用户名: 密码: 验证码:
分子纳米链和二维材料的电子结构及相关性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是当今科学研究的一个热点。由于具有独特的结构和优良的物理、化学性质,纳米材料在信息、能源等众多领域具有重要的应用价值。多年来受到科学工作者们的广泛关注。其中最为突出的纳米材料当属由碳原子以sp2杂化轨道组成六角蜂窝状晶格的平面薄膜——石墨烯,其表现出了超高电子迁移率、极高的机械强度、量子霍尔效应等奇异的物理与化学特性。石墨烯的这些优异性质极大的激发了学术界和工业界科研人员的工作热情,与此同时也引起了人们对其它二维类石墨烯材料的研究兴趣。人们希望获得与石墨烯完全不同、互补甚至更有优势性质的其它新型二维材料。目前,已有大量的二维材料被人们预言或证实,如BN、ZnO、snlicene、germanane、MoS2、MoSe2、WS2、GaS等。这些二维材料具有优异的物理和化学性质,在很多的领域都有重要的潜在应用价值。
     除了二维材料,目前受到人们广泛关注的另一类纳米材料是有机金属分子链。它在包括催化、自旋电子学、光学、分子识别等领域具有非常重要的应用,尤其是在自旋电子学中的应用受到了科研人员的青睐。与无机半导体材料相比,有机金属分子链具有一些明显的优势。比如由于有机金属分子链体系的自旋轨道作用和超精细作用都很弱,该体系具有较长自旋弛豫长度以及自旋寿命。随着对纳米材料研究的深入,对纳米材料的电子性质等的有效调控成为了该研究领域亟待解决的问题。此外,深入研究纳米材料具有优异特性的内部机理也逐渐成为了人们的关注焦点。这些研究将对纳米材料的具体应用具有重要的指导意义。
     在本文中,我们系统地研究了一系列金属分子链体系、二维材料体系及其它材料体系的电子和磁性性能,以及掺杂、吸附、应力、电场和衬底等各种因素对上述体系相关性质的调控,并对体系内部物理与化学机制进行了深入探讨。本论文共分七章。第一章简要介绍了金属分子链体系和二维材料体系在相关领域的研究背景及现状。第二章概括叙述了密度泛函理论并简要介绍了本论文采用的第一性原理计算软件包。第三章分节阐述了一系列分子链的电子结构及自旋电子性质调控,并讨论了N元素掺杂对石墨纳米带带边位置的调控。第四章分节研究了一系列二维材料的电子结构及自旋电子性质,并讨论了掺杂、吸附、应力、电场和衬底等各种因素对这些体系相关性质的调控。第五章介绍了其它几种体系的电子结构及相关性质调控。第六章探索研究了二维材料BiTeX (X=Br和I)、SrFBiS2和BiOBiS2的Rashba效应,并探讨了应力或电场对这些材料Rashba效应的调控。第七章总结了本论文的研究内容并指出了上述材料在相关领域的应用研究中尚未解决的问题以及后续拟开展的研究工作。本论文研究内容和主要结论如下:
     (1)研究了金属-酞箐染料分子构成的有机金属分子链(M-PcNW, M=Cr、Mn、 Co、Ni、Cu和Zn)的电子结构和磁性。结果表明除了Ni-PcNW和Zn-PcNW体系是非磁性的,其它的体系都是具有磁性的。Cr-PcNW、Mn-PcNW、Co-PcNW、 Ni-PcNW、Cu-PcNW和Zn-PcNW的磁矩分别为4.0、3.0、1.0、0.0、1.0和0.0μB。进一步的耦合计算表明Co-PcNW为顺磁的,Cr-PcNW和Cu-PcNW为反铁磁的,而Mn-PcNW表现出铁磁性并具有半金属性质。
     (2)研究了金属茂分子(C5H5)2TM构建的一维阶梯状有机金属链(MSWNs, M=V、Cr、Mn、Fe、Co和Ni)的电子结构和自旋电子学性质。研究结果表明FeSWNs为非磁性的,而其它的MSWNs体系都是磁性的。对于M=Cr-Co, MSWNs体系计算得到的磁矩分别为3.0、2.0、1.0、0.0、1.0和2.0μB。这些体系的过渡金属原子都是有规律分散的,这对于在自旋电子学上的应用是非常重要的。VSWNs、 CrSWNs、 MnSWNs和CoSWNs体系为铁磁性的,而NiSWNs是反铁磁的。这些体系的磁性耦合机理都可以用键传递和空间传递作用竞争机制进行解释。
     (3)研究了类金属茂分子(P)5TM组装成的新型无机金属分子链[(P)5TM]∞(TM=Ti、V、Cr、Mn、Fe和Co)的电子结构和磁性。研究结果表明在[(P)5TM]∞中每个金属原子向P5环转移一个电子,该分子链体系中的结构可以由[(P)5-V+(P)5-V+]∞表示。金属原子和P5环之间的电荷转移使得二者之间相互作用增强,进而导致了[(P)5TM]oo具有稳定的结构。[(P)5V]∞、[(P)5Cr]∞和[(P)5Mn]∞为铁磁性的,而[(P)5Ti]∞、[(P)5Fe]∞和[(P)5Co]∞则为反为铁磁性的。
     (4)研究了N掺杂对chevron型石墨烯纳米带的电子性质和带边位置的调控。研究结果表明N掺杂位置位于纳米带的边缘时,即使在很高的浓度下,对材料的带隙大小影响也很小。相反,N替换纳米带内部的C原子时,则会对其带隙的大小产生明显的影响。这是由于边界C原子对材料的带边附近态贡献较小,而内部原子贡献较大。N掺杂位置位于纳米带的边缘时不仅对纳米带的带隙影响较小,而且可以使得纳米带带边位置向低能量区域平移。并且伴随着掺杂浓度增加,带边位置会逐渐向下平移。由此可以实现在不影响材料带隙大小的前提下人为的移动材料的带边位置。
     (5)研究了应力对半氟化的BN单层、GaN单层和石墨烯的磁性性质的调控。研究结果表明这三个体系的铁磁态和反铁磁态的能量差会随着各向同性应力的增加而单调的增加。尤其是对于氟化的BN单层和GaN单层,伴随着应力的变化,其体系的磁耦合基态会在铁磁态和反铁磁态之间转换。这些现象源于这些体系内磁矩之间键传递和空间传递作用的竞争。
     (6)研究了半氟化和半氢化对二维Ⅳ族和Ⅲ-Ⅴ族二元化合物ab(ab=SiC、 GeC、SnC、BN、AlN和GaN)的电子和自旋电子学性质的调控。研究结果表明半氢化的ab和半氟化的GaN是铁磁性的。除了半氟化的GaN,其余所有的半氟化体系都是反铁磁性的。对于半氟化的ab(标记为F-ab),其铁磁态和反铁磁态的能差大小变化顺序为F-SiC> F-GeC> F-SnC和F-AlN> F-GaN;而对于半氢化的ab(标记为H-ab),其铁磁态和反铁磁态的能差大小变化顺序为H-SiC     (7)研究了卤化作用对germanene和snlicene电子性质的调控。研究结果表明卤化可以破坏germanene和snlicene体系的线性能带色散关系,且在狄拉克点处打开一个较大带隙。虽然卤化能破坏germanene和snlicene的狄拉克点,但是除了氟化的germanene,其余卤化后的germanene和snlicene体系的导带和价带仍然会在费米能级附近有一个接触点。因此,除了氟化的germanene, germanene和snlicene体系在其悬挂键被卤族元素饱和之后仍然保持零带隙的特性。
     (8)研究了二维C4H结构材料的电子和磁性性质,以及应力和掺杂对该体系的电子结构和磁性的调控。研究结果表明二维C4H结构材料是一个具有宽带隙的非磁性间接半导体;应力可以很有效的调控二维C4H结构材料的带隙大小;该体系中所有的本征缺陷都能够在二维C4H中引起自旋极化且具有长程耦合作用;对于B、P和N掺杂替代二维C4H中C原子,用N替代二维C4H中与H直接成键的C时不会在该体系中引起自旋极化,其余的情况都会在该体系中引起自旋极化。
     (9)研究了二维MoS2、Mose2对石墨烯电子结构的调控。研究结果表明二维MoS2、MoSe2与石墨烯之间的结合能很小且层间距较大,因此二维MoS2、MoSe2与石墨烯之间的相互作用很弱。二维MoS2、MoSe2对石墨烯的线性能带色散关系影响较小,仅仅是在狄拉克点附近打开了一个较小的带隙,然而这个带隙可以通过调节二维MoS2、MoSe2与石墨烯之间的层间距调控。体系中石墨烯的半导体特性来源于二维MoS2、MoSe2在石墨烯中引起的C原子位能不一致。
     (10)研究了电场对波浪形germanane材料的能带调控。研究结果表明波浪形germanane的带隙能够被电场有效的调控,可以从1.22eV调节至零。这一现象的产生是由于波浪形germanane在电场作用下,导带边和价带边会产生空间电荷分离。需要注意的是调控中需要的电场很小,因此在实验上是很容易实现的。此外,随着电场的增加,波浪形germanane的带隙逐渐减小到零,然后发生了能带反转。
     (11)研究了Graphene/Diamond复合体系的界面电子和自旋电子学性质。研究结果表明在所有考虑的界面构型中石墨烯和金刚石之间的作用都是较弱的。然而,在该界面体系中,石墨烯的线性能带色散关系被破坏,在原来的狄拉克点处打开了一个较大的带隙。此外,由于石墨烯和金刚石表面之间的电荷交换作用,金刚石表面的自旋极化使得石墨烯中也产生了自旋极化。
     (12)研究了二维VX2(X=S、Se)的本征磁性,以及应力对其磁性的调控。研究结果表明纯净的二维VX2具有铁磁性,这为在纯净的二维体系中可以存在自旋极化提供了证据。研究还发现二维VX2中磁矩以及铁磁态和反铁磁态能量差会随着应力的增加而单调增加。由此,可以通过调节应力对二维VX2的磁性进行调控。对于二维VX2中磁矩随应力的变化,我们提出了共价键和离子键协同作用机理进行解释。而对于二维VX2中铁磁态和反铁磁态能量差随着应力的变化可以通过键传递作用和空间传递作用的竞争机制进行解释。
     (13)研究了二维MoSe2、MoTe2和WS2电子结构及自旋电子学性质,以及本征缺陷和非金属元素(H、B、C、N、O和F)吸附对这些体系电子及磁性性质的调控。研究结果表明MoSe2、MoTe2和WS2从块体减小到单层时,其能带从间接带隙转变为直接带隙。对本征缺陷的研究发现,仅有二维MoSe2中的阳离子空位能够引起自旋极化,其余的情况都是非自旋极化的。而非金属原子吸附二维MoSe2、 MoTe2和WS2能够对其磁性性质进行很好的调控。其中H元素吸附二维MoSe2、 MoTe2和WS2以及F元素吸附二维MoTe2和WS2会产生长程磁耦合。
     (14)研究了二维GaS和GaSe的电子性质以及应力对其电子性质的调控。研究结果表明随着GaSe体系从块体减小到单层,该体系能带从直接带隙转变为间接带隙;而对于GaS体系,从块体变为单层过程中,其带隙一直保持为间接带隙。随着层数的变化,二维GaS和GaSe的EELS会发生明显有规律的变化。研究还发现多种形式的应力都可以有效的调控二维GaS和GaSe的带隙大小
     (15)研究了两种构型的金属-TCNQ自组装单层材料(分别称为R-TM@TCNQ和S-TM@TCNQ, TM=Cr、Mn、Fe和Co)的电子及磁性性质。研究结果表明在R-TM@TCNQ和S-TM@TCNQ体系中,每个TM原子将其两个电子转移到TCNQ中,从而确保了TM@TCNQ体系的稳定性。所有的这些体系都具有自旋极化特征,R(S)-Cr@TCNQ、R(S)-Mn@TCNQ、(S)-Fe@TCNQ和R(S)-Co@TCNQ的总磁矩分别为4.0(8.0)、3.0(6.0)、2.0(4.0)和1.0(2.0)μB。因此,R(S)-TM@TCNQ体系的磁矩大小可以通过调控TM原子来实现。除了R(S)-Co@TCNQ为顺磁性外,其它的体系都是反铁磁性的。此外我们提出了解释这些体系磁矩大小来源的“4+1”模型。
     (16)研究了chlorographene与janugraphene的几何结构和电子性质。研究结果表明两种新型二维材料chlorographene和janugraphene的能带结构具有线性色散关系,其狄拉克点位于r到X’之间的点,坐标分别为(-0.277,0,0)和(-0.215,0,0)。狄拉克点附近的能态主要由主平面内碳原子的p轨道所贡献,与氯原子和苯基配合物几乎没有直接关系。这两种材料均具有矩形的晶格结构。研究还发现较小的外加电场对chlorographene和janugraphene的线性能带结构的影响可忽略不计。
     (17)研究了二维Ni2C18H12和Co2C18H12的几何、电子及自旋电子学性质。研究结果表明Ni2C18H12只具有一种稳定构型;而Co2C18H12具有两种稳定构型,分别为low-buckled构型和high-buckled构型。Ni2C18H12和low-buckled构型的Co2C18H12具有自旋极化,而high-buckled构型的Co2C18H12却是非自旋极化的。Co2C18H12两个构型磁性质之间的差异来源于其结构导致的电子排布差别。研究还发现Ni2C18H12和low-buckled构型的Co2C18H12都具有半金属狄拉克点。
     (18)研究了应力对β-InSe体系拓扑相变的调控。研究结果表明该体系即使在不考虑自旋轨道耦合作用的前提下依然可以通过调节应力实现能带反转。然而需要注意的是自旋轨道耦合作用依然是不可缺少的,其作用为在能带反转引起的能带交叉点处打开一个带隙。在6%应力的作用下,自旋轨道耦合作用产生的带隙达到了121meV,这个值接近了室温。进一步的研究发现应力引起的能带反转主要来源于层内原子间相互作用的改变,而层间相互作用的改变影响较小。
     (19)研究了非金属元素(Be、B、C、N、O和F)掺杂对CdS的电子和磁性质的调控。结果表明Be、B和C掺杂CdS能够引入自旋极化,计算得到的磁矩分别为2.0μB、3.0μB和2.0μB;而N、O和F掺杂的CdS无自旋极化。非金属元素掺杂CdS能否引起自旋极化是由掺杂元素和硫元素的电负性决定的:为了获得一个稳定的磁基态,掺杂元素的电负性必须比硫的电负性小,才能保证掺杂元素2p轨道的局域性。否则,掺杂元素与阳离子较强的相互作用会导致掺杂元素2p态离域以产生非磁性基态。
     (20)研究了Ag吸附Cd终端的CdS(0001)表面和S终端的CdS(0001)表面的电子结构和相关性质。结果表明相对于Cd终端的CdS(0001)表面,Ag更容易吸附在S终端的CdS(0001)表面。对于单个Ag吸附在Cd终端的CdS(0001)表面,局域的Ag5s态和局域的Cd5s态之间的交叠表明了Ag-Cd键的离子键特征。而对单个Ag原子吸附在S终端的CdS(0001)表,Ag4d态更加离域,并和S3p态杂化,表明Ag-S键的共价键特征。对于小的Ag团簇(Ag2, Ag4,和Ag7)吸附的Cd终端的CdS(0001)表面,吸附能明显比单个Ag原子的吸附能更低,并且团簇吸附能随着团簇尺寸的增加而降低。
     (21)研究了氨分子吸附金刚石(100)面的电子结构与相关性质。研究结果表明随着吸附氨分子的增加,吸附能会迅速增加。这是由于金刚石表面氨基之间的相互排斥导致的。这一结果解释了为何实验上合成的氨基吸附金刚石的覆盖率最大只有12%而不能继续增加。
     (22)研究了二维BiTeX(X=Br和I)的极性性质和Rashba效应。研究结果表明由于二维BiTeX两个表面的组成元素不同,这两个体系在沿着其表面的法线方向具有一个极化电场,因此这两个体系都是极性二维材料。对于结合能和声子谱的计算都毫无疑问的表明了这两个二维体系的稳定性。由于这两个体系特殊的原子结构,二维BiTeX体系具有巨大的Rashba效应。此外,这两个体系的Rashba效应可以用应力进行有效调节。
     (23)研究了二维SrFBiS2和BiOBiS2的Rashba效应。研究结果表明二维SrFBiS2和BiOBiS2都具有巨大的Rashba效应,这是由它们的特殊原子结构决定的。二维SrFBiS2(BiOBiS2)的结构可以用一个类离子模型进行描述,其共价键结合的Sr和F(Bi和O)原子组成了(Sr2F2)2+[(Bi2O2)2+]层,而共价键结合的Bi和S原子形成了(BiS2)-层;因此Sr2F2-BiS2(Bi2O2-BiS2)之间可以被认为是离子键接触。这导致了在二维SrFBiS2和BiOBiS2中都具有两个极化电场,两个体系的极化电场分别从Sr2F2层指向BiS2层和从Bi2O2层指向BiS2层。二维SrFBiS2和BiOBiS2都具有两组Rashba自旋劈裂,分别来自其两个表面。由于晶体对称性,每个体系的两组Rashba自旋劈裂是简并的。通过施加一个较小的微扰,例如电场,每个体系都能够表现出两组Rashba自旋劈裂。
     以上这些研究阐明了一系列的金属分子链体系、二维材料体系以及其它材料体系表现出的电子和自旋电子学性质的内在机理,揭示了掺杂、吸附、应力、电场和衬底等各种因素对上述体系相关性质的调控机理和作用规律。这些系统的理论研究丰富了人们对金属分子链体系、二维材料体系以及其它材料体系相关性质的认知了解,为自旋电子学等的发展提供了理论基础。
Nanomaterials constitute a focus of current research efforts and display a wide range of important applications. A number of experimental and theoretical researches have been undertaken in this area. Such research enthusiasm is ignited by the peculiar geometry structure and unique electronic properties. Among these nanomaterials, graphene, a flat monolayer of carbon atoms tightly sp2-packed into a honeycomb lattice, is the most important one, mostly because of its unusual physical and chemical properties including high mobility of charge carriers, robust mechanical strength and quantum spin Hall effect. After the intense focus on graphene, the other two-dimensional (2D) materials are now attracting increasing interest. The goal of the research for other2D materials is to get some intriguing properties that are different from, complementary or even better than that of graphene. To date, tremendous of2D materials have been experimentally synthesized or theoretically predicated, such as BN, ZnO, snlicene, germanane, MoS2, MoSe2, WS2, GaS and so on. These systems display interesting physical and chemical properties, and have important potential applications in many areas.
