用户名: 密码: 验证码:
面向光催化和光伏器件的氧化锌纳米线制备与集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种重要的Ⅱ-Ⅵ族直接带隙半导体材料,它具有较宽的带隙和较高的激子结合能。纳米结构的ZnO具有优异的电学、光学、气敏和光催化氧化等特性,在透明电极、发光二极管、太阳能电池、紫外探测器、压电器件、声表面波器件、气敏传感器、光催化降解等领域得到了广泛应用。尤其是ZnO纳米材料作为一种高效、无毒、价格低廉的光催化剂,在光催化降解有机污染物和矿化环境污染物等领域备受关注。同时,纳米结构的ZnO具有高的比表面积、高的电子迁移率、对可见光透明、纳米形貌丰富等特点,成为染料敏化太阳能电池领域的一个研究热点。目前,国内外研究人员在ZnO纳米材料的结构和特性等方面开展了大量的研究工作,但在器件化和实用化方面,仍存在许多的问题需要解决,比如工艺的集成性和重复性较低,工艺过程复杂且成本较高等。因此,研究ZnO纳米材料的制备方法,将其与微纳米加工技术相结合,开发具有实用价值的新型器件,探索微观结构与器件性能之间的内在联系,具有十分重要的意义。
     本论文研究工作主要以一维ZnO纳米线为研究对象,将其与传统的微加工和微流体等技术相集成,重点研究其在光催化和光伏电池中的应用问题。围绕此内容,具体开展了以下几个方面的工作:
     (1)通过采用溶胶-凝胶工艺与旋涂工艺相结合的方法在硅基底上制备了高质量的ZnO种子层,从而对水热法合成ZnO纳米线的工艺进行了改进。利用该方法制备的ZnO种子层是由粒度均匀的ZnO纳米颗粒构成,具有明显的纤锌矿结构和良好的c轴择优取向,而且对设备要求不高、工艺简单、重复性好,满足了大面积制备ZnO纳米线的需要;研究了生长液中的不同添加剂的含量以及生长时间对纳米线形貌的影响,结果表明,氨水和聚醚酰亚胺(PEI)对于获得高长径比的纳米线具有直接的影响,而随着生长时间的增加,ZnO纳米线快速且近乎呈线性的增长;通过将改进的水热法与光刻工艺相结合制备了长且垂直对准的ZnO纳米线阵列,并明显改善了纳米线的底部融合问题,从而有利于将ZnO纳米线集成到实用化器件之中。
     (2)提出了一种面向光催化应用的新型微流体反应器。通过采用水热法与光刻工艺相结合的方法在玻璃基底上制备了大面积垂直对准的ZnO纳米线,然后利用软光刻技术制备了带有微流体沟道的PDMS壳体,将两者键合形成一个平面微流体反应器;ZnO纳米线作为固定型光催化剂,具有明显的纤锌矿结构以及良好的紫外吸收特性,同时也避免了催化剂从处理后的溶液中分离回收的难题;通过光催化降解亚甲基蓝的实验对微流体反应器的光催化性能进行了研究,结果表明,该反应器具有稳定而高效的光催化性能,通过对ZnO纳米线退火以及染料溶液冲洗等预处理均能有效地增强反应器的光催化能力;与其它对照实验相比,该平面微流体反应器也显示出了优异的光催化性能。可见,该反应器具有制备工艺简单,光催化效率高,适合于规模化生产等优点,因此,它具有非常广阔的应用前景。
     (3)研究了钯掺杂对ZnO纳米纤维的光催化增强效应。以聚乙烯吡咯烷酮为纤维模板、醋酸锌/氯化钯为前驱体、一定体积比的乙醇/醋酸/水等为混合溶剂,利用静电纺丝技术制备了复合纳米纤维;通过在600℃下煅烧2小时得到了钯掺杂的ZnO纳米纤维,它们是具有超高长径比的纳米线:利用SEM、TEM、XRD和FTIR等技术对ZnO纳米纤维的结构和特性进行了表征,测试结果表明,煅烧后的纳米纤维呈纤锌矿结构,由几纳米到几十纳米的晶粒构成,由于钯掺杂量相对较小,其未对纳米纤维的形貌产生明显影响;通过光催化降解亚甲基蓝,实验研究了钯掺杂对ZnO纳米纤维的光催化性能的影响,结果表明,与纯ZnO纳米纤维相比,一定量的钯掺杂可以显著提高其光催化性能,并分析了可能的影响机制。
     (4)研究了ZnO纳米线形貌和微流体电解质对光伏器件性能的影响。结合水热法和光刻工艺在FTO玻璃基底上制备了垂直对准的ZnO纳米线,对比研究了定时更换生长液对ZnO纳米线形貌的影响,结果表明,定时更换生长液对于提高纳米线的生长速率以及获得高长径比的纳米线非常重要:研究了纳米线长度对光伏器件性能的影响,测试结果表明,随着纳米线长度增加,光伏器件的性能不断提高,这主要归因于纳米线上染料吸附量的增加;首次将微流电解质的概念引入到光伏器件之中,并初步研究了不同的电解质流速对光伏器件性能的影响,测试结果表明,随着电解质流速的降低,光伏器件的短路电流逐渐降低,而开路电压缓慢增加,从而对光伏器件的能量转换效率产生一定程度的影响。
Zinc oxide (ZnO) is a remarkable Ⅱ-Ⅵ semiconductor material with a wide direct bandgap of3.37eV and a large exciton binding energy of60meV at room temperature. Nanostructured ZnO has received much attention over the past few years due to its distinguished performance in electronics, optics, gas sensing and photocatalytic oxidation, making it suitable for a wide range of applications such as solar cells, light emitting diodes, transparent electrodes, surface acoustic wave devices, ultraviolet photodetectors, gas sensors, photocatalytic degradation and so on. In particular, ZnO nanomaterial as an efficient photocatalyst has the advantages of low cost, non-toxicity, higher photocatalytic activity for the degradation of various kinds of organic pollutants in both acidic and basic medium than titanium oxide (TiO2). On the other hand, ZnO presents excellent bulk electron mobility, high surface-to-volume ratio, high transparency to visible light and the richest family of nanostructures. The unique combination of these properties opens, in principle, wide possibilities in terms of dye-sensitized solar cells (DSSCs) design. Although a great deal of research work has been conducted on the structures and properties of ZnO nanomaterials, there are still many issues for applying ZnO nanomaterials into practical devices, such as the low integratability, low reproducibility, complex procedure and high cost. Thus, it is of great importance to develop novel strategies such as integrating ZnO nanomaterials with other micro/nano fabrication techniques, in order to develop novel practical devices, and to explore the connections between the microscopic structures and the device performance.
