
    121Tsirkas S A, Papanikos P, Kermanidis T. Numerical Simulation of the LaserWelding Process in Butt-joint Specimens[J]. Journal of Materials ProcessingTechnology,2003,134:59-69.
    122Abderrazak K, Bannour S, Mhiri H, Lepalec G, Autric M. Numerical andExperimental Study of Molten Pool Formation during Continuous Laser Welding ofAZ91Magnesium Alloy[J]. Computational Materials Science,2009,44:858-866.
    123张文铖.焊接冶金学基本原理[M].机械工业出版社,1995:162-166.
    124Belhadj A, Bessrour J, Masse J E, Bouhafs M, Barrallier L. Finite ElementSimulation of Magnesium Alloy Laser Beam Welding[J]. Journal of MaterialsProcessing Technology,2010,201:1131-1137.
    125Kazemi K, Goldak J A. Numerical Simulation of Laser Full Penetration Welding[J].Computational Materials Science,2009,44:841-849.
    126Wu C S, Wang H L, Zhang Y M. Numerical Analysis of the Temperature Profilesand Weld Dimension in High Power Direct-diode Laser Welding[J]. ComputationalMaterials Science,2009,46:49-56.
    127Tian Y H, Wang C Q, Zhu D Y, Zhou Y. Finite Element Modeling of Electron BeamWelding of a Large Complex Al Alloy Structure by Parallel Computations[J].Journal of Materials Processing Technology,2008,199:41-48.
    128Han G M, Zhao J, Li J Q. Dynamic Simulation of the Temperature Field of StainlessSteel Laser Welding[J]. Material&Design,2007,28:240-245.
    129邢大伟. ZrCuNiAlTi块体非晶合金的形成与晶化动力学[D].哈尔滨:哈尔滨工业大学,2003:3-4.
    130Masumoto T. Recent Progress in Amorphous Metallic Materials in Japan[J].Materials Science and Engineering: A,1994,179-180:8-16.
    131Shen J, Wang G, Sun J F, Stachurski Z H, Yan C, Ye L, Zhou B D. SuperplasticDeformation Behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5Bulk Metallic Glass in theSupercooled Liquid Region[J]. Intermetallics,2005,13:79-83.
    132Wang G, Shen J, Sun J F, Huang Y J, Zou J, Lu Z P, Stachurski Z H, Zhou B D.Superplasticity and Superplastic Forming of Zr-based Bulk Metallic Glass in theSupercooled Liquid Region[J]. Journal of Non-Crystalline Solids,2005,351:209-217.
    133Kawamura Y, Shibata T, Inoue A, Masumoto T. Workability of the SupercooledLiquid in the Zr65Al10Ni10Cu15Bulk Metallic Glass[J]. Acta Materialia,1998,46(1):253-263.
    134Saotome Y, Itoh K, Zhang T, Inoue A. Superplastic Nanoforming of Pd-basedAmorphous Alloy[J]. Scripta Materialia,2001,44:1541-1545.
    135Saotome Y, Hatori T, Zhang T, Inoue A. Superplastic Micro/Nano-formability ofLa60Al20Ni10Co5Cu5Amorphous Alloy in Supercooled Liquid State[J]. MaterialsScience and Engineering: A,2001,304-306:716-720.
    136Jing Q, Liu R P, Shao G J, Wang W K. Preparation and Super-plastic Deformationof the Zr-based Bulk Metallic Glass[J]. Materials Science and Engineering: A,2003,359:402-404.
    137Saotome Y, Miwa S, Zhang T, Inoue A. The Micro-formability of Zr-basedAmorphous Alloys in the Supercooled Liquid State and their Application toMicro-dies[J]. Journal of Materials Processing Technology,2001,113:64-69.
    138Wert J A, Thomsen C, Jensen R D, Arentoft M. Forming of Bulk Metallic GlassMicrocomponents[J]. Journal of Materials Processing Technology,2009,209:1570-1579.
    139Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Preparation of16mmDiameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5Alloy[J]. Materials Transactions,JIM,1993,34(12):1234-1237.
    140Inoue A, Nakamura T, Sugita T, Zhang T, Masumoto T. Bulk La-Al-TM(TM=Transition Metal) Amorphous Alloys with High Tensile Strength[J]. MaterialsTransactions, JIM,1993,34:351-358.
    141Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T. Ti-based AmorphousAlloys with a Wide Supercooled Liquid Region[J]. Materials Letters,1994,19:131-135.
    142Zhang W, Inoue A. Formation and Mechanical Properties of Cu–Hf–Al Bulk GlassyAlloys with a Large Supercooled Liquid Region of over90K[J]. Journal ofMaterials Research,2003,18(6):1435-1440.
    143Louzguine-Luzgin D V, Shimada T, Inoue A. Ni-based Bulk Glassy Alloys withLarge Supercooled Liquid Region Exceeding90K[J]. Intermetallics,2005,13(11):1166-1171.
    144Kawamura Y, Itoi T, Nakamura T, Inoue A. Superplasticity in Fe-based MetallicGlass with Wide Supercooled Liquid Region[J]. Materials Science and Engineering:A,2001,304-306:735-739.
    145周君,秦国梁,张忠信.摩擦焊在汽车制造业中的应用[J].汽车焊接国际论坛,2003:284-290.
    146刘军.摩擦焊在美国的应用与发展[J].焊接技术,1995,4:46-47.