     Besides2D materials, other nanomaterials such as organometallic nanowires are also of particular interest due to their unique properties that are useful for applications including catalysis, spintronics, optics and molecular sieves, especially spintronics. Organometallic nanowires, when used as components of spintronic devices, have significant advantages over inorganic ones. For example, the spin-orbit and hyperfine interactions are weak, leading to considerably long spin relaxation length and spin lifetime. With the deepening of research, searching for ways to effectively modulate the electronic properties of nanomaterials is urgent to solve. Furthermore, getting a deep insight into the underlying physical mechanisms is becoming another research focus. These research would be of great importance for the actual applications of nanomaterials.
     In this dissertation, we systematically investigate the electronic and magnetic behaviors of a series of organometallic nanowires,2D materials and other systems, as well as the manipulation of the relevant properties of these materials by means of doping, adsorption, strain, electronic field, and substrate. And the possible underlying physical mechanisms are discussed in detail. The dissertation is divided into seven chapters. In the first chapter, we introduce the research background and progress of organometallic nanowires and2D materials in the relevant fields. In the second chapter, we briefly review the basic concept of density functional theory and introduce the first-principles software package. In the third chapter, we investigate the electronic and magnetic properties of a series of molecular nanowires, as well as the modulation of the band alignment of graphene nanoribbon via N doping. In the forth chapter, we study the electronic and magnetic properties of a series of2D materials, as well as the manipulation of the related properties of these materials via doping, adsorption, strain, electronic field, or substrate. In the fifth chapter, we explore the manipulation of the electronic properties and related properties of some other materials. In the sixth chapter, we further explore the Rashba effect in2D BiTeX (X=Br, I), SrFBiS2and BiOBiS2, as well as the effect of strain or electronic field on the Rashba effect of these materials. In the seventh chapter, the research contents in this dissertation are summarized and some theoretical problems that need to be solved urgently as well as the further research directions are pointed out. The main content and conclusions are listed as follows:
     (1) We investigate the electronic and magnetic properties of transition metal phthalocyanine nanowire (M-PcNW, M=Cr, Mn, Co, Ni, Cu and Zn). We show that except for M=Ni and Zn being of nonmagnetic (NM) ground states, the other frameworks are magnetic. The magnetic moments of Cr, Mn, Co, Ni, Cu, and Zn are approximately4.0,3.0,1.0,0.0,1.0, and0.0μB-Further magnetic coupling calculations demonstrate that for M=Co, the framework is paramagnetic, while for M=Cr and Cu, the coupling is antiferromagnetic. Surprisingly, we find that the Mn-PcNW framework favors long-ranged ferromagnetic spin ordering and displays half-metallic.
     (2) We systematically investigate the electronic and magnetic properties of novel one-dimensional staircaselike organometallic wires (MSWNs, M=V, Cr, Mn, Fe, Co, and Ni) constructed with metallocenes. We find that, except for FeSNWs being nonmagnetic, the other wires are magnetic. And the magnetic moments of V-Ni are3.0,2.0,1.0,0.0,1.0, and2.0μB, respectively. These systems with ordered spin arrangement are privileged for spintronics. Further magnetic coupling calculations show that for TM=V, Cr, Mn, and Co, MSWNs are ferromagnetic, while for TM=Ni, the framework is antiferromagnetic. Additionally, we propose that the mechanism of the magnetism can be explained by employing the competition mechanisms of both through-bond and through-space exchange interactions.
     (3) A comprehensive analysis of the electronic and magnetic properties of a novel variety of sandwich inorganic molecular wires [(P)5TM]∞(TM=Ti, V, Cr, Mn, Fe, and Co)has been carried out using first-principles calculations. The formation of stable [(P)5TM]∞involves the transfer of one electron from each TM atom to the P5ligand forming [(P)5-V+(P)5-V+]∞structure. We find that [(P)5V]∞,[(P)5Cr]∞and [(P)5Mn]∞display ferromagnetic character, while for [(P)5Ti]∞,[(P)5Fe]∞and [(P)5Co]∞, the magnetic coupling is antiferromagnetic.
     (4) We present a comprehensive analysis of the effects of N substitution on the band gap and band alignment of chevron-shaped graphene nanoribbon (CGNR). We find that substitution of nitrogen for edge carbon at the peak, even with a significant substitution ratio, shows little effect on the size of the gap for CGNR. In contrast, the substitution of nitrogen for inner carbon would introduce significant band gap narrowing. This attributes to the fact that the edge carbon atoms at the peak have negligible contribution to the p-electron system, while the inner carbon atoms play a role as the edge on the electronic structure. More remarkably, by increasing edge substitution ratio, a linearly downshifting of the band alignment of CGNR occurs. Our results provide a new perspective on band alignment:material's band alignment can be continuously and precisely shifted, without affecting the magnitude of the band gap, via substitution of well-selected impurity atoms for well-selected sites.
     (5) We discuss manipulation of the magnetic property of half-fluorinated single layers of BN, GaN and graphene via strain. First-principles calculations reveal that the energy difference between ferromagnetic and antiferromagnetic couplings increases significantly with strain increasing for half-fluorinated BN, GaN and graphene sheets. More surprisingly, the half-fluorinated BN and GaN sheets exhibit intriguing magnetic transitions between ferromagnetism and antiferromagnetism by applying strain. It is found that the magnetic coupling as well as the strain-dependent magnetic transition behavior arise from the combined effects of both through-bond and through-space exchange interactions.
     (6) We discuss manipulation of the electronic and magnetic property of ab (ab=SiC, GeC, SnC, BN, A1N, and GaN) via half-fluorination and half-hydrogenation. We demonstrate that the half-hydrogenated ab and half-fluorinated GaN sheets are expected to be ferromagnetic (FM). While half-fluorinated ab sheets (except for half-fluorinated GaN sheet) are predicated to be antiferromagnets (AFM). For half-fluorinated ab F-ab (half-hydrogenated ab H-ab) sheets, energy difference between the FM and AFM states decrease (increase) in the order F-SiC> F-GeC> F-SnC and F-AlN> F-GaN (H-SiC     (7) We investigate the effect of halogens on the electronic properties of germanene and snlicene. We find that the linear band structures are deformed and a large gap would be obtained at the Dirac point upon chemisorption of halogens. Our results demonstrate that, compared with pure germanene, the bands of germanene and snlicene adsorbed with Cl, Br and I remain crosses at one point at the Fermi level-despite former Dirac point being deformed. Except the fluorinated germanene, upon chemisorption of F, C1, Br, and I, germanene and snlicene remains to be gapless materials.
     (8) We present systematically the electronic and magnetic properties of one novel polymer (referred to as C4H) without and with strain-modifying, vacancy-doping, and nonmetal element (B, N, and P) doping. It is found that:(a) the C4H sheet is a nonmagnetic semiconductor with a wide indirect band gap;(b) The binding energies and electronic properties of the C4H sheet could be significantly modified by applying strain;(c) Vacancy defects can lead to intrinsic magnetism in C4H and, surprisingly, the induced spin polarization has large spatial extension;(d) Substitution of B, P and N at the unhydrogenated C site could form a local magnetic moment, whereas no spin-polarization could be induced for that with N at the hydrogenated C site.
     (9) The geometric and electronic structures of graphene adsorption on MoS2, MoSe2monolayers are studied. It is found that graphene is bound to MoS2, MoSe2monolayers with a large interlayer spacing and with a low binding energy, indicating a weak interaction between graphene and MoS2, MoSe2monolayers. A detailed analysis of the electronic structure indicates that the nearly linear band dispersion relation of graphene can be preserved in graphene accompanied by a small band-gap opening due to the variation of on-site energy induced by MoS2, MoSe2monolayers. Besides, decreasing the interlayer distance could increases the gap.
     (10) We report a systematic investigation of manipulation of the electronic properties of wrinkled germanane via external electric field (E-field). Our results demonstrate that a minuscule E-field can largely and continuously reduce the energy gap of wrinkled germanane. This phenomenon results from the spatial separation of the charge carries of conduction band edge and valence band edge in the existence of an E-field. It is worth noting that to tune the band gap of such a wrinkled germanane system only a tiny E-field is required, which can be easily realized in the applications. More interestingly, we also show that promising band inversion in wrinkled germanane can be induced by changing the strength of the tiny E-field.
     (11) First-principles calculations are performed to investigate the electronic and magnetic properties of graphene adsorbed on the (111) surface of diamond. Although graphene is loosely bonded to the diamond surface, the electronic structures of graphene can be significantly affected by the diamond surface. The graphene adsorbed on the diamond surface is a semiconductor with a finite gap. Magnetism can arise "intrinsically" in graphene because of the exchange proximity interaction between electrons in graphene and localized electrons on the diamond surface.
     (12) We systematically investigate the electronic and magnetic properties of VX2(X=S, Se) mono layers, as well as the intercoupling between the strain and magnetic properties. Our results unveil that VX2monolayers exhibit exciting ferromagnetic behavior, offering evidence of the existence of magnetic behavior in pristine2D monolayers. Furthermore, interestingly, both the magnetic moments and strength of magnetic coupling increase rapidly with increasing isotropic strain. It is proposed that the strain-dependent magnetic moment is related to the strong ionic covalent bonds, while both the ferromagnetism and the variation in strength of magnetic coupling with strain arise from the combined effects of both through-bond and through-space interactions.
     (13) The electronic and magnetic properties of perfect, vacancy-doped, and nonmetal element (H, B, C, N, O, and F) adsorbed MoSe2, MoTe2and WS2monolayers are systematically investigated. It is found that:(1) MoSe2, MoTe2and WS2exhibit surprising confinement-induced indirect-direct-gap crossover;(2) among all the neutral native vacancies of MoSe2, MoTe2and WS2monolayers, only the Mo vacancy in MoSe2can induce spin-polarization;(3) adsorption of nonmetal elements on the surface of MoSe2, MoTe2and WS2monolayers can induce local magnetic moments; H-absorbed MoSe2, MoTe2and WS2monolayers and F-adsorbed WS2and MoSe2monolayers show long-range antiferromagnetic coupling between local moments.
     (14) We present first-principles calculations to investigate systematically the electronic behavior and the electron energy low-loss spectra (EELS) of monolayer, bilayer, four-layer, and bulk configurations of periodic GaX (X=S, Se), as well as the effect of mechanical strain on the electronic properties of the GaX monolayer. We find that the GaSe changes its electronic properties from a direct semiconductor in the bulk phase to an indirect semiconductor in the monolayer; while for GaS, it retains its indirect gap nature with the change from the bulk to the monolayer phases. Furthermore, GaX varies drastically with the number of layers in a sheet. Aside from these features, more specifically, we find that the band gap of GaX monolayer can be widely tuned by applying mechanical deformation.
     (15) We present a theoretical study on the electronic and magnetic properties of the novel tetragonal transition-metal-based7,7,8,8-tetracyanoquinodimethane molecule coordination single sheets (referred to as TM@TCNQ, TM=Cr-Co). Our results unveil that, in TM@TCNQ, two valence electrons would transfer from each TM atom to TCNQ molecules, making them more stable. It is found that all the studied2D tetragonal frameworks are magnetic, carrying magnetic moments of4.0(8.0),3.0(6.0),2.0(4.0), and1.0(2.0) μB for Cr-Co in the R (S) configuration, respectively. The magnetic properties can be controlled by employing different combinations of the TM atoms. Further magnetic coupling calculations show that, except Co@TCNQ being nonmagnetic, the free-standing TM@TCNQ covalent networks favor robut antiferromagnetic spin arrangement. Additionally, to explain the magnitude of the magnetic moments, we construct a simple model, i.e.,"4+1splitting".
     (16) We investigate the geometric and electronic properties of janugraphene and chlorographene. We predict that two supposedly ordinary materials feature Dirac points in their band structure, which are located between Γ and X',(-0.277,0,0) and (-0.215,0,0) respectively. The orbitals near the Dirac points are predominately by the carbon orbitals of the layer plane and are almost not related to the chlorine atoms or the phenyl ligands. The Dirac fermions of these materials are rather robust in response to external electric field.
     (17) We performe first-principles calculations to study the geometric, electronic and magnetic behaviors of2D Co2C18H12lattice structure and2D Ni2C18H12lattice structure. We find that2D Co2C18H12lattice structure has two favorable configurations corresponding to low-buckled Co2C18H12and high-buckled Co2C18H12, while2D Ni2C18H12lattice structure has only one stabe configuration. It is found that2D Ni2C18H12lattice structure and low-buckled Co2C18H12lattice structure favor spin-polarized ground states, while high-buckled Co2C18H12is spin-unpolarized. In addition, both Ni2C18H12lattice structure and low-buckled Co2C18H12lattice structure are predicted to possess a half-metallic Dirac point Fermi surface.
     (18) We report that β-InSe endowed with external strain realizes a novel three dimensional topological insulator (TI). In particular, only strain is capable of stabilizing a robust band inversion in β-InSe even without considering SOC. However, SOC is indispensable for breaking the incompatibility symmetry of the inverted bands to yield a band gap at the crossing points. At6%strain, the SOC yields a gap on the order of121meV, which approaches room temperature. Additionally, our detailed calculations have shown that the band inversion originates predominately from intralayer interaction, with a weak contribution of interlayer interaction.