     In this thesis, we mainly focus on the fabrication and integration of one-dimensional (1-D) ZnO nanowire materials. A lot of effort has been devoted to combine the conventional microfabrication process and microfluidic technology with the improved hydrothermal method of synthesizing1-D ZnO nanowires, aiming to explore their potentials in photocatalytic and photovoltaic applications. The details of our work are as follows:
     Firstly, the hydrothermal method of synthesizing ZnO nanowires had been improved by adopting a novel method for preparing ZnO seed layer on the substrate, which combined a sol-gel process and a spin-coating technique. The ZnO seed layer was composed of ZnO nanoparticles that were uniform in size and highly c-axis oriented. This approach could simplify the manufacturing process and improve the process reliability, so it was suitable for scale-up production of ZnO nanowires on different substrates. Furthermore, the effect of the growth duration and various contents of additives in the growth solution on the ZnO nanowire morphology had been investigated. The results indicated that the contents of ammonia and polyethyleneimine (PEI) in the growth solution played a key role in obtaining vertically aligned ZnO nanowires with high aspect ratio. The nanowire length increased fast even linearly with the increase of growth duration. Ultralong and well-aligned ZnO nanowire arrays were selectively grown on the substrate by combining the general photolithography with the improved hydrothermal method. Meantime, the bottom fusion at the foot of nanowires had been improved obviously. The results showed that the combination method was favorable to integrate the ZnO nanomaterials into practical devices.
     Secondly, a novel microfluidic reactor with integrated ZnO nanowires as immobilized photocatalyst for the degradation of organic dyes had been developed. Large-area and well-aligned ZnO nanowires were grown on glass substrate through the combination of the improved hydrothermal method and photolithographic technique. The microfluidic reactor was prepared by bonding the ZnO nanowire-coated glass slide with a PDMS chip that was fabricated by soft lithography. As the immobilized catalyst, ZnO nanowires exhibited obvious wurtzite structure and excellent UV absorption performance. More importantly, it could avoid the troublesome process of recycling ultrafine catalyst from the disposed solution. The photocatalytic activity of the reactor was evaluated by the decomposition of methylene blue under UV irradiation. The results of cyclic photodegradation showed that our microfluidic device possessed good stability and high photocatalytic performance. In addition, the pretreatments such as flushing the device with dye solution and annealing the ZnO nanowires could enhance the photocatalytic activity of microfluidic reactor obviously. Compared to the control experiments, the microfluidic reactor with integrated ZnO nanowires also exhibited much better catalytic performance. Hence the microfluidic reactor we proposed was of great practical value due to its simple fabrication process and high photocatalytic efficiency.
     Thirdly, the effect of doping of noble metal palladium (Pd) on the photocatalytic activity of1-D ZnO nanofibers had been investigated. The composited nanofibers were synthesized via an electrospinning technique, in which polyvinylpyrrolidone (PVP) was used as the fiber template, zinc acetate/palladium chloride as the precursors, and a mixture of ethanol/acid acetate/water at a ratio of8:5:2(v/v/v) as the co-solvent. Pd-doped ZnO nanofibers were obtained after calcinating the as-spun nanofibers at600℃in air for2h. The measurement results showed that the Pd doping had little effect on the morphology of ZnO nanofibers due to its very small amount. After calcination, the nanofibers exhibited wurtzite structure and they were composed of ultrafine ZnO nanocrystals. The effect of Pd doping on the photocatalytic activity of ZnO nanofibers had been evaluated by the degradation of methylene blue under UV irradiation. The results showed that a certain amount of Pd doping could enhance the photocatalytic efficiency of ZnO nanofibers obviously and the possible influencing mechanism had been discussed. Moreover, as a subset of ZnO nanowires, doped ZnO nanofibers could be collected easily from the disposed solution, so it had a great potential in photocatalytic applications.
     Finally, the effects of ZnO nanowire morphology and microfluidic electrolyte on the photovoltaic performance of DSSCs had been investigated. The combination of the improved hydrothermal method and general photolithography was adopted to synthesize well-aligned ZnO nanowires on FTO glass substrate. The effect of refreshing growth solution on the growth of ZnO nanowires was investigated. The results showed that it was crucial to refreshing the growth solution for obtaining high growth rate and high aspect ratio of nanowires. Furthermore, the effect of nanowire length on the photovoltaic performance of solar cells had been examined. The results showed that the DSSC performance was improved dramatically with the increase of nanowire length, which was ascribed to the increase of dye loading on the nanowire surface. The conception of microfluidic electrolyte was successfully introduced into the DSSC devices for the first time and the effect of the flowing rates of microfluidic electrolyte had been examined preliminarily. The results showed that, with the decrease of flowing rates, the short-circuited current (JSC) decreased while the open-circuited voltage (VOC) increased, imposing a certain effect on the solar energy conversion efficiency. The possible influencing mechanism of the microfluidic electrolyte on the DSSC photovoltaic performance was also discussed.
引文
[1]Wang Z L. ZnO nanowire and nanobelt platform for nanotechnology [J]. Materials Science and Engineering:R:Reports,2009,64(3):33-71.
    [2]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics,2005,98(4):041301-041301-103.
    [3]Yi G C, Wang C, Park W I. ZnO nanorods:synthesis, characterization and applications [J]. Semiconductor Science and Technology,2005,20(4):S22.
    [4]Xu S, Wang Z L. One-dimensional ZnO nanostructures:Solution growth and functional properties [J]. Nano Research,2011,4(11):1013-1098.
    [5]Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Applied Physics Letters,2004,84(18):3654-3656.
    [6]Harnack O, Pacholski C, Weller H, et al. Rectifying behavior of electrically aligned ZnO nanorods [J]. Nano Letters,2003,3(8):1097-1101.
    [7]Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Advanced Materials,2004,16(1):87-90.
    [8]Arnold M S, Avouris P, Pan Z W, et al. Field-effect transistors based on single semiconducting oxide nanobelts [J]. The Journal of Physical Chemistry B,2003,107(3):659-663.
    [9]Liu C H, Yiu W C, Au F C K, et al. Electrical properties of zinc oxide nanowires and intramolecular p-n junctions [J]. Applied Physics Letters,2003,83(15):3168-3170.
    [10]Shafiei M, Yu J, Arsat R, et al. Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing [J]. Sensors and Actuators B:Chemical,2010,146(2):507-512.