    147杨瑞芳.流变学理论基础及其应用[M].北京:机械工业出版社,1998:128.
    148陈惠钊.粘度测量[M].北京:中国计量出版社,1994:94.
    149Bakke E, Busch R, Johnson W L. The Viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5Bulk Metallic Glass Forming Alloy in the Supercooled Liquid[J]. Applied PhysicsLetters,1995,67(22):3260-3262.
    150Lee K S, Jun H J, Chang Y W. Flow Characteristics and Formability of a BulkMetallic Glass with a Wide Undercooled Liquid Region[J]. Materials Science andEngineering: A,2007,449-451:941-944.
    151Kato H, Kawamura Y, Inoue A, Chen H S. Newtonian to Non-Newtonian MasterFlow Curves of a Bulk Glass Alloy Pd40Ni10Cu30P20[J]. Applied Physics Letters,1998,73(25):3665-3667.
    152Shoji T, Kawamura Y, Ohno Y. Joining of Zr41Be23Ti14Cu12Ni10Bulk MetallicGlasses by a Ffriction Welding Method[J]. Materials Transactions,2003,44:1809-1816.
    153樊巧彩. M42高性能高速钢摩擦焊接工艺研究[D].天津:河北工业大学,2006:20-21.
    154宁斐章,才荫先.摩擦焊[M].北京:机械工业出版社,1983:18.
    155冼爱平,王连文.液态金属的物理性能[M].北京:科学出版社,2005:159-217.
    156Fan G J, Fecht H J, Lavernia E J. Viscous Flow of the Pd43Ni10Cu27P20BulkMetallic Glass-Forming Liquid[J]. Applied Physics Letters,2004;84:487-489.
    157Busch R, Bakke E, Johoson W L. Viscosity of the Supercooled Liquid andRelaxation at the Glass Transformation of the Zr46.75Ti8.25Cu7.5Ni10Be27.5BulkMetallic Glass Forming Alloy[J]. Acta Materialia,1998,46(13):4725-4732.
    158Kawamura Y, Inoue A. Newtonian Viscosity of Supercooled Liquid in aPd40Ni40P20Metallic Glass[J]. Applied Physics Letters,2000,77(8):1114-1116.
    159H·H·雷卡林.焊接热过程计算[M].北京:中国工业出版社,1961:41.
    160Seli H, Ismail A I M, Rachman E, Ahmad Z A. Mechanical Evaluation and ThermalModelling of Friction Welding of Mild Steel and Aluminium[J]. Journal ofMaterials Processing Technology,2010,210:1209-1216.
    161Kim J H, Shin S Y, Lee C H. Characterization of the Gas Tungsten Arc WeldedCu54Ni6Zr22Ti18Bulk Metallic Glass Weld[J]. Materials Transactions,2005,46(6):1440-1442.
    162Kahraman N. The Influence of Welding Parameters on the Joint Strength ofResistance Spot-Welded Titanium Sheets[J]. Materials&Design,2007,28:420-427.
    163Chao Y J. Ultimate Strength and Failure Mechanical of Resistance Spot WeldSubjected to Tensile, Shear, or Combined Tensile/Shear Loads[J]. Journal ofEngineering Materials and Technology,2003,125:125-132.
    164袁少波,童彦刚.点焊技术在汽车工业上的应用[J].电焊机,2005,35:26-30.
    165Gould J E, Khurana S P, Li T. Predictions of Microstructures when WeldingAutomotive Advanced High-Strength Steels[J]. Welding Journal,2006,85:111s-116s.
    166朱正行,严向明,王敏.电阻焊技术[M].北京:机械工业出版社,2000:67.
    167郑元亮.点焊、缝焊和凸焊[M].北京:机械工业出版社,1988:39.
    168郎波. AZ31B镁合金电阻点焊研究[D].长春:吉林大学,2008:34-37.
    169Liu L, Xiao L, Feng J C, Tian Y H, Zhou S Q, Zhou Y. The Mechanical ofResistance Spot Welding of Magnesium to Steel[J]. Metallurgical and MaterialsTransactions A,2010,41:2651-2661.
    170Khan M I, Kuntz M L, Zhou Y. Effects of Weld Microstructure on Static andImpact Performance of Resistance Spot Welded Joints in Advanced High StrengthSteels[J]. Science and Technology of Welding and Joining,2008,13:294-304.
    171王慧越,张延松,陈关龙,张小云.双相钢电阻点焊接头断裂形式研究[J].试验研究焊接,2007,7:32-35.
    172甄舒. B340/590DP高强钢电阻点焊接头组织与力学性能研究[D].长春:吉林大学,2010:39.
    173Pouranvari M, Mousavizadeh S M, Marashi S P H, Goodarzi M, Ghorbani M.Influence of Fusion Size and Failure Mode on Mechanical Performance ofDissimilar Resistance Spot Welds of AISI1008Low Carbon Steel and DP600Advanced High Strength Steel[J]. Materials&Design,2011,32:1390-1398.
    174陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991:26-27.
    175Chuko W, Gould J E. Development of Appropriate Resistance Spot WeldingPractice for Transformation-Hardened Steels[J]. Welding Journal,2002,81:1s-7s.
    176龙昕,汪建华,张增艳,魏良武,陆皓.电阻点焊温度场分布的数值模拟[J].上海交通大学学报,2001,35:416-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700