     (19) The electronic structure of non-transition-metal element (Be, B, C, N, O and F)-doped CdS is studied based on spin-polarized density function theory. Our results show that the substitutional Be, B and C for S in CdS generates local magnetic moments2.0,3.0and2.0μB, respectively. Whereas doping with N, O and F in CdS does not induces spin polarization. The results indicate the electronegativity difference between the dopant and the anion of the host semiconductor plays an important role for the magnetism of such doped semiconductors. If difference is positive, the bond formed between the dopant with the nearest Cd is relative weak compared with the native bond between S and Cd, resulting in localized atomic-like2p states of dopant and stable magnetic ground states. Otherwise, the bond formed between the dopant with the nearest Cd is relative strong compared with the native bond between S and Cd, leading to the2p states of the dopant reside within the host bands, thus the spin magnetic moment decreases and eventually vanishes.
     (20) First-principles calculations are performed to study the adsorption of Ag at Cd-terminated CdS (0001) and S-terminated CdS (0001) surfaces. Our results reveal that Ag adsorption at Cd-terminated (0001) has a large binging energy than at S-terminated (0001) surface. For single Ag adsorption at CdS (0001), the overlapping between the localized Ag5s and localized Cd5s states indicates some ionic-like component of Ag-Cd bond. While for single Ag adsorption on CdS (0001), Ag4d states are more delocalized and hybridized with S3p states revealing that Ag-S bonding is covalent. For small Ag clusters (Ag2, Ag4, and Ag7) adsorbed Cd-terminated (0001) surface, adsorption energies are obviously lower than that of a single Ag adsorption, and the cluster adsorption energy decreases with the cluster size increasing.
     (21) We examine the adsorption of ammonia molecule on diamond (100) surface. We find that the adsorption energy increase with the increase of the ammonia molecule coverage due to the interaction among these molecules, which can account for that even the one-step amination method can only increase the maximum coverage of NH2groups on the surface to12%.
     (22) We investigate the electric polarity in BiTeX (X=Br and I) monolayers and the giant Rashba spin splitting. We find that, owing to the broken inversion symmetry and the markedly different constitution between the opposite outmost layers, BiTeX monolayer acquires large polar electric fields along the normal direction to the monolayer plane in their nature structure, making them polar monolayers. Calculations of formation energy and phonon spectrum confirm that the freestanding monolayer structures of BiTeBr and BiTel can be stable. We predict that the polar BiTeX monolayer can produce a strong Rashba spin splitting. In addition, the strength of Rashba effect in BiTeX monolayer can be effectively modulated with external strain.
     (23) We report on a giant Rashba-type spin splitting in SrFBiS2and BiOBiS2nanosheets originated from their hidden local polar atomic configurations. We find that in SrFBiS2(BiOBiS2) nanosheets can be described in terms of a ionic-like model, where the covalent coupling of Sr and F (Bi and O) atoms forms positively (Sr2F2)2+[(Bi2O2)2+] layers, whereas the covalent coupling of Bi and S atoms forms negatively (BiS2)-layers; hence, the Sr2F2-BiS2(Bi2O2-BiS2) contacts could be considered to be ionic. Thus, the crystal structure possesses two ionic-like strong polar field along the stacking direction, from the Sr2F2to BiS2layers and Bi2O2to BiS2layers for SrFBiS2and BiOBiS2nanosheets respectively. In both materials, we found that they hold two remarkable Rashba spin splittings from opposite nanosheet surfaces, which are degenerated as a result of the strong inversion symmetry. Owing to their peculiar structure, different from most of the previous studied Rashba systems, we could obtain two sets of Rashba spin splittings with a small perturbation, such as a tiny electric field.
     The research results unveil the underlying physical mechanisms of the electronic, magnetic and related properties of a series of organometallic nanowires,2D materials and other systems, as well as the manipulation of the relevant properties of these materials by means of doping, adsorption, strain, electronic field, and substrate. These systemic theoretical studies would broaden our knowledge of the related properties of these systems, which could provide the theoretical foundation for their applications in spintronics.
引文
1 T. J. Kealy and P. L. Pauson, Nature 168,1039 (1951).
    2 N. J. Long, In Metallocenes:An Introduction to Sandwich Complexes; Blackwell Science:Oxford, U.K.,1998.
    3 H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408,944 (2000).
    4 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater.3,868 (2004).
    51. Zutic, J. Fabian, and S. Sarma, Rev. Mod. Phys.76,323 (2004).
    6 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature Phys.401,572 (1999).
    7 J. M. Kikkawa and D. D. Awschalom, Nature Phys.397,139 (1999).
    8 Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature Phys.427,821 (2004).
    9 H. Xiang, J. Yang, J. G Hou, and Q. Zhu, J. Am. Chem. Soc.128,2310 (2006).
    10E. Kan, Z. Li, J. Yang, and J. G. Hou, J. Am. Chem. Soc.130,4224 (2008).
    11L. Wang, Z. Cai, J. Wang, J. Lu, G. Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G. Li, W. N. Mei, and S. Sanvito, Nano Lett.8,3640 (2008).
    12X. Zhang, Z. Tian, S. W. Yang, and J. Wang, J. Phys. Chem. C 115,2948 (2010).
    13S. Nagao, A. Kato, and A. Nakajima, J. Am. Chem. Soc.122,4221 (2000).
    14L. Shen, V. Ligatchev, H. M. Jin, S.-W. Yang, and Y. P. Feng, Phys. Chem. Chem. Phys.12,4555 (2010).
    15H. Da, H. M. Jin, S. W. Yang, and K. H. Lim, J. Phys. Chem. C 113,21422 (2009).
    16J. C. Wu, X. F. Wang, L. Zhou, H. X. Da, K. H. Lim, S. W. Yang, and Z. Y. Li, J. Phys. Chem. C 115,2948 (2009).
    17X. Zhang, J. Wang, Y. Gao, and X. Zeng, ACS Nano 3,537 (2009).
    18K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004).
    19K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438,197 (2005).
    20K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci. U.S.A.102,10451 (2005).
    21A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett.11,2396 (2011).
    22A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett.8,902 (2008).
    23 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438,201 (2005).
    24R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320,1308 (2008).
    25C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321,385 (2008).
    26Y. Q. Wu, Y. M. Lin, A. A. Bol, K. A. Jenkins, F. N. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, Nature 472,74 (2011)
    27X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, and H. J. Dai,Science 319,1229 (2008).
    28X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo, and H. J. Dai, Phys. Rev. Lett.100,206803 (2008).
    29L. Brey and H. A. Fertig, Phys. Rev. B:Condens. Matter Mater. Phys.73,235411 (2006).
    30O. V. Yazyev, Rep. Prog. Phys.73,056501 (2010).
    31E. H. Lieb, Phys. Rev. Lett.62,1201 (1989).
    32F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5,26 (2011).
    33S. S. Yu, W. T. Zheng, Q. B. Wen, and Q. Jiang, Carbon 46,537 (2008).
    34K. K. Kim, A. Hsu, X. T. Jia, S. M. Kim, Y. M. Shi, M. Hofinann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Nano Lett.12,161 (2012).
    35W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett.93, 223103(2008).
    36C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, Adv. Mater.21,2889 (2009).
    37M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev.113,3766 (2013).
    38K. Dolui, C. D. Pemmaraju, and S. Sanvito, ACS Nano 6,4823 (2012).
    39A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett.10,1271 (2010).
    40Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    41K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu, and Y. Xie, Angew. Chem. Int. Ed.52,10477 (2013).
    42D. Gao, Q. Xue, X. Mao, W. Wang, Q. Xu, and De. Xue, J. Mater. Chem. C 1,5909 (2013).
    43J. N. Coleman,et al. Science 331,568 (2011).
    44J. Zhou and Q. Sun,J. Am. Chem. Soc.133,15113 (2011).
    45Y. D. Ma, Y. Dai, W. Wei, L. Yu, and B. B. Huang, J. Phys. Chem. A 117,5171 (2013).
    1 M. Born and R. Oppenheimer, Annalen der Physik 389,457 (1927).
    2 D. R. Hartree, (Cambridge Univ Press,1928), p.89.
    3 V. Fock, Zeitschrift fur Physik A Hadrons and Nuclei 61,126 (1930).
    4 L. H. Thomas, (Cambridge Univ Press,1927), p.542.
    5 E. Fermi, Rend. Accad. Naz. Lincei 6,602 (1927).
    6 P. A. M. Dirac, M. Proc. Camb. Phil. Soc.26,376 (1930).
    7 P. Hohenberg and W. Kohn, Phys. Rev.136, B864 (1964).
    8 W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    9 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46,6671 (1992).
    10 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    11 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44,943 (1991).
    12 V. I. Anisimov, M. A. Korotin, I. A. Nekrasov, A. S. Mylnikova, A. V. Lukoyanov, J. L. Wang, and Z. Zeng, J. Phys.: Condens. Matter 18,1695 (2006).
    13 V. V. Mazurenko, A. N. Varaksin, V. G. Mazurenko, V. S. Kortov, and V. I. Anisimov, Physica B 344,385 (2004).
    14 M. A. Korotin, V. I. Anisimov, D. I. Khomskii, and G A. Sawatzky, Phys. Rev. Lett. 80,4305 (1998).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438,197 (2005).
    2 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438,201 (2005).
    3 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    4 Y. F. Li, F. Y. Li, Z. Zhou, and Z. F. Chen, J. Am. Chem. Soc.133,900 (2011).
    5 C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London) 408,541 (2000).
    6 A. Nitzan and M. A. Ratner, Science 300,1384 (2003).
    'A. R. Rocha, V. M. Garcia-suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nature Mater.4,335 (2005).
    8 J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. V. Lohneysen, Phys. Rev. Lett.88,176804 (2002).
    9 M. N. Leuenberger, and D. Loss, Nature (London) 410,789 (2001).
    10S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. A. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2001).
    11S. Lakshmi, S. Roche, and G Cuniberti, Phys. Rev. B 80,193404 (2009).
    12V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Phys. Rev. Lett.97,097201 (2006).
    13L. Wang, Z. Cai, J. Wang, J. Lu, G Luo, L. Lai, J. Zhou, R. Qin, Z. Gao, D. Yu, G Li, W. N. Mei et al. Nano Lett.8,3640 (2008).
    14L. Zhou, S.-W. Yang, M.-F. Ng, M. B. Sullivan, V. B. C. Tan, and L. Shen, J. Am. Chem. Soc.130,4023 (2008).
    15X. Wu and X. C. Zeng, J. Am. Chem. Soc.131,14246 (2009).
    16W. J. Cho, Y. Cho, S. K. Min, W. Y. Kim, and K.S. Kim, J. Am. Chem. Soc.133, 9364(2011).
    17L.-H. Li, J.-Q. Li, and L.-M. Wu, J. Phys. Chem. C 116,9235 (2012).
    18Y. F. Li, Z. Zhou, and Z. F. Chen J. Phys. Chem. A 116,1648 (2012).
    19X. Y. Zhang, Z. Tian, S.-W. Yang, and J. L. Wang, J. Phys. Chem. C 115,2948 (2011).
    20H. Ohno, Science 281,951 (1998).
    21J. A. Folk, R. M. Potok, C. M. Marcus, and V. Umansky, Science 299,679 (2003).
    22J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature 392,794 (1998).
    23H. Y. Hwang and S. W. Cheong, Science 278,1607 (1997).
    24R. A. de Groot, F. M. Mueller, P. G. van Engen, and J. K. H. Buschow, Phys. Rev. Lett.50,2024 (1983).
    25J.-H. Park, E. Vescovo 1, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature 392,794 (1998).
    26S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2001).
    27E. Kan, W. Hu, C. Y. Xiao, R. F. Lu, K. M. Deng, J. L. Yang, and H. B. Su, J. Am. Chem. Soc.134,5718 (2012).
    28J. M. Kikkawa and D. D. Awschalom, Nature 397,139 (1999).
    29S. Sanvito, J. Mater. Chem.17,4455 (2007).
    30B. Brena, C. Puglia, M. de Simone, M. Coreno, K. Tarafder, V. Feyer, R. Banerjee, E. Gothelid, B. Sanyal, and P. M. Oppeneer, J. Chem. Phys.134,074312 (2011).
    31M. Casarin, M. Di Marino, D. Forrer, M. Sambi, F. Sedona, E. Tondello, A. Vittadini, V. Barone, and M. Pavone, J. Phys. Chem. C 114,2144 (2010).
    32T. Gang, M. D. Yilmaz, D. Atac, S. K. Bose, E. Strambini, A. H. Velders, M. P. de Jong, J. Huskens, and W. G. van der Wiel, Nature Nanotech.7,232 (2012).
    33M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc.133, 1203 (2011).
    34J. Zhou and Q. Sun, J. Am. Chem. Soc.133,15113 (2011).
    35J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    36G Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    37V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.:Condens. Matter.9, 767 (1997).
    38H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438,197 (2005).
    2 G Brumfiel, Nature 458,390 (2009).
    3 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    4 M. Wu, E.-Z. Liu, and J. Z. Jiang, Appl. Phys. Lett.93,082504 (2008).
    5 S. M. Avdoshenko, I. N. Ioffe, G. Cuniberti, L. Dunsch, and A. A. Popov, ACS Nano 5,9939(2011).
    6 H. Sahin, C. Ataca, and S. Ciraci, Phys. Rev. B 81,205417 (2010).
    7 Z. H. Zhang and W. Guo, J. Am. Chem. Soc.131,6874 (2009).
    8 Y. D. Ma, Y. Dai, Z. K. Zhang, L. Yu, and B. H. Huang, Appl. Phys. Lett.101, 062405 (2012).
    9 J. Zhou and Q. Sun, J. Am. Chem. Soc.133,15113 (2011).
    10A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykko, and R. M. Nieminen, Phys. Rev. Lett.102,126807 (2009).
    11Q. Tang, Y. Cui, Y. F. Li, Z. Zhou, Y. S. Chen, and Z. F. Chen, ACS Appl. Mater. Interfaces 2,2442 (2010).
    12J. S. Crvenka, M. I. Katsnelson, and C. F. J. Flipse, Nat. Phys.5,840 (2009).
    13M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc.133, 1203 (2011).
    14Z. H. Zhang and W. Guo, J. Am. Chem. Soc.131,6874 (2009).
    15E. Kan, W. Hu, C. Y. Xiao, R. F. Lu, K. M. Deng, J. L. Yang, and H. B. Su, J. Am. Chem. Soc.134,5718 (2012).
    16H. Pan, Y. P. Feng, Q. Y. Wu, Z. G. Huang, and J. Y. Lin, Phys. Rev. B 77,125211 (2008).
    17K. S. Yang, R. Q. Wu, L. Shen, Y. P. Feng, Y. Dai, and B. B. Huang, Phys. Rev. B 81, 125211 (2010)
    18Z. H. Zhang, X. J. Wu, W. L. Guo, and X. C. Zeng, J. Am. Chem. Soc.132,10215 (2010).
    19M. H. Wu and X. C. Zeng, Appl. Phys. Lett.99,053121 (2011).
    20Y. F. Li, Z. Zhou, and Z. F. Chen, J. Phys. Chem. A 116,1648 (2012).
    21C. Morari, H. Allmaier, F. Beiuseanu, T. Jurcut, and L. Chionce, Phys. Rev. B 85, 085413 (2012).
    22V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Phys. Rev. Lett.97,097201 (2006).
    23 S. Sanvito and A. R. Rocha, J. Comput. Theor. Nanosci.3,624 (2006).
    24K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401,572 (1999).
    25J. M. Kikkawa and D. D. Awschalom, Nature 397,139 (1999).
    26N. Mohammadi, A. Ganesan, C. T. Chantler, and F. Wang, J. Organomet. Chem.713, 51 (2012).
    27T. Daeneke, T. H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, and L. Spiccia, Nat. Chem.3,211(2011).
    28S. Coriani, A. Haaland, T. Helgaker, and P. J(?)rgensen, Chem. Phys. Chem.7,245 (2006).