    [11]Johnson J C, Yan H, Schaller R D, et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires [J]. Nano Letters,2002,2(4):279-283.
    [12]Weintraub B, Wei Y, Wang Z L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells [J]. Angewandte Chemie International Edition,2009, 48(47):8981-8985.
    [13]Li D, Haneda H. Morphologies of zinc oxide particles and their effects on photocatalysis [J]. Chemosphere,2003,51(2):129-137.
    [14]Ronning C, Gao P X, Ding Y, et al. Manganese-doped ZnO nanobelts for spintronics [J]. Applied Physics Letters,2004,84(5):783-785.
    [15]Wander A, Schedin F, Steadman P, et al. Stability of polar oxide surfaces [J]. Physical Review Letters, 2001,86(17):3811-3814.
    [16]Feynman R P. There's plenty of room at the bottom [J]. Engineering and Science,1960,23(5):22-36.
    [17]Kroto H W, Heath J R, O'Brien S C, et al. C60:buckminsterfullerene [J]. Nature,1985,318(6042): 162-163.
    [18]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [19]Fievet F, Fievet-Vincent F, Lagier J P, et al. Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process [J]. Journal of Materials Chemistry,1993,3(6): 627-632.
    [20]Chad A M, Andrew T. Semiconductors meet biology [J]. Nature,2000,405:626-627.
    [21]Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinum nanoparticles [J]. Nanoparticles Science,1996:1924-1925.
    [22]Qian X, Yin J, Feng S, et al. Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles [J]. J. Mater. Chem.,2001,11(10):2504-2506.
    [23]Vollath D, Sickafus K E. Synthesis of ceramic oxide powders by microwave plasma pyrolysis [J]. Journal of Materials Science,1993,28(21):5943-5948.
    [24]Stadnik Z M, Griesbach P, Dehe G, et al.61Ni MOssbauer study of the hyperfine magnetic field near the Ni surface [J]. Physical Review B,1987,35(13):6588.
    [25]Xie Y, Qian Y, Wang W, et al. A benzene-thermal synthetic route to nanocrystalline GaN [J]. Science, 1996:1926-1926.
    [26]Yiping L, Hadjipanayis G C, Sorensen C M, et al. Magnetic properties of fine cobalt particles prepared by metal atom reduction [J]. Journal of Applied Physics,1990,67(9):4502-4504.
    [27]Nitzan A, Brus L E. Can photochemistry be enhanced on rough surfaces? [J]. The Journal of Chemical Physics,1981,74(9):5321-5322.
    [28]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties [J]. The Journal of Physical Chemistry,1991,95(2):525-532.
    [29]Weller H. Colloidal semiconductor Q-particles:chemistry in the transition region between solid state and molecules [J]. Angewandte Chemie International Edition in English,2003,32(1):41-53.
    [30]Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells [J]. Nature materials,2005, 4(6):455-459.
    [31]Zhou J, Gu Y, Fei P, et al. Flexible piezotronic strain sensor [J]. Nano letters,2008,8(9):3035-3040.
    [32]Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature,2002,415(6872):617-620.
    [33]Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science,2001,291(5505):851-853.
    [34]Kashif M, Akhtar M N, Nasir N, et al. Versatility of ZnO nanostructures [M]//Carbon and Oxide Nanostructures. Springer Berlin Heidelberg,2011:219-244.
    [35]Park J H, Park J G. Synthesis of ultrawide ZnO nanosheets [J]. Current Applied Physics,2006,6(6): 1020-1023.
    [36]Lee W, Jeong M C, Myoung J M. Fabrication and application potential of ZnO nanowires grown on GaAs (002) substrates by metal-organic chemical vapour deposition [J]. Nanotechnology,2004,15(3): 254.
    [37]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics,2005,98(4):041301-041301-103.
    [38]Zhang B P, Binh N T, Wakatsuki K, et al. Synthesis and optical properties of single crystal ZnO nanorods [J]. Nanotechnology,2004,15(6):S382.
    [39]Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonics integration [J]. Science,2004,305(5688):1269-1273.
    [40]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001,292(5523):1897-1899.
    [41]Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays [J]. Angewandte Chemie International Edition,2003,42(26):3031-3034.
    [42]Zang J, Li C M, Cui X, et al. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor [J]. Electroanalysis,2007,19(9):1008-1014.
    [43]Baruah S, Dutta J. pH-dependent growth of zinc oxide nanorods [J]. Journal of Crystal Growth,2009, 311(8):2549-2554.
    [44]Laudise R A, Ballman A A. Hydrothermal synthesis of zinc oxide and zinc sulfide [J]. The Journal of Physical Chemistry,1960,64(5):688-691.
    [45]Dem'yanets L N, Kostomarov D V, Kuz'mina I P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions [J]. Inorganic Materials,2002,38(2):124-131.
    [46]Govender K, Boyle D S, Kenway P B, et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution [J]. Journal of Materials Chemistry,2004, 14(16):2575-2591.
    [47]Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions [J]. Journal of Materials Chemistry,2002,12(12):3773-3778.
    [48]Chittofrati A, Matijevic E. Uniform particles of zinc oxide of different morphologies [J]. Colloids and Surfaces,1990,48:65-78.
    [49]McBride R A, Kelly J M, McCormack D E. Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts [J]. Journal of Materials Chemistry,2003,13(5):1196-1201.
    [50]Peterson R B, Clark L, Gregg B A. Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions [J]. Langmuir,2004,20(12):5114-5118.
    [51]Izaki M, Omi T. Transparent zinc oxide films chemically prepared from aqueous solution [J]. Journal of The Electrochemical Society,1997,144(1):L3-L5.
    [52]Tian Z R, Voigt J A, Liu J, et al. Biomimetic arrays of oriented helical ZnO nanorods and columns [J]. Journal of the American Chemical Society,2002,124(44):12954-12955.
    [53]Music S, Popovic S, Maljkovic M, et al. Influence of synthesis procedure on the formation and properties of zinc oxide [J]. Journal of Alloys and Compounds,2002,347(1):324-332.
    [54]O'Brien P, Saeed T, Knowles J. Speciation and the nature of ZnO thin films from chemical bath deposition [J]. Journal of Materials Chemistry,1996,6(7):1135-1139.
    [55]Trindade T, de Jesus J D P, O'Brien P. Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution [J]. Journal of Materials Chemistry,1994,4(10): 1611-1617.
    [56]Zhang H, Yang D, Ma X, et al. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction [J]. The Journal of Physical Chemistry B,2005,109(36): 17055-17059.