    29T. Y. Dong, S. W. Chang, S. F. Lin, M. C. Lin, Y. S. Wen, and L. Lee, Organometallics 25,2018 (2006).
    30G. Kresse and J. Hafner, Phys. Rev. B 48,13115 (1993).
    31G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,3865 (1996).
    32J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    33V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.:Condens. Matter 9, 767 (1997).
    34M. Bernien, J. Miguel, C. Weis, M. E. Ali, J. Kurde, B. Krumme, P. M. Panchmatia, B. Sanyal, M. Piantek, P. Srivastava, K. Baberschke, P. M. Oppeneer, O. Eriksson, W. Kuch, and H. Wende, Phys. Rev. Lett.102,047202 (2009).
    35A. B. Shick, J. Kudrnovsky, and V. Drchal, Phys. Rev. B 69,125207 (2004).
    36J. Okabayashi, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 58, R4211 (1998).
    37H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    38Z.-F. Xu, Y. M. Xie, W.-L. Feng, and H. F. Schaefer, J. Phys. Chem. A 107,2716 (2003).
    39H. J. Xiang, J. L. Yang, J. G Hou, and Q. S. Zhu, J. Am. Chem. Soc.128,2310 (2006).
    40L. Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson, and D. J. Smith, Phys. Rev. B 77,073306 (2008).
    41L. Shen, S.-W. Yang, M.-F. Ng, V. Ligatchev, L. Zhou, and Y. P. Feng, J. Am. Chem. Soc.130,13956 (2008).
    42H. X. Da, H. M. Jin, K. H. Lim, V. Ligatchev, M. F. Ng, K. H. Khoo, and S.-W. Yang, Nano Energy 1,297 (2012).
    43H. Peng, H. Xiang, S. Wei, S. Li, J. Xia, and J. Li, Phys. Rev. Lett.102,017201 (2009).
    44Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Nanoscale 3,2301 (2011).
    1 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. Roukes, A.Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2001).
    2 A. J. Du, S. Sanvito, and S. C. Smith, Phys. Rev. Lett.108,197207 (2012).
    3 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2001).
    4 I. Zutic, J. Fabian, and S. D. Sarma, ReV. Mod. Phys.76,323 (2004).
    5 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    6 Q. Tang, Y. F. Li, Z. Zhou, Y. S. Chen, and Z. F. Chen, ACS Appl. Mater. Interfaces 2,2442 (2010).
    7 E. J. Kan, W. Hu, C. Y. Xiao, R. F. Lu, K. M. Deng, J. L. Yang, and H. B. Su, J. Am. Chem. Soc.134,5718 (2012).
    8 L. Shen, S. Yang, M. Ng, V. Ligatchev, L. Zhou, and Y. P. Feng, J. Am. Chem. Soc. 130,13956 (2008).
    9 B. Huang, Y. Son, G. Kim, W. Duan, and J. Ihm, J. Am. Chem. Soc.131,17919 (2009).
    10J. Zhou, Q. Wang, Q. Sun, X. Chen, Y. Kawazoe, and P. Jena, Nano Lett.9,3867. (2009).
    11H. X. Da, H. M. Jin, K. H. Lim, V. Ligatchev, M. F. Ng, K. H. Khoo, and S.-W. Yang, Nano Energy 1,297 (2012).
    12K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401,572 (1999).
    13J. M. Kikkawa and D. D. Awschalom, Nature 397,139 (1999).
    14L. Wang, Z. X. Cai, J. Y. Wang, J. Lu, G. F. Luo, L. Lai, J. Zhou, R. Qin, Z. X. Gao, D. P. Yu, G. P. Li, W. N. Mei, and S. Sanvito, Nano Lett.8,3640, (2008).
    15V. V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T. Bredow, and I. Mertig, Phys. Rev. Lett.97,097201 (2006).
    16C. Morari, H. Allmaier, F. Beiuseanu, T. Jurcut, and L. Chioncel, Phys. Rev. B 85, 085413 (2012).
    17X. Y. Zhang, Z. Tian, S.-W. Yang, and J. L. Wang, J. Phys. Chem. C 115,2948 (2011).
    18H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Am. Chem. Soc.128,2310 (2006).
    19Z. H. Zhang, X. J. Wu, W. L. Guo, and X. C. Zeng, J. Am. Chem. Soc.132,10215 (2010).
    20X. Y. Zhang, J. Han, Y. J. Liu, and J. L. Wang, J. Phys. Chem. C 116,5414 (2012).
    21Y. F. Li, Z. Zhou, and Z. F. Chen, J. Phys. Chem. A 116,1648 (2012).
    22W. J. Cho, Y. C. Cho, S. K. Min, W. Y. Kim, and K. S. Kim, J. Am. Chem. Soc.133, 9364(2011).
    23P. Parida, A. Kundub, and S. K. Pati, Phys. Chem. Chem. Phys.12,6924 (2010).
    24X. Zhang and J.L. J. Wang, J. Phys. Chem. A 114,2319 (2010).
    25K. L. T. Wong and H. H. Brintzinger, J. Am. Chem. Soc.97,5143 (1975).
    26I. S. Youn, N. J. Singh, W. P. Sung, Y. Jihee, and S. K. Kwang, J. Chem. Theory Comput.8,99 (2012).
    27E. Urnezius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, and P. von R. Schleyer, Science 295,832 (2002).
    28G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    29G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    30J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    31P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    32G Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    33V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.:Condens. Matter 9, 767 (1997).
    34Y. D. Ma, Y. Dai, Z. K. Zhang, L. Yu, and B. H. Huang, Appl. Phys. Lett.101, 062405 (2012).
    35J. Zhou and Q. Sun, J. Am. Chem. Soc.133,15113 (2011).
    36M. Bernien, J. Miguel, C. Weis, M. E. Ali, J. Kurde, B. Krumme, P. M. Panchmatia, B. Sanyal, M. Piantek, P. Srivastava, K. Baberschke, P. M. Oppeneer, O. Eriksson, W. Kuch, and H. Wende, Phys. Rev. Lett.102,047202 (2009).
    37A. B. Shick, J. Kudrnovsky, and V. Drchal, Phys. Rev. B 69,125207 (2004).
    38H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    39A. Wolska, K. Lawniczak-Jablonska, M. Klepka, M. S. Walczak, and A. Misiuk, Phys. Rev. B 75,113201 (2007).
    40L. Zeng, E. Helgren, M. Rahimi, F. Hellman, R. Islam, B. J. Wilkens, R. J. Culbertson, and D. J. Smith, Phys. Rev. B 11,073306 (2008).
    1 A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend, and C. Silva, Phys. Rev. Lett.92,247402 (2004).
    2 D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, et al. Nat. Mater. DOI:10.1038/NMAT3697 (2013).
    3 T. Yamasaki and C. Kaneta, Phys. Rev. B 63,115314 (2001).
    4 Y. Xu and M. A. A. Schoonen, Am. Mineral.85,543 (2000).
    5 L. Kavan, M. Gratzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, J. Am. Chem. Soc. 118,6716 (1996).
    6 Y. Li, L. E. O'Leary, N. S. Lewis, and G Galli, J. Phys. Chem. C 117,5188 (2013).
    7 Y. D. Ma, Y. Dai, W. Wei, X. H. Liu, and B. B. Huang, J. Solid State Chem.184,747 (2011).
    8 H. F. Cheng, B. Huang, P. Wang, Z. Y. Wang, Z. Z. Lou, J. P. Wang, et al. Chem. Comm.47,7054(2011).
    9 J. Hader, S. W. Koch, J. V. Moloney, and E. P. O'Reilly, Appl. Phys. Lett.76,3685 (2000).
    10X. Q. Meng, H. Peng, Y. Q. Gai, and J. Li, J. Phys. Chem. C 114,1467 (2010).
    11J. Li and L.-W. Wang, Appl. Phys. Lett.84,3648 (2004).
    12S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. Lett.84,1232 (2000).
    13R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, and A. Pasquarello, Phys Rev Lett 100,186401(2008).
    14P. G. Moses, M. S. Miao, Q. M. Yan, and C. G Van de Walle, J. Chem. Phys.134, 084703 (2011).
    15P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin, and C. F. M. Conville, Phys. Rev. B 78,033308 (2008).
    16J. C. Conesa, J. Phys. Chem. C 116,18884 (2012).
    17P.-Y. Prodhomme, F. Fontaine-Vive, A. V. D. Geest, P. Blaise, and J. Even, Appl. Phys. Lett.99,022101 (2011).
    18Y. D. Ma, Y. Dai, and B. B. Huang, Comput. Mater. Sci.50,1661 (2011).
    19R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293,269 (2001).
    20Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys.13,15546(2011).
    21Y. Gai, J. Li, S.-S. Li, J.-B. Xia, and S.-H. Wei, Phys. Rev. Lett.102,036402 (2009).
    22J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, et al. Nature 466, 470 (2010).
    23S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J. H. Franke, H. Zhang, et al. Phys. Rev. Lett.108,216801 (2012).
    24Z. F. Wang, Q. W. Shi, Q. X. Li, X. P. Wang, J. G Hou, H. X. Zheng, et al. Appl. Phys. Lett.91,053109 (2007).
    25A. Saffarzadeh and R. Farghadan, Appl. Phys. Lett.98,023106 (2011).
    26H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B 78,245402 (2008).
    27E. C. Girao, L. B. Liang, E. Cruz-Silva, A. G S. Filho, and V. Meunier, Phys. Rev. Lett.107,135501(2011).
    28S. D. Wang and J. L. Wang, J. Phys. Chem. C 116,10193 (2012).
    29C. Bronner, S. Stremlau, M. Gille, F. BrauBe, A. Haase, S. Hecht, et al. Angew. Chem. Int. Ed.52,4422 (2013).
    30G Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    31G Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    32J. P. Perdew and Y. Wang, Phys. Rev. B 45,13244 (1992).
    33J. P. Perdew, K. Burke and M. Ernzerhot Phys. Rev. Lett.77,3865 (1996).
    34H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    35H. J. Xiang, B. Huang, Z. Y. Li, S.-H. Wei, J. L. Yang, and X. G. Gong, Phys. Rev. X 2,011003(2012).
    36M. A. Butler and D. S. Ginley, J. Electrochem. Soc.125,228 (1978).
    37R. T. Sanderson, "Chemical Periodicity," pp.37-38, Reinhold, New York (1960).
    38A. H. Nethercot, Phys. Rev. Lett.33,1088 (1974).
    1 T. L. Makarova, B. Sundqvist, R. Hohne, P. Esqulnazl, K. Kopelevich, P. Scharff, V. A. Davydov, L. A. Kahsevarova, and A. V. Rakhmanina, Nature 413,716 (2001).
    2 Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett.84,1744 (2000).
    3 J. Fernandez-Rossier and J. J. Palacios, Phys. Rev. Lett.99,177204 (2007).
    4 Z. K. Zhang, Y. Dai, B. B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.96, 062505 (2009).
    5 P. O. Lehtinen, A. S. Foster, A. Ayuela, A. Krasheninnikov, K. Nordlund, and R. M. Nieminen, Phys. Rev. Lett.91,017202 (2003).
    6 A. N. Andriotis, M. Menon, R. M. Sheetz, and L. Chernozatonskii, Phys. Rev. Lett. 90,026801 (2003).
    7 P. O. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett.93,187202 (2004).
    8 Y. Zhang, S. Talapatra, S. Kar, R. Vajtai, S. K. Nayak, and P. M. Ajayan, Phys. Rev. Lett.99,107201 (2007).
    9 K. W. Lee and C. E. Lee, Phys. Rev. Lett.97,137206 (2006).
    10Z. Zhang and W. Guo, J. Am. Chem. Soc.131,6874 (2009).
    11F. Li, Z. Zhu, X. Yao, and G Lu, Appl. Phys. Lett.92,102515 (2008).
    12J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 81,085442 (2010).
    13Y. Son, M. L. Cohen, and S. G Louie, Nano Lett.7,3518 (2007).
    14Z. M. Liao, Y D. Li, J. Xu, J. M. Zhang, K. Xia, and D. P. Yu, Nano Lett.6,1087 (2006).
    15Z. Y. Wang, B. B. Huang, L. Yu, Y. Dai, P. Wang, X. Qin, X. Zhang, J; Wei, J. Zhan, X. Y Jing, H. Liu, and M.-H. Whangbo, J. Am. Chem. Soc.130,16366 (2009).
    16Y. D. Ma, Y Dai, and B. B. Huang, Comp. Mater. Sci.50,1661 (2011).
    17J. O. Sofo, A. Chaudhari, and G D. Barber, Phys. Rev. B 75,153401 (2007).
    18D. C. Elias, R. R. Nair, T. M. G Mohiuddin, S. V. Morozov, M. P. Blake, P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323,610 (2009).
    19J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y Kawazoe, and P. Jena, Nano Lett.9,3867 (2009).
    20B. Xu, J. Yin, Y. D. Xia, X. G Wan, and Z. G. Liu, Appl. Phys. Lett.96,143111 (2010).
    21E. J. Kan, H. J. Xiang, F. Wu, C. Tian, C. Lee, J. L. Yang, and M.-H. Whangbo, Appl. Phys. Lett.97,122503 (2010).
    22J. Zhou, M. M. Wu, X. Zhou, and Q. Sun, Appl. Phys. Lett.95,103108 (2009).
    23J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    24G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    25G. Kresse and J. Joubert, Phys. Rev. B 59,1758 (1999).
    26H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    27H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraciprb, Phys. Rev. B 80,155453 (2009).
    28J. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser, Nano Lett.9, 2683 (2009).
    29Y. Ding and J. Ni, Appl. Phys. Lett.95,083115 (2009).
    30H. Peng, H. Xiang, S. Wei, S. Li, J. Xia, and J. Li, Phys. Rev. Lett.102,017201 (2009).
    31H. Jin, Y. Dai, B. B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.94,162505 (2009).
    32S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2010).
    33S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Phys. Rev. B 81,081407 (2010).
    34M. Zhou, Y. H. Lu, C. Zhang, and Y. P. Feng, Phys. Rev. B 97,103109 (2010).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004).
    2 J. O. Sofo, A. Chaudhari, and G. D. Barber, Phys. Rev. B 75,153401 (2007).
    3 D. C. Elias, R. R. Nair, T. M. G Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323,610 (2009).
    4 J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett.9,3867 (2009).
    5 J. Zhou, Q. Wang, Q. Sun, and P. Jena, Appl. Phys. Lett.98,063108 (2011).
    6 B. S. Pujari and D. G. Kanhere, J. Phys. Chem. C 113,21063 (2009).
    7 H. Sahin, C. Ataca, and S. Ciraci, Appl. Phys. Lett.95,222510 (2009).
    8 D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 035427 (2008).
    9 Rahul R. Nair, et al. Small 6,2877 (2010).
    10H. Sahin, M. Topsakal, and S. Ciraci, Phys. Rev. B 83,115432 (2011).
    11F. Withers, M. Dubois, and A. K. Savchenko, Phys. Rev. B 82,073403 (2010).
    12O. Leenaerts, H. Peelaers, A. D. Hernandez-Nieves, B. Partoens, and F. M. Peeters, Phys. Rev. B 82,195436 (2010).
    13J. Zhou, M. M. Wu, X. Zhou, and Q. Sun, Appl. Phys. Lett.95,103108 (2009).
    14Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Nanoscale,3,3883 (2011).
    15 H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80,155453 (2009).
    16W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl, Phys. Lett.93, 223103(2008).
    17B. Xu, J. Yin, Y. D. Xia, X. G. Wan, and Z. G. Liu, Appl. Phys. Lett.96,143111 (2010).
    18E. J. Kan, H. J. Xiang, F. Wu, C. Tian, C. Lee, J. L. Yang, and M.-H. Whangbo, Appl. Phys. Lett.96,122503 (2010).
    19J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 81,085442 (2010).
    20J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    21G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    22G Kresse and J. Joubert, Phys. Rev. B 59,1758 (1999).