    [57]Verges M A, Mifsud A, Serna C J. Formation of rod-like zinc oxide microcrystals in homogeneous solutions [J]. J. Chem. Soc., Faraday Trans.,1990,86(6):959-963.
    [58]Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Advanced Materials,2003,15(5):464-466.
    [59]Hung C H, Whang W T. A novel low-temperature growth and characterization of single crystal ZnO nanorods [J]. Materials Chemistry and Physics,2003,82(3):705-710.
    [60]Oner M, Norwig J, Meyer W H, et al. Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer [J]. Chemistry of Materials,1998,10(2):460-463.
    [61]Taubert A, Kiibel C, Martin D C. Polymer-induced microstructure variation in zinc oxide crystals precipitated from aqueous solution [J]. The Journal of Physical Chemistry B,2003,107(12): 2660-2666.
    [62]Qiu J, Li X, Zhuge F, et al. Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells [J]. Nanotechnology,2010,21(19):195602.
    [63]Dzenis Y A. Spinning continuous fibers for nanotechnology [J]. Science,2004,304(5679): 1917-1919.
    [64]Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology,2003,63(15):2223-2253.
    [65]Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel? [J]. Advanced Materials,2004, 16(14):1151-1170.
    [66]Guan H, Shao C, Chen B, et al. A novel method for making CuO superfine fibres via an electrospinning technique [J]. Inorganic Chemistry Communications,2003,6(11):1409-1411.
    [67]Guan H, Shao C, Wen S, et al. Preparation and characterization of NiO nanofibres via an electrospinning technique [J]. Inorganic Chemistry Communications,2003,6(10):1302-1303.
    [68]Yang X, Shao C, Guan H, et al. Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor [J]. Inorganic Chemistry Communications, 2004,7(2):176-178.
    [69]Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Vanadium pentoxide nanofibers by electrospinning [J]. Scripta Materialia,2003,49(6):577-581.
    [70]Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and morphology of niobium oxide fibres by electrospinning [J]. Chemical Physics Letters,2003,374(1):79-84.
    [71]Sui X M, Shao C L, Liu Y C. White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning [J]. Applied Physics Letters,2005,87(11):113115-113115-3.
    [72]Fujishima A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor [J]. Nature,1972,238(5385):37-38.
    [73]Matthews R W. Photo-oxidation of organic material in aqueous suspensions of titanium dioxide [J]. Water Research,1986,20(5):569-578.
    [74]Dindar B, Icli S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,140(3):263-268.
    [75]Gouvea C A K, Wypych F, Moraes S G, et al. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution [J]. Chemosphere,2000,40(4):433-440.
    [76]Hacker D S, Butt J B. Photocatalysis in a slurry reactor [J]. Chemical Engineering Science,1975, 30(9):1149-1158.
    [77]Barbeni M, Pramauro E, Pelizzetti E, et al. Photodegradation of pentachlorophenol catalyzed by semiconductor particles [J]. Chemosphere,1985,14(2):195-208.
    [78]Khodja A A, Sehili T, Pilichowski J F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001, 141(2):231-239.
    [79]Wang Y X. Controllable fabrication and characterization of functional ZnO nanomaterials and their photocatalytic applications [D]. Dalian University of Technology,2008.
    [80]Mu J, Shao C, Guo Z, et al. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures [J]. ACS Applied Materials & Interfaces,2011,3(2):590-596.
    [81]Zheng Y, Chen C, Zhan Y, et al. Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property [J]. Inorganic Chemistry,2007,46(16):6675-6682.
    [82]Okazaki M, Shiga T, Sakata S, et al. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair [J]. The Journal of Physical Chemistry,1988,92(6):1402-1404.
    [83]Ishibashi K, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative species formed on TiO2 photocatalyst [J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,134(1): 139-142.
    [84]Assabane A, Ait Ichou Y, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania:Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid) [J]. Applied Catalysis B:Environmental,2000,24(2):71-87.
    [85]Yang J L, An S J, Park W I, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition [J]. Advanced Materials,2004,16(18):1661-1664.
    [86]Xu F, Yuan Z Y, Du G H, et al. Simple approach to highly oriented ZnO nanowire arrays:large-scale growth, photoluminescence and photocatalytic properties [J]. Nanotechnology,2006,17(2):588.
    [87]Kuo T J, Lin C N, Kuo C L, et al. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts [J]. Chemistry of Materials,2007,19(21): 5143-5147.
    [88]Du P F, Song L X, Xiong J, et al. High-efficiency photocatalytic degradation of methylene blue using electrospun ZnO nanofibers as catalyst [J]. Journal of Nanoscience and Nanotechnology,2011,11(9): 7723-7728.
    [89]Penza M, Cassano G, Rossi R, et al. Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters [J]. Applied Physics Letters, 2007,90(17):173123-173123-3.
    [90]Lin C H, Chao J H, Liu C H, et al. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2 [J]. Langmuir,2008,24(17):9907-9915.
    [91]Hsueh T J, Chang S J, Hsu C L, et al. Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption [J]. Applied Physics Letters,2007,91(5):053111-053111-3.
    [92]Albers P, Seibold K, McEvoy A J, et al. High-dispersion dc sputtered platinum-titania powder catalyst active in ethane hydrogenolysis [J]. The Journal of Physical Chemistry,1989,93(4):1510-1515.
    [93]He J, Ichinose I, Kunitake T, et al. In situ synthesis of noble metal nanoparticles in ultrathin TiO2-gel films by a combination of ion-exchange and reduction processes [J]. Langmuir,2002,18(25): 10005-10010.
    [94]Zhang Y, Xu J, Xu P, et al. Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance [J]. Nanotechnology,2010,21(28):285501.
    [95]Lin D, Wu H, Zhang R, et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers [J]. Chemistry of Materials,2009,21(15):3479-3484.
    [96]Wang H Y, Yang Y, Li X, et al. Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning [J]. Chinese Chemical Letters,2010,21(9):1119-1123.
    [97]Zhang Z, Shao C, Li X, et al. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity [J]. The Journal of Physical Chemistry C,2010,114(17):7920-7925.
    [98]Law M, Greene L E, Radenovic A, et al. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells [J]. The Journal of Physical Chemistry B,2006,110(45):22652-22663.
    [99]Chao H Y, Cheng J H, Lu J Y, et al. Growth and characterization of type-Ⅱ ZnO/ZnTe core-shell nanowire arrays for solar cell applications [J]. Superlattices and Microstructures,2010,47(1): 160-164.
    [100]Jian D, Gao P X, Cai W, et al. Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr) C0O3 composite nanorod arrays [J]. Journal of Materials Chemistry,2009,19(7):970-975.
    [101]Yan X, Zou C, Gao X, et al. ZnO/TiO2 core-brush nanostructure:processing, microstructure and enhanced photocatalytic activity [J]. Journal of Materials Chemistry,2012,22(12):5629-5640.
    [102]Kanjwal M A, Sheikh F A, Barakat N A M, et al. Zinc oxide's hierarchical nanostructure and its photocatalytic properties [J]. Applied Surface Science,2012,258(8):3695-3702.
    [103]Becquerel A E. Photoelctrochemical effect [J]. CR Acad. Sci. Paris,1839,9:14.
    [104]Siemens W. On the electromotive action of illuminated selenium, discovered by Mr. Fritts of New York [J]. Philosophical Magazine Series 5,1885,19(119):315-316.
    [105]Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power [J]. Journal of Applied Physics,1954,25(5):676-677.
    [106]Goncalves L M, Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells:A safe bet for the future [J]. Energy Environ. Sci.,2008,1(6):655-667.
    [107]Hoppe H, Sariciftci N. Polymer solar cells [J]. Photoresponsive Polymers Ⅱ,2008:1-86.
    [108]Tsubomura H, Matsumura M, Nomura Y, et al. Dye sensitised zinc oxide:aqueous electrolyte: platinum photocell [J]. Nature,1976,261:402-403.
    [109]Matsumura M, Nomura Y, Tsubomura H. Dye-sensitization on the photocurrent at zinc oxide electrode in aqueous electrolyte solution [J]. Bulletin of the Chemical Society of Japan,1977,50(10): 2533-2537.
    [110]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:24.
    [111]Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011,334(6056):629-634.
    [112]Nanostructured materials for solar energy conversion [M]. Elsevier Science,2006.
    [113]Jose R, Thavasi V, Ramakrishna S. Metal oxides for dye-sensitized solar cells [J]. Journal of the American Ceramic Society,2009,92(2):289-301.
    [114]Frank A J, Kopidakis N, Lagemaat J. Electrons in nanostructured TiO2 solar cells:transport, recombination and photovoltaic properties [J]. Coordination Chemistry Reviews,2004,248(13): 1165-1179.
    [115]Renouard T, Fallahpour R A, Nazeeruddin M K, et al. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands:synthesis, characterization, and INDO/S analysis [J]. Inorganic Chemistry,2002,41(2):367-378.
    [116]Hara K, Kurashige M, Dan-oh Y, et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells [J]. New J. Chem.,2003,27(5):783-785.
    [117]Kron G, Egerter T, Werner J H, et al. Electronic Transport in dye-sensitized nanoporous TiO2 solar cells comparison of electrolyte and solid-state devices [J]. The Journal of Physical Chemistry B, 2003,107(15):3556-3564.
    [118]Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells [J]. Applied Physics Letters,2005, 86(5):053114-053114-3.
    [119]Luo Q P, Lei B X, Yu X Y, et al. Hierarchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process [J]. Journal of Materials Chemistry,2011, 21(24):8709-8714.
    [120]Jiang C Y, Sun X W, Lo G Q, et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode [J]. Applied Physics Letters,2007,90(26):263501-3.
    [121]Baxter J B, Aydil E S. Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires [J]. Solar Energy Materials and Solar Cells,2006,90(5):607-622.
    [122]Cheng H M, Chiu W H, Lee C H, et al. Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications [J]. The Journal of Physical Chemistry C,2008, 112(42):16359-16364.
    [123]Zhang J, Sun L, Pan H, et al. ZnO nanowires fabricated by a convenient route [J]. New Journal of Chemistry,2002,26(1):33-34.
    [124]Baruah S, Rafique R F, Dutta J. Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures [J]. Nano,2008,3(05):399-407.
    [125]Huang Y, Yu K, Zhu Z. Synthesis and field emission of patterned ZnO nanorods [J]. Current Applied Physics,2007,7(6):702-706.
    [126]Zhang Y, Yu K, Ouyang S, et al. Selective-area growth and field emission properties of zinc oxide nanowire micropattern arrays [J]. Physica B:Condensed Matter,2006,382(1):76-80.
    [127]Tong Y, Liu Y, Dong L, et al. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique [J]. The Journal of Physical Chemistry B,2006,110(41):20263-20267.
    [128]Pal U, Santiago P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process [J]. The Journal of Physical Chemistry B,2005,109(32):15317-15321.
    [129]Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures [J]. Science and Technology of Advanced Materials,2009,10(1):013001.
    [130]Xu J, Chen Y, Li Y, et al. Gas sensing properties of ZnO nanorods prepared by hydrothermal method [J]. Journal of Materials Science,2005,40(11):2919-2921.
    [131]Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves [J]. Science, 2007,316(5821):102-105.
    [132]Chang C J, Tsai M H, Hsu Y H, et al. Morphology and optoelectronic properties of ZnO rod array/conjugated polymer hybrid films [J]. Thin Solid Films,2008,516(16):5523-5526.
    [133]Chu D, Masuda Y, Ohji T, et al. Formation and photocatalytic application of ZnO nanotubes using aqueous solution [J]. Langmuir,2010,26(4):2811-2815.
    [134]Heo Y W, Norton D P, Tien L C, et al. ZnO nanowire growth and devices [J]. Materials Science and Engineering:R:Reports,2004,47(1):1-47.
    [135]Wang Z L. Zinc oxide nanostructures:growth, properties and applications [J]. Journal of Physics: Condensed Matter,2004,16(25):R829.
    [136]Fan H J, Werner P, Zacharias M. Semiconductor nanowires:from self-organization to patterned growth [J]. Small,2006,2(6):700-717.
    [137]Cheng H, Cheng J, Zhang Y, et al. Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition [J]. Journal of Crystal Growth,2007,299(1):34-40.
    [138]Wang M, Ye C H, Zhang Y, et al. Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method [J]. Journal of Crystal Growth,2006,291(2): 334-339.
    [139]Zacharias M, Subannajui K, Menzel A, et al. ZnO nanowire arrays-Pattern generation, growth and applications [J]. Physica Status Solidi (b),2010,247(10):2305-2314.
    [140]Shin J H, Song J Y, Park H M. Growth of ZnO nanowires on a patterned Au substrate [J]. Materials Letters,2009,63(1):145-147.
    [141]Yuan D, Guo R, Wei Y, et al. Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation [J]. Advanced Functional Materials,2010,20(20):3484-3489.