    23H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    24Y. Ding and J. Ni, Appl. Phys. Lett.95,083115 (2009).
    25S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Phys. Rev. Lett.102, 236804 (2009).
    26H. Peng, H. Xiang, S. Wei, S. Li, J. Xia, and J. Li, Phys. Rev. Lett.102,017201 (2009).
    27H. Jin, Y. Dai, B. B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.94,162505 (2009).
    28K. Yoshizawa, T. Kuga, T. Sato, M. Hatanaka, T. Tanaka, and T. Yamabe, Bull. Chem. Soc. Jpn.69,3443 (1996).
    1 A. K. Geim and K. S. Novoselov, Nature Mater.6,183 (2007).
    2 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys.81,109 (2009).
    3 Y. D. Ma, Y. Dai, W. Wei, C. W. Niu, L. Yu, and B. B. Huang, J. Phys. Chem. C 115, 20237(2011).
    4 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol.6,147 (2011).
    5 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Z. K. Zhang, and B. B. Huang, Phys. Chem. Chem. Phys.14,3651 (2012).
    6 A. Splendiani, L. Sun, Y. Zhang, T. Kim, J. Li, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett.10,1271(2010).
    7 A. M. Seayad and D. M. Antonelli, Adv. Mater.16,765 (2004).
    8 Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    9 Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, and B. B. Huang, Nanoscale 3,3883 (2011).
    10Y. F. Li, F. Y. Li, Z. Zhou, and Z. F. Chen, J. Am. Chem. Soc.133,900 (2011).
    11C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84,195430 (2011)
    12J. C. Garcia, D. B. de Lima, L. V. C. Assali, and J. F. Justo, J. Phys. Chem. C 115, 13242(2011.)
    13R. F. Service, Science 323,1000 (2009).
    14J. H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, New York,1998).
    15P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin,2005).
    16K. S. Kim, S. C. Jung, M. H. Kang, and H. W. Yeom, Phys. Rev. Lett.104,246803 (2010).
    17E. Kan, F. Wu, H. J. Xiang, J. Yang, and M.-H. Whangbo, J. Phys. Chem. C 115, 17252(2011).
    18C. W. Zhang and S. S. Yan, J. Phys. Chem. C 116,4163 (2012).
    19M. Houssa, G Pourtois, V. V. Afanasev, and A. Stesmans, Appl. Phys. Lett.97, 152108 (2010).
    20N. Gao, W. T. Zheng, and Q. Jiang, Phys. Chem. Chem. Phys.14,257 (2012).
    21J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    22G. Kresse and J. Furthmuller, Phys. Rev. B:Condens. Matter 54,11169 (1996).
    23G. Kresse and J. Joubert, Phys. Rev. B 59,1758 (1999).
    24H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    25S. Q. Wang, Phys. Chem. Chem. Phys.13,11929 (2011).
    26Y. D. Ma, Y. Dai, W. Wei, C. W. Niu, L. Yu, and B. B. Huang, Nanoscale 3,2301 (2011).
    27L. C. Lew Yan Voon, E. Sandberg, R. S. Aga, and A. A. Farajian, Appl. Phys. Lett. 97,163114(2010).
    28D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323,610 (2009).
    29J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett.9, 113867 (2009).
    30H. Sahin, M. Topsakal, and S. Ciraci, Phys. Rev. B 83,115432 (2011).
    31R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, Nanoscale 3,20(2011).
    32L. C. Lew Yan Voon, E. Sandberg, R. S. Aga, and A. A. Farajian, Appl. Phys. Lett. 97,163114(2010).
    33J. Wu, L. M. Xie, Y. Li, H. Wang, Y. Ouyang, J. Guo, and H. G. Dai, J. Am. Chem. Soc.133,19668(2011).
    34Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Phys. Rev. B 75,041401 (2007).
    35H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B 74,165310 (2006).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Filrsov, Science 306,666 (2004).
    2 A. K. Geim, Science 324,1530 (2009).
    3 M. S. Lundstrom, Nat. Mater.10,566 (2011).
    4 F. Schwierz, Nat. Nano.5,487 (2010).
    5 D. Basko, Science 4,610 (2011).
    6 Y. Y. Liang, Y. G. Li, H. Wang, J. G. Zhou, and J. Wang, Nat. Mater.10,780 (2011).
    7 J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75,153401 (2007).
    8 D. C. Elias, R. R. Nair, T. M. G Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323,610 (2009).
    9 S. Ryu, M. Y. Han, J. Maultzsch, T. R. Heinz, P. Kim, M. L. Steigerwald, and L. E. Brus, Nano Lett.8,4597 (2008).
    10D. C. Elias, R. R. Nair, T. M. G Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323,610 (2009).
    11 J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett.9,3867 (2009).
    12D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Biichner, and A. Gruneis, Nano Lett.10,3360 (2010).
    13R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofinann, and L. Hornekaer, Nat. Mater.9,315 (2010).
    14A. Bostwick, J. L. McChesney, K. V. Emtsev, T. Seyller, K. Horn, S. D. Kevan, and E. Rotenberg, Phys. Rev. Lett.103,056404 (2009).
    15D. Haberer, L. Petaccia, M. Farjam, S. Taioli, S. A. Jafari, A. Nefedov, W. Zhang, L. Calliari, G Scarduelli, B. Dora, D. V. Vyalikh, T. Pichler, C. Woll, D. Alfe, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Buchner, and A. Gruneis, Phys. Rev. B 83,165433(2011).
    16M. L. Ng, R. Balog, L. Hornekaer, A. B. Preobrajenski, N. A. Vinogradov, N. Martensson, and K. Schulte, J. Phys. Chem. C 114,18559 (2010).
    17Z. Luo, J. Shang, S. Lim, D. Li, Q. Xiong, Z. Shen, J. Lin, and T. Yu, Appl. Phys. Lett.97,233111(2010).
    18D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 035427 (2008).
    19A. Ranjbar, M. S. Bahramy, M. Khazaei, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B 82,165446(2010).
    20M. Z. S. Flores, P. A. S. Autreto, S. B. Legoas, and D. S. Galvao, Nanotechnology 20,465704 (2009).
    21D. Haberer, et al., Adv. Mater.23,4497 (2011).
    22V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett.103,046801 (2009).
    23Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Nanoscale 3,2301 (2011).
    24T. M. G Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrai, Phys. Rev. B 79,205433 (2009).
    25Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2,2301 (2008).
    26K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457,706 (2009).
    27J. He, K; Wu, R. Sa, Q. Li, and Y. Wei, Appl. Phys. Lett.96,082504 (2010).
    28Y. G. Zhou, X. T. Zu, F. Gao, H. F. Lv, and H. Y. Xiao, Appl. Phys. Lett.95,123119 (2009).
    29O. V. Yazyev and L. Helm, Phys. Rev. B 75,125408 (2007).
    30M. Wu, E.-Z. Liu, and J. Z. Jiang, Appl. Phys. Lett.93,082504 (2008).
    31K. S. Yang, R. Wu, L. Shen, Y. P. Feng, Y. Dai, and B. B. Huang, Phys. Rev. B 81, 125211 (2010); Y. D. Ma, Y. Dai, and B. B. Huang, Comput. Mater. Sci.50,1661 (2011).
    32J. J. Attema, G. A. de Wijs, G. R. Blake, and R. A. de Groot, J. Am. Chem. Soc.127, 16325 (2005).
    33J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    34G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    35G. Kresse and J. Joubert, Phys. Rev. B 59,1758 (1999).
    36H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    37J. Zhou, Q. Wang, Q. Sun, X. S.Chen, Y. Kawazoe, and P. Jena, Nano Lett.9,3867 (2009).
    38Y. Lu and Y. P. Feng, Nanoscale 3,2444 (2011).
    39Y. Ferro, D. Teillet-Billy, N. Rougeau, V. Sidis, S. Morisset, and A. Allouche, Phys. Rev. B 78,085417 (2008).
    40S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Phys. Rev. B 81,081407 (2010).
    41M. Zhou, Y. H. Lu, C. Zhang, and Y. P. Feng, Phys. Rev. B 97,103109 (2010).
    42K. Xue and Z. Xu, Appl. Phys. Lett.96,063103 (2010).
    43Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, and H. Koinuma, Science 291,854 (2001).
    44K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and K. M. Krishnan, Phys. Rev. Lett.94,157204 (2005).
    45M. Venkatesan, C. B. Fitzgerald, J. G Lunney, and J. M. D. Coey, Phys. Rev. Lett. 93,177206 (2004).
    46Q. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett.91,092503 (2007).
    47Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys.13,15546(2011).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004).
    2 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438,201 (2005).
    3 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett.95,146801 (2005).
    4 X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett.100, 206803 (2008).
    5 H. W. C. Postma, Nano Lett.10,420 (2010).
    6 C. A. Merchant, et al. Nano Lett.10,2915 (2010).
    7 G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, Nano Lett.10,3163 (2010).
    8 S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, Nature 467,190 (2010).
    9 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 459,820 (2009).
    10M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Nature Nanotech.4,383 (2009).
    11T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313,951 (2006).
    12S. Y. Zhou, G-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Neto, and A. Lanzara, Nature Mater.6,770 (2007).
    13A. Mattausch and O. Pankratov, Phys. Rev. Lett.99,076802 (2007).
    14Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Nanoscale 3,2301 (2011).
    15Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Appl. Surf. Sci.257, 7845(2011).
    16E. Rollings, et al. Phys. Chem. Solids 67,2172 (2006).
    17M. Ishigami, J. H. Chen, W. G Cullen, M. S. Fuhrer, and E. D. William, Nano Lett. 7,1643 (2007).
    18N. T. Cuong, M. Otani, and S. Okada, Phys. Rev. Lett.106,106801 (2011).
    19I. Pletikosic, M. Kralj, P. Pervan, P. Brako, J. Coraux, A. T. Diaye, C. Busse, and T. Michely, Phys. Rev. Lett.102,056808 (2009).
    20S. Barraza-Lopez, M. Vanevic, M. Kindermann, and M. Y. Chou, Phys. Rev. Lett. 104,076807 (2010).
    21 J. N. Coleman, et al. Science 331,568 (2011).
    22K. Chang and W. Chen, Chem. Commun.47,4252 (2011).
    23Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, J. Am. Chem. Soc.133,7296 (2011).
    24P. Hohenberg and W. Kohn, Phys. Rev.136, B864 (1964).
    25W. Kohn and L. Sham, Phys. Rev.140, A1133 (1965).
    26G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    27G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    28P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    29P. A. Khomyakov, G Giovannetti, P. C. Rusu, G Brocks, J. van den Brink, and P. J. Kelly, Phys. Rev. B 79,195425 (2009).
    30A. L. Walter, et al. Appl. Phys. Lett.98,184102 (2011).
    31D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45,566 (1980).
    32H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    33G Giovannetti, et al. Phys. Rev. B 76,073103 (2007).
    34S. Okada, Jpn. J. Appl. Phys 49,020204 (2010).
    35D. Eom, et al. Nano Lett.9,2844 (2009).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Gregorieva, and A. Firsov, Science 306,666 (2004).
    2 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A.102,10451 (2005).
    3 K. S. Novoselov, Nat. Mater.6,720 (2007).
    4 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, and B. B. Huang, Nanoscale 3,3883 (2011).
    5 A. K. Geim, Science 324,1530 (2009).
    6 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438,197 (2005).
    7 D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458,872 (2009).
    8 Y. D. Ma, Y. Dai, M. Guo, and B. B. Huang, Phys. Rev. B 85,235448 (2012).
    9 L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458,877 (2009).
    10S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, D. H. Lee, F. Guinea, A. H. C. Neto, and A. Lanzara, Nat. Mater.6,770 (2007).
    11A. J. Du, S. Sanvito, Z. Li, D. W. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. H. Zhu, R. Amal, and S. C. Smith, J. Am. Chem. Soc.134,4393 (2012).
    12J. S. Qi, X. Li, X. F. Qian, and J. Feng, Appl. Phys. Lett.102,173112 (2013).
    13Y. D. Ma, Y. Dai, M. Guo, L. Yu, and B. B. Huang, Phys. Chem. Chem. Phys.15, 7098 (2013).
    14J. Zhou and Q. Sun, J. Am. Chem. Soc.133,15113 (2011).
    15Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    16E. Bianco, S. Butler, S. S. Jiang, O. D. Restrepo, W. Windl, and J. E. Goldberger, ACS Nano 7,4414 (2013).
    17K. J. Koski and Y. Cui, ACS Nano 7,3739 (2013).
    18E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Nano Res.5,43 (2012).
    19S. Bhattacharyya and A. K. Singh, Phys. Rev. B 86,075454 (2012).
    20Y. F. Li, F. Y. Li, Z. Zhou, and Z. F. Chen, J. Am. Chem. Soc.133,900 (2011).
    21L. Z. Kou, T. Frauenheim, and C. F. Chen, J. Phys. Chem. Lett.4,1730 (2013).
    22G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996); Phys. Rev. B 54, 11169(1996).
    23D. M. Ceperley and B. Alder, Phys. Rev. Lett.45,566 (1980).
    24P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    25H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    26J. Brivio, D. T. L. Alexander, and A. Kis, Nano Lett.11,5148 (2011).
    27K. Kim, Z. Lee, B. D. Malone, K. T. Chan, B. Aleman, W. Regan, W. Gannett, M. F. Crommie, M. L. Cohen, and A. Zettl, Phys. Rev. B 83,245433.(2011).
    28A. Ramasubramaniam, D. Naveh, and E. Towe, Phys. Rev. B 84,205325 (2011).
    29Q. H. Liu, L. Z. Li, Y. F. Li, Z. X. Gao, Z. F. Chen, and J. Lu, J. Phys. Chem. C 116, 21556 (2012).
    30L. Z. Kou, C. Tang, Y. Zhang, T. Heine, C. F. Chen, and T. Frauenheim, J. Phys. Chem. Lett.3,2934 (2012).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Filrsov, Science 306,666 (2004).
    2 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438,201 (2005).
    3 C. Berger, et al. Science 312,1191 (2006).
    4 P. Avouris, Nano Lett.10,4285 (2010).
    5 Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett.9,422 (2009).
    6 Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327,662 (2010).
    7 L. Liao, Y.-C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. Liu, Y. Q. Qu, K. L. Wang, Y. Huang, and X. F. Duan, Nature 467,305 (2010).
    8 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, W. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Nat. Acad. Sci., U.S.A.102,10451 (2005).
    9 G. Brumfiel, Nature 458,390 (2009).
    10T. P. Kaloni, Y. C. Cheng, and U. Schwingenschlogl, J. Mater. Chem.22,919 (2012).
    11D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458,872 (2009).
    12L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458,877 (2009).
    13R. Balog, B. J(?)rgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G Pedersen, P. Hofmann, and L. Homekaer, Nat. Mater.9,315 (2010).
    14Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Z. K. Zhang, and B. B. Huang, Phys. Chem. Chem. Phys.14,3651 (2012).
    15F. Guinea, M. I. Katsnelson, and A. Gerim, Nat. Phys.6,30 (2010).
    16Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2,2301 (2008).
    17A. J. Du, et al. J. Am. Chem. Soc.134,4393 (2012).
    18Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, and B. B. Huang, Nanoscale 3,3883 (2011).
    19W. J. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo, and L. J. Li, ACS Nano 9,7517 (2011).
    20N. Tombros, C. Jozsal, M. Popinciuc, H. T. Jonkman, and B. J. V. Wees, Nature 448, 571 (2007).
    21A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykko, and R. M. Nieminen, Phys. Rev. Lett.102,126807 (2009).
    22Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    23J. S. Crvenka, M. I. Katsnelson, and C. F. J. Flipse, Nat. Phys.5,840 (2009).
    24Y. Sernenov, K. Kim, and J. Zavada, Appl. Phys. Lett.91,153105 (2007).
    25H. Huegen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77,115406 (2008).
    26R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, Nano Lett.11,2291 (2011).