    [142]He J H, Hsu J H, Wang C W, et al. Pattern and feature designed growth of ZnO nanowire arrays for vertical devices [J]. The Journal of Physical Chemistry B,2006,110(1):50-53.
    [143]Conley J F, Stecker L, Ono Y. Directed integration of ZnO nanobridge devices on a Si substrate [J]. Applied Physics Letters,2005,87(22):223114-223114.
    [144]Kang H W, Yeo J, Hwang J O, et al. Simple ZnO nanowires patterned growth by microcontact printing for high performance field emission device [J]. The Journal of Physical Chemistry C,2011, 115(23):11435-11441.
    [145]Ko S H, Lee D, Hotz N, et al. Digital selective growth of ZnO nanowire arrays from inkjet-printed nanoparticle seeds on a flexible substrate [J]. Langmuir,2011,28(10):4787-4792.
    [146]Song J, Baek S, Lee H, et al. Selective Growth of Vertical ZnO Nanowires with the Control of Hydrothermal Synthesis and Nano-Imprint Technology[J]. Journal of Nanoscience and Nanotechnology,2009,9(6):3909-3913.
    [147]Xu S, Wei Y, Kirkham M, et al. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst [J]. Journal of the American Chemical Society,2008,130(45):14958-14959.
    [148]Kang B S, Pearton S J, Ren F. Low temperature patterned growth of ZnO nanorod array on Si [J]. Applied Physics Letters,2007,90(8):083104-083104-3.
    [149]Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds [J]. Nano Letters,2005,5(7):1231-1236.
    [150]Li Y H, Gong J, Deng Y L. Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights [J]. Sensors and Actuators A,2010,158(2):176-182.
    [151]Park J Y, Kim S S. Growth of nanograins in electrospun ZnO nanofibers [J]. Journal of the American Ceramic Society,2009,92(8):1691-1694.
    [152]Strom J G, Jun H W. Kinetics of hydrolysis of methenamine [J]. J Pharm Sci,1980,69(11): 1261-1263.
    [153]Greene L E, Yuhas B D, Law M, et al. Solution-grown zinc oxide nanowires [J]. Inorg. Chem,2006, 45(19):7535-7543.
    [154]Xu C K, Shin P, Cao L L, et al. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells [J]. J. Phys. Chem. C,2010,114(1):125-129.
    [155]Tian J H, Hu J, Li S S, et al. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires [J]. Nanotechnology,2011,22:245601.
    [156]Wu W B, Hu G D, Cui S G, et al. Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route [J]. Cryst Growth Des,2008,8(11):4014-4020.
    [157]Ollis D F, Al-Ekabi H. Photocatalytic purification and treatment of water and air:proceedings of the 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, London, Ontario, Canada,8-13 November,1992 [M]. Elsevier Science Ltd,1993.
    [158]Mills A, Le Hunte S. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology. A:Chemistry,1997,108(1):1-35.
    [159]Hoffman A J, Carraway E R, Hoffmann M R. Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids [J]. Environmental Science & Technology,1994, 28(5):776-785.
    [160]Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chemical Reviews,1993,93(1):341-357.
    [161]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [162]McCullagh C, Robertson J M C, Bahnemann D W, et al. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms:a review [J]. Research on Chemical Intermediates,2007,33(3):359-375.
    [163]Sjogren J C, Sierka R A. Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis [J]. Applied and Environmental Microbiology,1994,60(1):344-347.
    [164]Cai R, Hashimoto K, Kubota Y, et al. Increment of photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase [J]. Chemistry Letters,1992,21(3):427-430.
    [165]Cai R, Kubota Y, Shuin T, et al. Induction of cytotoxicity by photoexcited TiO2 particles [J]. Cancer Research,1992,52(8):2346-2348.
    [166]Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238: 37-38.
    [167]Karakitsou K E, Verykios X E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage [J]. The Journal of Physical Chemistry,1993,97(6):1184-1189.
    [168]Borgarello E, Kiwi J, Pelizzetti E, et al. Photochemical cleavage of water by photocatalysis [J]. Nature,1981,289:158-160.
    [169]Taqui Khan M M, Nageswara Rao N. Stepwise reduction of coordinated dinitrogen to ammonia via diazinido and hydrazido intermediates on a visible light irradiated Pt/CdS·Ag2S/RuO2 particulate system suspended in an aqueous solution of K[Ru(EDTA-H)Cl]·2H2O [J]. Journal of Photochemistry and Photobiology A:Chemistry,1991,56(1):101-111.
    [170]Schiavello M. Some working principles of heterogeneous photocatalysis by semiconductors [J]. Electrochimica Acta,1993,38(1):11-14.
    [171]Gerischer H, Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water [J]. Journal of the Electrochemical Society.1992,139(1):113-118.
    [172]Jackson N B, Wang C M, Luo Z, et al. Attachment of TiO2 powders to hollow glass microbeads: activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde [J]. Journal of the Electrochemical Society,1991,138(12):3660-3664.
    [173]McCullagh C, Skillen N, Adams M, et al. Photocatalytic reactors for environmental remediation:a review [J]. J Chem Technol Biotechnol,2011,86:1002-1017.
    [174]Ray A K, Beenackers A A C M. Novel photocatalytic reactor for water purification [J]. AIChE Journal,1998,44(2):477-483.
    [175]Mahmoodi N M, Arami M, Limaee N Y, et al. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor [J]. Journal of Colloid and Interface Science,2006,295(1):159-164.
    [176]Ehrfeld W, Hessel V, Haverkamp V. Microreactors [M]. Weinheim:Wiley-VCH,2000.
    [177]Yoshida J, Nagaki A, Iwasaki T, et al. Enhancement of chemical selectivity by microreactors [J]. Chemical Engineering & Technology,2005,28(3):259-266.
    [178]Lu H, Schmidt M A, Jensen K F. Photochemical reactions and on-line UV detection in microfabricated reactors [J]. Lab Chip,2001,1(1):22-28.
    [179]Ueno K, Kitagawa F, Kitamura N. Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip [J]. Lab on a Chip,2002,2(4):231-234.
    [180]Wootton R C R, Fortt R, de Mello A J. A microfabricated nanoreactor for safe, continuous generation and use of singlet oxygen [J]. Organic Process Research & Development,2002,6(2): 187-189.
    [181]Sugimoto A, Sumino Y, Takagi M, et al. The Barton reaction using a microreactor and black light. Continuous-flow synthesis of a key steroid intermediate for an endothelin receptor antagonist [J]. Tetrahedron Letters,2006,47(35):6197-6200.
    [182]Maeda H, Mukae H, Mizuno K. Enhanced efficiency and regioselectivity of intramolecular (2π+2π) photocycloaddition of 1-cyanonaphthalene derivative using microreactors [J]. Chemistry Letters, 2005,34(1):66-67.
    [183]Gorges R, Meyer S, Kreisel G. Photocatalysis in microreactors [J]. J. Photochem. Photobiol. A,2004, 167(2):95-99.
    [184]Nakamura H, Li X, Wang H, et al. A simple method of self assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions [J]. Chemical Engineering Journal,2004,101(1):261-268.
    [185]Takei G, Kitamori T, Kim H B. Photocatalytic redox-combined synthesis of 1-pipecolinic acid with a titania-modified microchannel chip [J]. Catalysis Communications,2005,6(5):357-360.
    [186]Matsushita Y, Ohba N, Kumada S, et al. Photocatalytic N-alkylation of benzylamine in microreactors [J]. Catalysis Communications,2007,8(12):2194-2197.
    [187]Whitesides G M. The origins and the future of microfluidics [J]. Nature,2006,442(7101):368-373.
    [188]Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer [J]. IEEE Transactions on Electron Devices,1979,26(12):1880-1886.
    [189]Tsuchiya N, Kuwabara K, Hidaka A, et al. Reaction kinetics of dye decomposition processes monitored inside a photocatalytic microreactor [J]. Physical Chemistry Chemical Physics,2012, 14(14):4734-4741.
    [190]Charles G, Roques-Carmes T, Becheikh N, et al. Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion [J]. Journal of Photochemistry and Photobiology A:Chemistry,2011,223(2):202-211.
    [191]Wang N, Lei L, Zhang X M, et al. A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis [J]. Microelectronic Engineering,2011,88(8):2797-2799.
    [192]Oda K, Ishizaka Y, Sato T, et al. Analysis of photocatalytic reactions using a TiO2 immobilized microreactor [J]. Analytical Sciences,2010,26(9):969-972.
    [193]Lindstrom H, Wootton R, Iles A. High surface area titania photocatalytic microfluidic reactors [J]. AIChE Journal,2007,53(3):695-702.
    [194]Rogers J A, Nuzzo R G. Recent progress in soft lithography [J]. Materials Today,2005,8(2):50-56.
    [195]Schulz H, Thiemann K H. Structure parameters and polarity of the wurtzite type compounds Sic-2H and ZnO [J]. Solid State Communications,1979,32(9):783-785.
    [196]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews,1995,95(1):69-96.
    [197]Yatmaz H C, Akyol A, Bayramoglu M. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions [J]. Industrial & Engineering Chemistry Research,2004, 43(19):6035-6039.
    [198]Daneshvar N, Salari D, Khataee A R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004,162(2):317-322.
    [199]Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water [J]. Applied Catalysis B:Environmental,2001,31(2):145-157.
    [200]Ramakrishna S, Fujihara K, Teo W E, et al. An introduction to electrospinning and nanofibers [B]. New Jersey:World Scientific,2005.
    [201]Formhals A. Process and apparatus for preparing artificial threads:US,1975504.
    [202]Baumgarten P K. Electrostatic spinning of acrylic microfibers [J]. Journal of Colloid and Interface Science,1971,36(1):71-79.
    [203]Larrondo L, St John Manley R. Electrostatic fiber spinning from polymer melts. Ⅰ. Experimental observations on fiber formation and properties [J]. Journal of Polymer Science B Polymer Physics, 1981,19:909-920.
    [204]Larrondo L, St John Manley R. Electrostatic fiber spinning from polymer melts. Ⅱ. Examination of the flow field in an electrically driven jet [J]. Journal of Polymer Science B Polymer Physics,1981, 19:921-932.
    [205]Larrondo L, St John Manley R. Electrostatic fiber spinning from polymer melts. Ⅲ. Electrostatic deformation of a pendant drop of polymer melt [J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(6):933-940.
    [206]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J]. Journal of Electrostatics,1995,35(2):151-160.
    [207]Reneker D H, Srinivasan G. Structure and morphology of small diameter electrospun aramid fibers [J]. Polym. Int.(UK),1995,36(2):195-201.
    [208]Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J]. Nanotechnology,1996,7:216-223.
    [209]Fang X, Reneker D H. DNA fibers by electrospinning [J]. Journal of Macromolecular Science, Part B:Physics,1997,36(2):169-173.
    [210]Yarin A L, Koombhongse S, Reneker D H, et al. Binding instability in electrospinning of nanofibers [J]. Journal of Applied Physics,2001,89(5):3018-3026.
    [211]Yang Q B, Li Z Y, Hong Y L, et al. Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning [J]. Journal of Polymer Science Part B-Polymer Physics,2004,42(20):3721-3726.
    [212]Dong H, Nyame V, Macdiarmid A G, et al. Polyaniline/poly(methyl methacrylate) coaxial fibers: The fabrication and effects of the solution properties on the morphology of electrospun core fibers [J]. Journal of Polymer Science Part B-Polymer Physics,2004,42(21):3934-3942.
    [213]Henriques C, Vidinha R, Botequim D, et al. A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus [J]. Journal of Nanoscience and Nanotechnology,2009,9(6):3535-3545.
    [214]Jarusuwannapoom T, Hongroijanawiwat W, Jitjaicham S, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers [J]. European Polymer Journal,2005,41(3):409-421.
    [215]Zong X H, Kim K, Fang D F, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes [J]. Polymer,2002,43(16):4403-4412.
    [216]Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers [J]. Polymer,2001,42(19):8163-8170.
    [217]Shin Y M, Hohman M M, Brenner M P, et al. Experimental characterization of electrospinning:the electrically forced jet and instabilities [J]. Polymer,2001,42(25):09955-09967.
    [218]Shin Y M, Hohman M M, Brenner M P, et al. Electrospinning:A whipping fluid jet generates submicron polymer fibers [J]. Applied Physics Letters,2001,78(8):1149-1151.
    [219]Hohman M M, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. Ⅰ. Stability theory [J]. Physics of Fluids,2001,13(8):2201-2220.
    [220]Fridrikh S V, Yu J H, Brenner M P, et al. Controlling the fiber diameter during electrospinning [J]. Phys. Rev. Lett.,2003,90(14):144502.
    [221]Zhao M, Wang X, Ning L, et al. Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning [J]. Journal of Alloys and Compounds,2010,507(1):97-100.
    [222]Li C, Chen R, Zhang X, et al. Electrospinning of CeO/ZnO composite nanofibers and their photocatalytic property [J]. Materials Letters,2011,65(9):1327-1330.