    27L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov, S. V. Morozov, A. A. Zhukov, F. Schedin, E. W. Hill, and A. K. Geim, Phys. Rev. Lett.102,206603 (2009).
    28Y. Q. Wu, Y. M. Lin, A. A. Boll, K. A. Jenkins, F. N. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, Nature 472,74 (2011).
    29 J. Yu, G. X. Liu, A. V. Sumant, V. Goyal, and A. A. Balandin, Nano Lett.12,1603 (2012).
    30Y. Wang, M. Jaiswal, M. Lin, S. Saha, B. Ozyilmaz, and P. K. Loh, ACS Nano 6, 1018 (2012).
    31D. Varshney, C. V. Rao, M. J.-F. Guinel, Y. Ishikawa, B. R. Weiner, and G. Morell, J. Appl. Phys.110,044324 (2011).
    32S. Grimme, J. Comput. Chem.27,1787 (2006).
    33G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    34G Kresse and J. Joubert, Phys. Rev. B 59,1758 (1999).
    35J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    36H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    37Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, L. Yu, and B. B. Huang, J. Phys. Chem. C 115, 20237(2011).
    38P. Michetti, P. Recher, and G. Iannaccone, Nano Lett.10,4463 (2010).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004).
    2 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys.2,177 (2006).
    3 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438,201 (2005).
    4 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol.6,147 (2011).
    5 Y. D. Ma, Y. Dai, W. Wei, C. N. Niu, L. Yu, and B. B. Huang, J. Phys. Chem. C 115, 20237 (2011).
    6 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett.10,1271 (2010).
    7 A. M. Seayad and D. M. Antonelli, Adv. Mater.16,765 (2004).
    8 Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys.13,15546(2011).
    9 Q. Tang, F. Y. Li, Z. Zhou, and Z. F. Chen, J. Phys. Chem. C 115,11983 (2011).
    10Q. Tang, Y. Cui, Y. F. Li, Z. Zhou, and Z. F. Chen, J. Phys. Chem. C 115,1724 (2011).
    11Q. Tang, F. Y. Li, Z. Zhou, and Z. F. Chen, J. Am. Chem. Soc.133,900 (2011).
    12Q. Tang, Y. Cui, Y. F. Li, Z. Zhou, Y. S. Chen, and Z. F. Chen, ACS Appl. Mater. Interfaces 2,2442 (2010).
    13J. Zhou and Q. Sun, J. Am. Chem. Soc.133,15113 (2011).
    14M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc.133, 1203 (2011).
    15Z. L. Shi, J. Liu, T. Lin, F. Xia, P. N. Liu, and N. Lin, J. Am. Chem. Soc.133,6150 (2011).
    16A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykko, and R. M. Nieminen, Phys. Rev. Lett.102,126807 (2009).
    17Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Nanoscale 3,2301 (2011).
    18J. S. Crvenka, M. I. Katsnelson, and C. F. J. Flipse, Nat. Phys.5,840 (2009).
    19D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301,943 (2003).
    20C. Bihler, M. Althammer, A. Brandlmaier, S. Geprags, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M. S. Brandt, and S. T. B. Goennenwein, Phys. Rev. B:Condens. Matter Mater. Phys.78,045203 (2008).
    21H. Tanaka, J. Zhang, and T. Kawai, Phys. Rev. Lett.88,027204 (2001).
    22J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, J. Am. Chem. Soc.133,17832(2011).
    23J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, et al. Science 331,568 (2011).
    24J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, Appl. Phys. Lett.96,082504 (2010).
    25K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett.105,136805 (2010).
    26A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and F. Wang, Nano Lett.10,1271 (2010).
    27C. Shahar, R. Levi, S. R. Cohen, and R. Tenne, J. Phys. Chem. Lett.1,540 (2010).
    28A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, Appl. Phys. Lett.96, 213116(2010).
    29K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Proc. Natl. Acad. Sci. U. S. A.102,10451 (2005).
    30Y. F. Li, Z. Zhou, S. B. Zhang, and Z. F. Chen, J. Am. Chem. Soc.130,16739 (2008).
    31E. A. Marseglia, Int. Rev. Phys. Chem.3,177 (1983).
    32J. A. Wilson and A. D. Yoffe, Adv. Phys.18,193 (1969).
    33D. W. Murphy, C. Cros, F. J. Di Salvo, and J. V.Waszczak, Inorg. Chem.16,3027 (1977).
    34H. A. Therese, F. Rocker, A. Reiber, J. Li, M. Stepputat, G Glasser, U. Kolb, and W. Tremel, Angew. Chem. Int. Ed.44,262 (2005).
    35J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    36G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    37G. Kresse and J. Joubert, Phys. Rev. B 59,1758 (1999).
    38H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    39F. Li, Z. Zhu, X. Yao, and G Lu, Appl. Phys. Lett.92,102515 (2008).
    40J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 81,085442 (2010).
    41S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Phys. Rev. B 81,081407 (2010).
    42M. Zhou, Y. H. Lu, C. Zhang, and Y. P. Feng, Phys. Rev. B 97,103109 (2010).
    43Z. H. Zhang, and W. Guo, J. Am. Chem. Soc.131,6874 (2009).
    44H. Peng, H. Xiang, S. Wei, S. Li, J. Xia, and J. Li, Phys. Rev. Lett.102,017201 (2009); H. Jin, Y. Dai, B. B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.94, 162505 (2009).
    45K. Yoshizawa, T. Kuga, T. Sato, M. Hatanaka, T. Tanaka, and T. Yamabe, Bull. Chem. Soc. Jpn.69,3443 (1996).
    46Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Appl. Surf. Sci.257, 7845,(2011).
    1 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnology 6,147 (2011).
    2 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, and C. Li, J. Am. Chem. Soc.130, 7176 (2008).
    3 R. V. Kasowski, Phys. Rev. Lett.30,1175 (1973).
    4 L. F. Mattheis, Phys. Rev. Lett.30,784 (1973).
    5 Jonathan N. Coleman, et al. Science 331,568 (2011).
    6 J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, Appl. Phys. Lett.96,082504 (2010).
    7 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett.105,136805 (2010)
    8 C. N. R. Rao and A. Nag, Eur. J. Inorg. Chem.2010,4244 (2010).
    9 A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G Galli, and F. Wang, Nano Lett.10,1271 (2010).
    10C. Shahar, R. Levi, S. R. Cohen, and R. Tenne, J. Phys. Chem. Lett.1,540 (2010).
    11H. S. S. R. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem.122,4153 (2010).
    12A. Castellanos-Gomez, N. Agrait, and G Rubio-Bollinger, Appl. Phys. Lett.96, 213116(2010).
    13K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Proc. Natl. Acad. Sci. U.S.A.102,10451 (2005).
    14Y. F. Li, Z. Zhou, S. B. Zhang, and Z. F. Chen, J. Am. Chem. Soc.130,16739 (2008).
    15S. Lebegue and O. Eriksson, Phys. Rev. B 79,115409 (2009).
    16Y. D. Ma, Y. Dai, M. Guo, C. N. Niu, L. Yu, and B. B. Huang, Nanoscale 3,2301 (2011).
    17Y. G Zhou, X. T. Zu, F. Gao, H. F. Lv, and H. Y. Xiao, Appl. Phys. Lett.95,123119 (2009).
    18O. V. Yazyev and L. Helm, Phys. Rev. B 75,125408 (2007).
    19M. Wu, E.-Z. Liu, and J. Z. Jiang, Appl. Phys. Lett.93,082504 (2008).
    20K. S. Yang, R. Wu, L. Shen, Y. P. Feng, Y. Dai, and B. B. Huang, Phys. Rev. B 81, 125211 (2010).
    21 J. J. Attema, G. A. de Wijs, G. R. Blake, and R. A. de Groot, J. Am. Chem. Soc.127, 16325 (2005).
    22W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).
    23G Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    24G Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    25G Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    26J. P. Perdew, K. Burke, and M. Ernzerhot Phys. Rev. Lett.77,3865 (1996).
    27H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    28S. W. Fan, K. L. Yao, and Z. L. Liu Appl. Phys. Lett.94,152506 (2009).
    29Y. D. Ma, Y. Dai, and B. B. Huang, Comp. Mater. Sci.50,1661 (2011).
    30A. H. Reshak and S. Auluck, Phys. Rev. B 71,155114 (2005).
    31L. Kulyuk, D. Dumcehnko, E. Bucher, K. Friemelt, O. Schenker, L. Charron, E. Fortin, and T. Dumouchel, Phys. Rev. B 72,075336 (2005).
    32K. Albe and A. Klein, Phys. Rev. B 66,073413 (2002).
    33T. S. Li and G. L. Galli, J. Phys. Chem. C 111,16192 (2007).
    34S. Lebegue and O. Eriksson, Phys. Rev. B 79,115409 (2009).
    35 C. Droghetti, D. Pemmaraju, and S. Sanvito, Phys. Rev. B 81,092403 (2010).
    36 J. L. Gavartin, D. M. Ramo, and A. L. Shluger, Appl. Phys. Lett.89,082908 (2006).
    37A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. R(?)nnow, G. Aeppli, and C. Renner, J. Phys.:Condens. Matter 19,255208 (2007).
    38P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett.100,117204 (2008).
    39D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77,35427 (2008).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsob, Science 306,666 (2004).
    K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K.Geim, Nat. Phys.2,177 (2006).
    3 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, and B. B. Huang, J. Phys. Chem. C 116,12977 (2012).
    4 A. J. Du, S. Sanvito, Z. Li, D. W. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. H. Zhu, R. Amal, and S. C. Smith, J. Am. Chem. Soc.134,4393 (2012).
    5 Q. Tang, Z. Zhou, and P. W. Shen, J. Am. Chem. Soc.134,16909 (2012).
    6 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    7 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442,282 (2006).
    8 K. M. Fair, X. Y. Cui, L. Li, C. C. Shieh, R. K. Zheng, Z. W. Liu, B. Delley, M. J. Ford, S. P. Ringer, and C. Stampfl, Phys. Rev. B 87,014102 (2013).
    9D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, A. K. Geim, and K. S. Novoselov, Science 323, 610(2009).
    10J. Zhou, M. M. Wu, X. Zhou, and Q. Sun, Appl. Phys. Lett.95,103108 (2009).
    11Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Z. K. Zhang, and B. B. Huang, Phys. Chem. Chem. Phys.14,3651 (2012).
    12Y. F. Li, F. Y. Li, and Z. F. Chen, J. Am. Chem. Soc.134,11269 (2012).
    13Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys.13,15546(2011).
    14B. L. Evans, in Physics and Chemistry of Materials with Layered Structures, Vol.4: Electrical and Optical Properties, ed. by P. A. Lee, D. Reidel Publish, Boston (1976).
    15V. Grasso and G. Mondio, in Electronic Structure and Electronic Transitions in Layered Materials, ed. by V. Grasso, D. Reidel Publish, Dordrecht, (1986).
    16D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Adv. Funct. Mater.22,1894 (2012).
    17D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, and V. P. Dravid, Adv. Mater.24,3549 (2012).
    18P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, ACS Nano 6,5988 (2012).
    19P. Johari and V. B. Shenoy, ACS Nano,6,5449 (2012).
    20Y. G. Zhou, Z. G. Wang, P. Yang, X. T. Zu, L. Yang, X. Sun, and F. Gao, ACS Nano, 6,9227 (2012).
    21S. Nusse, P. H. Bolivar, H. Kurz, F. Levy, A. Chevy, and O. Lang, Phys. Rev. B 55, 4620 (1997).
    22Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, Phys. Rev. Lett.108,266805 (2012).
    23J. N. Coleman, M. Lotya, A. Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, et al. Science 331,568 (2011).
    24J. B. Sun, J. B. Hannon, R. M. Tromp, P. Johari, A. A. Bol, V. B. Shenoy, and K.Pohl, ACS Nano 4,7073(2010).
    25P. Johari and V. B. Shenoy, ACS Nano 5,5903 (2011).
    26D. Venkateshvaran, M. Althammer, A. Nielsen, S. Geprags, M. S. R. Rao, S. T. B. Goennenwein, M. Opel, and R. Gross, Phys. Rev. B 79,134405 (2009).
    27D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301,943 (2003).
    28H. Tanaka, J. Zhang, and T. Kawai, Phys. Rev. Lett.88,027204 (2001).
    29Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2,2301 (2008).
    30E. McCann, Phys. Rev. B 74,161403 (2006).
    31A. Ramasubramaniam, D. Naveh, and E. Towe, J. Electrochem. Soc.84,205325 (2011).
    32J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    33G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    34S. Bhattacharyya and A. K. Singh, Phys. Rev. B 86,075454 (2012).
    35Y. D. Ma, Y. Dai, M. Guo, and B. B. Huang, Phys. Rev. B 85,235448 (2012).
    36S. Grimme, J. Comput. Chem.27,1787 (2006).
    37P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    38G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    39 H. J. Monkhorst and J. D.Pack, Phys. Rev. B 13,5188 (1976).
    40A. Kuhn, A. Chevy, and R. Chevalier, Acta Crystallogr. Sect. B 32,983 (1976).
    41 A. Kuhn, A. Chevy, and R. Chevalier, Phys. Status Solidi A 31,469 (1975).
    42J. Terhell, V. Brabers, and G. van Egmond, J. Solid State Chem.41,97 (1982).
    43G. L. Belenki, E. Y. Salaev, and R. A. Sulemanov, Sov. Phys. Usp.31,434 (1988).
    44D. Errandonea, A. Segura, F. J. Manjon, A. Chevy, E. Machado, G. Tobias, P. Ordejon, and E. Canadell, Phys. Rev. B 71,125206 (2005).
    45K. F. Mak, C. G. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett.105,136805 (2010).
    46A. Balitskii, E. Borowiak-Palen, and W. Konicki, Cryst. Res. Technol.46,417 (2011).
    47V. Chikan and D. F. Kelley, Nano Lett.2,141 (2002).
    48M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt, Phys. Rev. B 73,045112(2006).
    49H. Ehrenreich and M. H. Cohen, Phys. Rev.115,786 (1959).
    1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A.102,10451 (2005).
    2 K. S. Novoselov, Rev. Mod. Phys:83,837 (2011).
    3 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol.6,147 (2011).
    4 Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys.6,584 (2010).
    5 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano,6, 1695 (2012).
    6 Q. Tang, Z. Zhou, and P. Shen, J. Am. Chem. Soc.134,16909 (2012).
    7 X. D. Zhang, J. J. Zhang, J. Y. Zhao, B. C. Pan, M. G Kong, J. Chen, and Y. Xie, J. Am. Chem. Soc.134,11908 (2012).
    8 C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, and H. Weller, Science 329,550 (2010).
    9 J. S. Son, X.-D. Wen, J. Joo, J. Chae, S.-i. Baek, K. Park, J. H. Kim, K. An, J. H. Yu, S. G Kwon, S.-H. Choi, Z. Wang, Y.-W. Kim, Y. Kuk, R. Hoffmann, and T. Hyeon, Angew. Chem. Int. Ed.48,6861 (2009).
    10T. Yu, B. Lim, and Y. Xia, Angew. Chem. Int. Ed.49,4484 (2010).
    11Y. F. Li, Z. Zhou, and Z. F. Chen, J. Phys. Chem. A 116,1648 (2012).
    12Y. D. Ma, Y. Dai, C. W. Niu, and B. B. Huang, J. Mater. Chem.22,12587 (2012).
    13Z. H. Zhang, X. F. Liu, B. I. Yakobson, and W. L. Guo J. Am. Chem. Soc.134, 19326 (2012).
    14J. Zhou and Q. Sun, J. Am. Chem. Soc.133,15113 (2011).
    15Y D. Ma, Y. Dai, M. Guo, C. W. Niu, Z. K. Zhang, and B. B. Huang, Phys. Chem. Chem. Phys.14,3651 (2012).
    16A. Splendiani, L. Sun, Y. Zhang, T. Kim, J. Li, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett.10,1271(2010).