    [223]Wei S H, Yu Y, Zhou M H. CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method [J]. Mater Lett,2010,64(21):284-286.
    [224]Cushing S K, Li J T, Meng F K, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor [J]. J Am Chem Soc,2012,134:15033-15041.
    [225]Wu W M, Liang S J, Ding Z X, et al. Low temperature synthesis of nanosized ZnNb2O6 photocatalysts by a citrate complex method [J]. J Sol-Gel Sci Technol,2012,61:570-576.
    [226]Li J T, Cushing S K, Bright J, et al. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts [J]. ACS Catal,2013,3:47-51.
    [227]Hornyak G L, Dutta J, Tibbals H F, et al. Introduction to nanoscience [B]. New York:Taylor & Francis Group,2008.
    [228]Goldstrin J, Newbury D E, Joy D C, et al. Scanning electron microscopy and X-ray microanalysis [B]. New York:Plenum,2003.
    [229]Silverstein R M, Webster F X. Spectrometric identification of organic compounds [B]. New York: John Wiley & Sons,1998.
    [230]Petkov V, Ohta T, Hou Y, et al. Atomic-scale structure of nanocrystals by high-energy X-ray diffraction and atomic pair distribution function analysis:study of FexPd100-x (x=0,26,28,48) nanoparticles [J]. J. Phys. Chem. C,2007,111(2):714-720.
    [231]Yan X D, Zou C W, Gao X D, et al. ZnO/TiO2 core-brush nanostructure:processing, microstructure and enhanced photocatalytic activity [J]. J Mater Chem,2012,22:5629-5640.
    [232]Shen Y B, Yamazaki T, Liu Z F, et al. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires [J]. Sensor Actuat B-Chem,2009,135(2):524-529.
    [233]Nazeeruddin M K. Conversion of light to electricity by cis-X2 bis ruthenium (II) charge-transfer sensitizers on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc,1993,115:6382-6390.
    [234]Fisher A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells [J]. The Journal of Physical Chemistry B,2000,104(5):949-958.
    [235]Oekermann T, Zhang D, Yoshida T, et al. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization [J]. The Journal of Physical Chemistry B,2004, 108(7):2227-2235.
    [236]Nelson J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes [J]. Physical Review B,1999,59(23):15374-15380.
    [237]Kopidakis N, Schiff E A, Park N G, et al. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2 [J]. The Journal of Physical Chemistry B,2000,104(16):3930-3936.
    [238]Kroon J M, Bakker N J, Smit H J P, et al. Nanocrystalline dye-sensitized solar cells having maximum performance [J]. Progress in Photovoltaics:Research and Applications,2006,15(1):1-18.
    [239]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,164(1):3-14.
    [240]Nazeeruddin M K, Klein C, Liska P, et al. Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells [J]. Coordination Chemistry Reviews,2005,249(13): 1460-1467.
    [241]Pichot F, Gregg B A. The photovoltage-determining mechanism in dye-sensitized solar cells [J]. The Journal of Physical Chemistry B,2000,104(1):6-10.
    [242]Kelly C A, Farzad F, Thompson D W, et al. Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2 [J]. Langmuir,1999,15(20):7047-7054.
    [243]Benkstein K D, Kopidakis N, Van de Lagemaat J, et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells [J]. The Journal of Physical Chemistry B,2003,107(31):7759-7767.
    [244]Kopidakis N, Benkstein K D, van de Lagemaat J, et al. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells [J]. The Journal of Physical Chemistry B,2003,107(41):11307-11315.
    [245]Kavan L, Gratzel M, Gilbert S E, et al. Electrochemical and photoelectrochemical investigation of single-crystal anatase [J]. Journal of the American Chemical Society,1996,118(28):6716-6723.
    [246]Wagner P, Helbig R. The hall-effect and the anisotropy of the mobility of the electrons in ZnO [J]. J. Phys. Chem. Solids.,1977,1:327-335.
    [247]Nakade S, Matsuda M, Kambe S, et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells [J]. The Journal of Physical Chemistry B,2002,106(39):10004-10010.
    [248]Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems:Capillary electrophoresis on a chip [J]. Journal of Chromatography A,1992,593(1):253-258.
    [249]Saleh-Lakha S, Trevors J T. Perspective:Microfluidic applications in microbiology [J]. Journal of Microbiological Methods,2010,82(1):108-111.
    [250]Pennathur S, Eijkel J C T, van den Berg A. Energy conversion in microsystems:Is there a role for micro/nanofluidics? [J]. Lab on a Chip,2007,7(10):1234-1237.
    [251]Lamberti A, Sacco A, Bianco S, et al. Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture [J]. Microelectronic Engineering,2011,88(8):2308-2310.
    [252]Vlachopoulos N, Liska P, Augustynski J, et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films [J]. Journal of the American Chemical Society,1988,110(4):1216-1220.
    [253]Amadelli R, Argazzi R, Bignozzi C A, et al. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru (bpy(COO)2)22- [J]. Journal of the American Chemical Society,1990,112(20):7099-7103.
    [254]Argazzi R, Bignozzi C A, Heimer T A, et al. Enhanced spectral sensitivity from ruthenium (Ⅱ) polypyridyl based photovoltaic devices [J]. Inorganic Chemistry,1994,33(25):5741-5749.
    [255]Kohle O, Ruile S, Gratzel M. Ruthenium (Ⅱ) charge-transfer sensitizers containing 4,4'-dicarboxy-2,2'-bipyridine. Synthesis, properties, and bonding mode of coordinated thio-and selenocyanates [J]. Inorganic Chemistry,1996,35(16):4779-4787.
    [256]Ruile S, Kohle O, Pechy P, et al. Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis(l-methylbenzimidazol-2-yl) pyridine [J]. Inorganica Chimica Acta,1997,261(2):129-140.
    [257]Andrade L, Zakeeruddin S M, Nazeeruddin M K, et al. Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells [J]. Chem Phys Chem,2009, 10(7):1117-1124.
    [258]Kartawidjaja F C, Lim Z Y, Ng S L G, et al. Morphology, optical, and magnetic properties of Zn1-xCoxO nanorods grown via a wet chemical route [J]. J Am Ceram Soc,2009,93(11):3798-3802.
    [259]Kim K S, Jeong H, Jeong M S, et al. Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity [J]. Advanced Functional Materials,2010,20(18):3055-3063.
    [260]Xu S, Lao C S, Weintraub B, et al. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces [J]. J Mater Res,2008,23(8):2072-2077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700