    17A. M. Seayad and D. M. Antonelli, Adv. Mater.16,765 (2004).
    18Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed.50,11093 (2011).
    19Q. Peng, W. Ji and S. De, Nanoscale 5,695 (2013).
    20W. L. Jolly, Modern Inorganic Chemistry; McGraw-Hill: New York,1984.
    21M. Sorai, Y. Nakazawa, M. Nakano, and Y. Miyazaki, Chem. Rev.113, PR41, (2013).
    22N. Abdurakhmanova, T.-C. Tseng, A. Langner, C. S. Kley, V. Sessi, S. Stepanow, and K. Kern, Phys. Rev. Lett.110,027202 (2013).
    23M. N. Faraggi, N. Jiang, N. Gonzalez-Lakunza, A. Langner, S. Stepanow, K. Kern, and A. Arnau, J. Phys. Chem. C 116,24558 (2012).
    24T.-C. Tseng, N. Abdurakhmanova, S. Stepanow, and K. Kern, J. Phys. Chem. C 115, 10211 (2011).
    25N. Abdurakhmanova, A. Floris, T.-C. Tseng, A. Comisso, S. Stepanow, A. D. Vita, and K. Kern, Nature Comm.3,940 (2012).
    26G Kresse and J. Hafner, Phys. Rev. B 48,13115 (1993).
    27G Kresse and J. Furthmuller, Comput. Mater. Sci.6,3865 (1996).
    28J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    29V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.:Condens. Matter 9, 767 (1997).
    30H. J. Monkhorst and J. D. Pack, Phys. Rev. B,13,5188 (1976).
    31S. H. Wang, Phys. Chem. Chem. Phys.13,11929 (2011).
    32W. J. Cho, Y. C. Cho, S. K. Min, W. Y. Kim, and K. S. Kim, J. Am. Chem. Soc.133, 9364(2011).
    33W. I. Choi, S.-H. Jhi, K. Kim, and Y.-H. Kim, Phys. Rev. B 81,085441 (2010).
    1 K. S. Novoselov, et al. Science 206,666 (2004).
    2 Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    3 Y. F. Li, F. Y. Li, Z. Zhou, and Z. F. Chen, J. Am. Chem. Soc.133,900 (2011).
    4 D. Malko, C. Neiss, and A. Gorling, Phys. Rev. B 86,045443 (2012).
    5 Q. Peng, W. Ji, and S. Deb, Phys. Chem. Chem. Phys.14,13385 (2012).
    6 Y. Liu, G. Wang, Q. Huang, L. W. Guo, and X. L. Chen, Phys. Rev. Lett.108, 225505(2012)
    7 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438,197 (2005).
    8 Y. D. Ma, Y. Dai, M. Guo, Y. T. Zhu, and B. B. Huang, Phys. Rev. B 85,235448 (2012).
    9 X. F. Song, J. L. Hu, and H. B. Zeng, J. Mater. Chem. C 1,2952 (2013).
    10T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313,951 (2006).
    11I. Pletikosic, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. NDiaye, C. Busse, and T. Michely, Phys. Rev. Lett.102,056808 (2009)
    12Y. D. Ma, Y. Dai, W. Wei, C. W. Niu, Y. Li, and B. B. Huang, J. Phys. Chem. C 115, 20237(2011).
    13D. P. Di Vincenzo and E. J. Mele, Phys. Rev. B 29,1685 (1984).
    14A. K. Geim, Science 324,1530 (2009).
    15A. K. Geim and K. S. Novoselov, Nature Mater.6,183(2007).
    16X. Blase, A. Rubio, S. G Louie, and M. L. Cohen, Phys. Rev. B 51,6868 (1995).
    17L. Brey and H. A. Fertig, Phys. Rev. B 73,235411 (2006).
    18L. M. Zhang, J. W. Yu, M. M. Yang, Q. Xie, H. L. Peng, and Z. F. Liu, Nature Comm.4,1443 (2013).
    19B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, and Z. F. Liu, ACS Nano 5,5957 (2011).
    20J. Wu, L. Xie, Y. Li, H. Wang, Y. Ouyang, J. Guo, and H. Dai, J. Am. Chem. Soc. 133,19668(2011).
    21K. Gopalakrishnan, K. S. Subrahmanyam, P. Kumar, A. Govindaraj, and C. N. R. Rao,RSC Adv.2,1605(2012).
    22H. Sahin and S. Ciraci, J. Phys. Chem. C 116,24075 (2012).
    23M. Ijas, P. Havu, and A. Harju, Phys. Rev. B 85,035440 (2012).
    24M. Yang, L. Zhou, J. Wang, Z. Liu, and Z. Liu, J. Phys. Chem. C 116,844 (2012).
    25G Kresse and J. Furthmuller, Comput. Mater. Sci.6,15(1996);
    26G Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    27D. M. Ceperley and B. Alder, J. Phys. Rev. Lett.45,566 (1980).
    28P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    29H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    30G Makov and M. C. Payne, Phys. Rev. B 51,4014 (1995).
    31D. Malko, C. Neiss, F. Vines, and A. Gorling, Phys. Rev. Lett.108,086804 (2012).
    32J. Hass, W. A. de Heer, and E. H. Conrad, J. Phys.:Condens. Matter 20,323202 (2008).
    33S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Phys. Rev. Lett.102, 236804 (2009).
    34Y. B. Zhang, T. T. Tang, C. Girit, H. Zhao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459,820 (2009).
    35L. Z. Kou, C. Li, Z. H. Zhang, and W. L. Guo, ACS Nano 4,2124 (2010).
    36Y.-L. Lee, S. Kim, C. Park, J. Ihm, and Y.-W. Son, ACS Nano 4,1345 (2010).
    37O. Hod and G. E. Scuseria, ACS Nano 2,2243 (2008).
    38Y. F. Li, F. Y. Li, and Z. F. Chen, J. Am. Chem. Soc.134,11269 (2012).
    1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al. Science 306,666 (2004).
    2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, S. V. Dubonos, et al. Nature 438,197 (2005).
    3 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys.2,177 (2006).
    4 Y. D. Ma, Y. Dai, M. Guo, and B. B. Huang, Phys. Rev. B 85,235448 (2012).
    5 Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature 438,201 (2005).
    6 K. Nomura and A. H. MacDonald, Phys. Rev. Lett.96,256602 (2006).
    7 D. D. Awschalom and M. E. Flatt, Nature Phys.3,153 (2007).
    8 C. Felser, G. H. Fecher and B. Balke, Angew. Chem. Int. Ed.46,668 (2007).
    9 Y. W. Son, M. L. Cohen, and S. G. Louie, Nature 444,347 (2006).
    10E. Kan, Z. Li, J. Yang, and J. G Hou, J. Am. Chem. Soc.130,4224 (2008).
    11S. Dutta, A. K. Manna, and S. K. Pati, Phys. Rev. Lett.102,096601 (2009).
    12S. Dutta and S. K. Pati, J. Phys. Chem. B 112,1333 (2008).
    13Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, ACS Nano 3,1952 (2009).
    14J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett.9,3867 (2009).
    15Y. L. Lee, S. Kim, C. Park, J. Ihm, and Y. W. Son, ACS Nano 4,1345 (2010).
    16K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, et al. Chem. Rev.112,724 (2012).
    17J.-R. Li, J. M. Yu, W. G. Lu, L.-B. Sun, J. L. Sculley, P. B. Balbuena, et al. Nat. Commu.4,1538 (2013).
    18Y. D. Ma, Y. Dai, W. Wei, L. Yu, and B. B. Huang, J. Phys. Chem. A 117,5171 (2013).
    19D. J. Collins and H.-C. Zhou, J. Mater. Chem.17,3154 (2007).
    20B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, and E. B. Lobkovsky, Adv. Mater.129, 1693 (2007).
    21F. Salles, A. Ghoufi, G. Maurin, R. G. Bell, C. Mellot-Draznieks, and G Ferey, Angew. Chem. Int. Ed.47,8487 (2008).
    22P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G Ferey, Angew. Chem. Int. Ed.45,5974 (2006).
    23S. Kitagawa, R. Kitaura, and S. Noro, Angew. Chem. Int. Ed.43,2334 (2004).
    24X. X. Zhang, S. S.-Y. Chui, and I. D. Williams, J. Appl. Phys.87,6007 (2000).
    25M. H. Zeng, M. X. Yao, H. Liang, W. X. Zhang, and X. M. Chen, Angew. Chem. Int. Ed.46,1832(2007).
    26Z. F. Wang, Z. Liu, and F. Liu, Phys. Rev. Lett.110,196801 (2013).
    27Z. F. Wang, Z. Liu, and F. Liu, Nat. Commu.4,1471 (2013).
    28M. W. Zhao, A. Z. Wang, and X. M. Zhang, Nanoscale 5,10404 (2013).
    29G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    30G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    31J. P. Perdew, K. Burke, and M. Ernzerhof; Phys. Rev. Lett.77,3865 (1996).
    32P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    33H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    34D. Hobbs, G. Kresse, and J. Hafner, Phys. Rev. B 62,11556 (2000).
    35J. C. Boettger and S. B. Trickey, Phys. Rev. B 75,121402 (2007).
    36M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Phys. Rev. B 80,235431(2009).
    37C. C. Liu, W. X. Feng, and Y. G. Yao, Phys. Rev. Lett.107,076802 (2011).
    1 J. E. Moore, Nature Phys.5,378 (2009).
    2 X. L. Qi and S. C. Zhang, Phys. Today 63,33 (2010).
    3 B. S. Sa, J. Zhou, Z. T. Song, Z. M. Sun, and R. Ahuja, Phys. Rev. B 84,085130 (2011).
    4 B. H. Yan, L. Miichler, and C. Felser, Phys. Rev. Lett.109,116406 (2012).
    5 C. W. Niu, Y. Dai, Y. T. Zhu, J. B. Lu, Y. D. Ma, and B. B. Huang, Appl. Phys. Lett. 101,182101 (2012).
    6 T. Zhang, P. Cheng, X. Chen, J. F. Jia, X. Ma, K. He, L. Wang, H. Zhang, X. Dai, Z. Fang, X. Xie, and Q. K. Xue, Phys. Rev. Lett.103,266803 (2009).
    7 L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett.98,106803 (2007).
    8 C. W. Niu, Y. Dai, L. Yu, M. Guo, Y. D. Ma, and B. B. Huang, Appl. Phys. Lett.99, 142502(2011).
    9 R. Roy, Phys. Rev. B 79,195321 (2009).
    10M. Z. Hasan and C. L. Kane, Rev. Mod. Phys.82,3045 (2010).
    11K. S. Yang, W. Setyawan, S. D. Wang, M. B. Nardelli, and S. Curtarolo, Nat. Mater. 11,614(2012).
    12H. J. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys.5, 438 (2009).
    13J. E. Moore, Nature 464,194 (2010).
    14Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, Phys. Rev. B 85,235401 (2012).
    15Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, Phys. Rev. Lett.108,266805 (2012).
    16B. Singh, A. Sharma, H. Lin, M. Z. Hasan, R. Prasad, and A. Bansil, Phys. Rev. B 86,115208(2012).
    17S. V. Eremeev, G. Bihlmayer, M. Vergniory, Yu. M. Koroteev, T. V. Menshikova, J. Henk, A. Ernst, and E. V. Chulkov, Phys. Rev. B 83,205129 (2011).
    18D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452,970 (2008).
    19H. Jin, J. H. Song, A. J. Freeman, and M. G Kanatzidis, Phys. Rev. B 83,041202 (2011).
    20J. Kim and S. H. Jhi, Phys. Rev. B 82,201312 (2010).
    21H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, Phys. Rev. Lett.105,036404 (2010).
    22B. Yan, C.-X. Liu, H.-J. Zhang, C.-Y. Yam, X.-L. Qi, T. Frauenheim, and S.-C. Zhang, Europhys. Lett.90,37002 (2010).
    23K. Kuroda, M. Ye, A. Kimura, S. V. Eremeev, E. E. Krasovskii, E. V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. Lett.105,146801 (2010).
    24Y. L. Chen, Z. K. Liu, J. G Analytis, J.-H. Chu, H. J. Zhang, B. H. Yan, S.-K. Mo, R. G Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z.-X. Shen, Phys. Rev. Lett.105,266401 (2010).
    25T. Sato, K. Segawa, H. Guo, K. Sugawara, S. Souma, T. Takahashi, and Y. Ando, Phys. Rev. Lett.105,136802 (2010).
    26J.-J. Wang, F.-F. Cao, L. Jiang, Y.-G. Guo, W.-P. Hu, and L.-J. Wan, J. Am. Chem. Soc.131,15602 (2009).
    27S. Nusse, P. H. Bolivar, H. Kurz, F. Levy, A. Chevy, and O. Lang, Phys. Rev. B 55, 4620 (1997).
    28M. Sznajder, K. Z. Rushchanskii, L. Y. Kharkhalis, and D. M. Bercha, Phys. Stat. Sol. B 243,592 (2006).
    29M. O. D. Camara, A. Mauger, and I. Devos, Phys. Rev. B 65,125206 (2002).
    30K. E. Glukhov and N. K. Tovstyuk, Phys. Stat. Sol. B 247,318 (2010).
    31P. GomesdaCosta, R. G Dandrea, R. F. Wallis, M. Balkanski, Phys. Rev. B 48, 14135 (1993).
    32G Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    33G Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    34J. P. Perdew and Y. Wang, Phys. Rev. B 45,13244 (1992).
    35J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    36L. I. Man, R. M. Imamov, and S. A. Semiletov, Kristallografia 21,628 (1979).
    37H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    38D. Hobbs, G. Kresse, and J. Hafner, Phys. Rev. B 62,11556 (2000).
    41W. X. Feng, W. G. Zhu, H. H. Weitering, G. M. Stocks, Y. G. Yao, and D. Xiao, Phys. Rev. B 85,195114 (2012).
    42X. Zhang, H. Zhang, J. Wang, C. Felser, and S.-C. Zhang, Science 335,1464 (2012).
    1 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, L. M. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294,1488 (2001).
    2 Z. Wang, J. Tang, Y. Chen, L. Spinu, W. Zhou, and L. D. Tung, J. Appl. Phys.95, 7384 (2004).
    3 Z. Y. Wang, B. B. Huang, L. Yu, Y. Dai, P. Wang, X. Y. Qin, X. Y. Zhang, J. Y. Wei, J. Zhan, X. Y. Jing, H. X. Liu, and M.-H. Whangbo, J. Am. Chem. Soc.130,16366 (2008).
    4 W. Wei, Y. Dai, M. Guo, Z. K. Zhang, and B. B. Huang, J. Solid State Chem.183, 3073 (2010); W. Wei, Y. Dai, M. Guo, K. R. Lai, and B. B. Huang, J. Appl. Phys. 108,093901 (2010).
    5 F. X. Feng, X. H. Xu, J. Zhang, X. C. Fan, H. S. Wu, and G A. Gehring, Appl. Phys. Lett. 96,052503 (2010).
    6 C. Liu, F. Yun, and H. Morko, J. Mater. Sci.:Mater. Electron.16,555 (2005).
    7 S. Zhou, K. Potzger, J. von Borany, R. Grotzschel, W. Skorupa M. Helm, and J. Fassbender, Phys. Rev. B 77,035209 (2008).
    8 H. Jin, Y. Dai, B. B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.94,162505 (2009).
    9 K. S. Yang, Y. Dai, B. B. Huang, and M.-H. Whangbo, Chem. Phys. Lett.481,99 (2009); K. S. Yang, Y. Dai, B. B. Huang, and M.-H. Whangbo, Appl. Phys. Lett.93, 132507 (2008).
    10C. W. Niu, K. S. Yang, Y. B. Lv, W. Wei, Y. Dai, and B. B. Huang, Solid State Commun.150,2223 (2010).
    11J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, and J. Ding, Phys. Rev. Lett.104,137201 (2010).
    12I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H. J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Phys. Rev. Lett.98,137202 (2007).
    13H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett.99,127201 (2007).
    14C. F. Yu, T. J. Lin, S. J. Sun, and H. Chou, J. Phys. D 40,6497 (2007).
    15X. Y. Peng and R. Ahujia, Appl. Phys. Lett.94,102504 (2009).
    16R. Long and N. J. English, Phys. Rev. B 80,115212 (2009).
    17L. Shen, R. Q. Wu, H. Pan, G W. Peng, M. Yang, Z. D. Sha, and Y. P. Feng, Phys. Rev. B 78,073306 (2008).
    18K. Yang, R. Q. Wu, L. Shen, Y. P. Feng, Y. Dai, and B. B. Huang, Phys. Rev. B 81, 125211 (2010).
    19H. Pan, Y. P. Feng, Q. Y.Wu, Z. G. Huang, and J. Lin, Phys. Rev. B 77,125211 (2008).
    20G. Kresse and J. Hafner, Phys. Rev. B 47,558 (1993).
    21G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    22G Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    23J. P. Perdew and Y. Wang, Phys. Rev. B 33,8800 (1986).
    24P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    25H. Monkhorst and J. Pack, Phys. Rev. B 13,5188 (1976).
    26D. Rodic, V. Spasojevic, A. Bajorek, and P. Oennerud, J of Magnet. Magnet. Mater. 152,159(1996).
    27P. E. Blochl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49,16223 (1994).
    28S. W. Fan, K. L. Yao, and Z. L. Liu, Appl. Phys. Lett.94,152506 (2009).
    29K. Sato and H. Katayama-Yoshida, Phys. Status Solidi B 229,673 (2002).
    30H. Akai, Phys. Rev. Lett.81,3002 (1998).
    31T. Jungwirth, W. A. Atkinson, B. H. Lee, and A. H. MacDonald, Phys. Rev. B 59, 9818 (1999).
    32A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65,235205 (2002).
    33T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
    1 G. Dukovic, M.G Merkle, J. H. Nelson, S. M. Hughes, and A. P. Alivisatos, Ad. Mater.20,4306 (2008).
    2 E. Elmalem, A. E. Saunders, R. Costi, A. Salant, and U. Banin, Ad. Mater.20,4312 (2008).
    3 N. Bao, L. Shen, T. Takata, and K. Domen, Chem. Mate.20,110 (2008).
    4 V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc.126,4943 (2004).
    5 R. Konta, T. Ishii, H. Kato, and A. Kudo, J. Phys. Chem. B 108,8992 (2004).
    6 K. Maeda and K. Domen, J. Phys. Chem. C 111,7851 (2007).
    7 R. de Paiva and R. Di Felice, ACS Nano 2,2225 (2008).
    8 S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, and R. Nakagaki, Catal. Commun.6,185 (2005).
    9 A. Wold, Chem. Mater.5,280 (1993).
    10Z. C. Shan, J. J. Wu, F. F. Xu, F. Q. Huang, and H. M. Ding, J. Phys. Chem. C 112, 15423 (2008).
    11D. Schurch, A. Currao, S. Sarkar, G. Hodes, and G. Calzaferri, J. Phys. Chem. B 106, 12764 (2002).
    12S. Glaus, G. Calzaferri, and R. Hoffmann, Chem. Eur. J.8,1785 (2002).
    13A. Currao, V. R. Reddy, M. K. Veen, R. E. I. Schropp, and G. Calzaferri, Photochem. Photobiol. Sci.3,1017 (2004).
    14P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, and M.-H. Whangbo, Angew. Chem. Int. Ed.41,7931 (2008).
    15P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang, M.-H. Whangbo, Chem. Eur. J.15,1821 (2009).
    16P. Wang, B. B. Huang, Q. Zhang, X. Y. Zhang, X. Y Qin, Y. Dai, J. Zhan, J. Yu, H. Liu, and Z. Lou, Chem. Eur. J.16,10042 (2010).
    17H. M. Gong, X.H. Wang, Y.M. Du, and Q.Q. Wang, J. Chem. Phys.125,024707 (2006).
    18A. Kumar and V. J. Chaudhary, Photochem. Photobiol. A: Chem.189,272 (2007).
    19A. Kumar and V. J. Chaudhary, Nanotechnol.20,095703 (2009).
    20T. Priya, S. J. Satyawati, K. Sudhir, and M. Tulsi, Langmuir 25,6377 (2009).
    21K. Gill Simerjeet and J. Hope-Weeks Louisa, Chem. Commun.29,4384 (2009).
    22P. V. Kamat, Pure Appl. Chem.74,1693 (2002).
    23T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett.73,487 (1998).
    24T. Zywietz, J. Neugebauer, M. Scheffler, J. Northrup, and C. G V. de Walle, MRS Internet J. Nitride Semicond. Res.3,26 (1998).
    25J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    26P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    27G Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    28G. Kresse and J. Hafner, Phys. Rev. B 47,558 (1993).
    29H. J. Monkhorst and J. D. Pack, Phys. Rev. B 16,1748 (1977).
    30R. de Paiva and R. Di Felice, ACS Nano 2,2225 (2008).
    31L. Manna, L. W. Wang, R. Cingolani, and A. P. Alivisatos, J. Phys. Chem. B 109, 6183 (2005).
    32R. Di Felice, J. E. Northrup, and J. Neugebauer, Phys. Rev. B 54,17351 (1996).
    33R. de Paiva and R. Di Felice, J. Phys. Chem. C 114,3998 (2010).
    34B. Wen and R. V. N. Melnik, Appl. Phys. Lett.92,261911 (2008).
    35J. Yang, J. Zeng, S. Yu, L. Yang, G Zhou, and Y. Qian, Chem. Mater.12,3259 (2000).
    36K. Wright and J. D. Gale, Phys. Rev. B 70,035211 (2004).
    37J. Neugebauer and M. Ccheffler, Phys. Rev. B 46,16067 (1992).
    38R. Shaltaf, E. Mete, and S. Ellialtioglu, Phys. Rev. B 72,205415 (2005).
    39Y. D. Ma, H. Jin, Y. Dai, and B. B. Huang, Appl. Surf. Sci.256,4136 (2010).
    40J. Furthmuller, J. Hafner, and G Kresse, Phys. Rev. B 53,7334 (1996).
    41G. Kern, J. Hafner, and G Kresse, Surf. Sci.366,445 (1996).
    42J. Robertson and M. J. Rutter, Diamond Relat. Mater.7,620 (1998).
    43W. X. Li, C. Stampfl, and M. Scheffler, Phys. Rev. B 65,075407 (2002).
    44Z. Zeng, J. L. F. Da Silva, H. Deng, and W. Li, Phys. Rev.79,205413 (2009).
    45J. C. Idrobo, S. Ogiit, and J. Jellinek, Phys. Rev. B 72,085445 (2005).
    46S. Srinivas, U. A. Salian, J. Jellinek, in: Metal-Ligand Interactions in Biology, Chemistry, and Physics, edited by N. Russo and D. R. Salahub (Kluwer, Dordrecht, 2000), p.295.
    1 Y. V. Pleskov, A. Y. Sakharova, and M. D. Krotova, J. Electroanal. Chem.228,19 (1987).
    2 A. Hartl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmler, and M. Stutzmann, Nat.Mater.3,736 (2004).
    3 T. Guzdek, J. Szmidt, M. Dudek, and P. Niedzielski, Diamond Relat. Mater.13, 1059 (2004).
    4 P. W. May, Philos. Trans. R. Soc. London 358,473 (2000).
    5 G. A. J. Amaratunga, Science 297,1657 (2002).
    6 W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, and J. N. Russell, Nat. Mater.1,253 (2002).
    7 T. Knickerbocker, T. Strother, M. P. Schwartz, J. N. Russell, J. Butler, L. M. Smith, and R. J. Hamers, Langmuir 19,1938 (2003).
    8 M. Lu, T. Knickerbocker, W. Cai, W. S. Yang, R. J. Hamers, and L. M. Smith, Biopolymers 73,606 (2004).
    9 D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto, and C. E. Nebel, Phys. Status Solidi. A 203,3245 (2006).
    10G. J. Zhang, K. S. Song, Y. Nakamura, T. Ueno, T. Funatsu, I. Ohdomari, and H. Kawarada, Langmuir 22,3728 (2006).
    11H. Jin, Y. Dai, R. Long, M. Guo, B. Huang, and R. Q. Zhang, J. Chem. Phys.128, 114710(2008).
    12G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,5 (1996).
    13G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    14J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    15J. P. Perdew and Y. Wang, Phys. Rev. B 45,13244 (1992).
    16H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,005188 (1976).
    17Y. Yu, C. Z. Gu, L. F. Xu, and S. B. Zhang, Phys. Rev. B 70,125423 (2004).
    18J. A. Steckel, G Kresse, and J. Hafner, Phys. Rev. B 66,155406 (2002).
    19R. Graupner, M. Hollering, A. Ziegler, J. Ristein, L. Ley, and A. Stampfl, Phys. Rev. B 55,10841 (1997).
    20J. Ristein, Diamond Relat. Mater.9,1129 (2000).
    21Y. M. Wang, K. W. Wong, S. T. Lee, M. Nishitani-Gamo, I. Sakaguchi, K. P. Loh, and T. Ando, Diamond Relat. Mater.9,1582 (2000).
    22Y. M. Wang, K. W. Wong, S. T. Lee, M. Nishitani-Gamo, I. Sakaguchi, K. P. Loh, and T. Ando, Phys. Rev. B 59,10347 (1999).
    23J. Ristein, W. Stein, and L. Ley, Phys. Rev. Lett.78,1803 (1997).
    24M. J. Rutter and J. Robertson, Phys. Rev. B 57,9241 (1998).
    25I. Borriello, G. Cantele, D. Ninno, G. Iadonisi, M. Cossi, and V. Barone, Phys. Rev. B 76,035430 (2007).
    26J. Furthmuller, J. Hafner, and G. Kresse, Phys. Rev. B 53,7334 (1996).
    27G. Kern, J. Hafner, and G. Kresse, Surf. Sci.366,445 (1996).
    28J. Robertson and M. J. Rutter, Diamond Relat. Mater.7,620 (1998).
    29N. Yang, H. Uetsuka, H. Watanabe, T. Nakamura, and C. E. Nebel, Chem. Mater.19, 2852 (2007).
    30R. L. Cicero, M. R. Linford, and C. E. D. Chidsey, Langmuir 16,5688 (2000).
    1 Y. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Nature 427,50 (2004).
    2 L. Meier, G. Salis, I. Shorubalko, E. Gini, S. Schon, and K. Ensslin, Nat. Phys.3, 650 (2007).
    3 G. A. H. Schober, H. Murakawa, M. S. Bahramy, R. Arita, Y. Kaneko, Y. Tokura, and N. Nagaosa, Phys. Rev. Lett.108,247208 (2007).
    4 K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Nat. Mater.10,521 (2011).
    5 E. I. Rashba, Sov. Phys. Solid State 2,1109 (1960).
    6 R. C. Casella, Phys. Rev. Lett.5,371 (1960).
    7 Y. A. Bychkov and E. I. Rashba, JETP Lett.39,78 (1984).
    8 J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett.78,1335 (1997).
    9 C. Tahan and R. Joynt, Phys. Rev. B 71,075315 (2005).
    10S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett.77,3419 (1996).
    11Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P. M. Echenique, and P. Hofinann, Phys. Rev. Lett.93,046403 (2004).
    12K. Sugawara, T. Sato, S. Souma, T. Takahashi, M. Arai, and T. Sasaki, Phys. Rev. Lett.96,046411(2006).
    13J. Park, S. W. Jung, M.-C. Jung, H. Yamane, N. Kosugi, and H. W. Yeom, Phys. Rev. Lett.110,036801 (2013).
    14C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacile, P. Bruno, K. Kern, and M. Grioni, Phys. Rev. Lett.98,186807 (2007).
    15S. Mathiaset, A. Ruffing, F. Deicke, M. Wiesenmayer, I. Sakar, G Bihlmayer, E. V. Chulkov, Y. M. Koroteev, P. M. Echenique, M. Bauer, and M. Aeschlimann, Phys. Rev. Lett.104,066802 (2010).
    16K. Ishizakaet, M. S. Bahramy, B.-J. Yang, R. Arita, and N. Nagaosa, Nat. Mater.10, 521 (2011).
    17I. Gierz, T. Suzuki, E. Frantzeskakis, S. Pons, S. Ostanin, A. Ernst, J. Henk, M. Grioni, K. Kern, and C. R. Ast, Phys. Rev. Lett.103,046803 (2009).
    18A. Varykhalov, D. Marchenko, M. Scholz, E. Rienks, T. K. Kim, G. Bihlmayer, J. Sanchez-Barriga, and O. Rader, Phys. Rev. Lett.108,066804 (2012).
    19Q. H. Liu, Y. Z. Guo, and A. J. Freeman, Nano Lett.13,5264 (2013).
    20S. M. Huang, A. O. Badrutdinov, L. Serra, T. Kodera, T. Nakaoka, N. Kumagai, Y. Arakawa, D. A. Tayurskii, K. Kono, and K. Ono, Phys. Rev. B 84,085325 (2011).
    21K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004).
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol.6,147 (2011).
    23Y. D. Ma, Y. Dai, M. Guo, L. Yu, and B. B. Huang, Phys. Chem. Chem. Phys.15, 7098 (2013).
    24Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    25G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996); Comput. Mater. Sci.6, 15 (1996)
    26P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    27J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    28H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    29D. D. Koelling and B. N. Harmon, J. Phys. C:Solid State Phys.10,3107 (1977).
    30S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Z. Payne, Kristallogr.220,567 (2005).
    31K. Refson, P. R. Tulip, and S. Clark, J. Phys. Rev. B 73,155114 (2006).
    32A. V. Shevelkov, E. V. Dikarev, R. V. Shpanchenko, and B. A. Popovkin, J. Solid State Chem.114,379 (1995).
    33M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K. Ishizaka, Phys. Rev. Lett.110,107204 (2013).
    34J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I.V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 568,331 (2011).
    35P. A. Maggard, T. S. Nault, C. L. Stern, and K. R. Poeppelmeier, J. Solid State Chem. 175,27 (2003).
    36P. Debye, Phys. Z.22,302 (1921).
    37I. D. Brown and D. Altermatt, Acta Crystallogr. B 41,244 (1985).
    38N. E. Brese and M. O'Keeffe, Acta Cryst. B 47,192 (1991).
    39W. X. Li, C. Stampfl, and M. Scheffler, Phys. Rev. B 65,075407 (2002).
    40M. S. Bahramy, B.-J. Yang, R. Arita, and N. Nagaosa, Nature Commun.3,679 (2002).
    41S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett.77,3419 (1996).
    42S. V. Eremeev, I. P. Rusinov, I. A. Nechaev, and E. V. Chulkov, New J. Phys.15, 075015 (2013).
    43S. V. Eremeev, I. A. Nechaev, Y. M. Koroteev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. Lett.108,246802 (2012).
    44H. X. Fu, Phys. Rev. B 87,075139 (2013).
    45M. S. Bahramy, R. Arita, and N. Nagaosa, Phys. Rev. B 84,041202 (2011).
    46Y. A. Bychkov and E. I. Rashba, J. Phys. C 17,6039 (1984).
    47S. Datta and B. Das, Appl. Phys. Lett.56,665 (1990).
    1 Y. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Nature 427,50 (2004).
    2 M. S. Bahramy, R. Arita, and N. Nagaosa, Phys. Rev. B 84,041202 (2011).
    3 G. A. H. Schober, H. Murakawa, M. S. Bahramy, R. Arita, Y. Kaneko, Y. Tokura, and N. Nagaosa, Phys. Rev. Lett.108,247208 (2007).
    4 K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Nat. Mater.10,521 (2011).
    J M. S. Bahramy, B.-J. Yang, R. Arita, and N. Nagaosa, Nature Commun.3,679 (2012).
    6 H. X. Fu, Phys. Rev. B 87,075139 (2013).
    7 S. Datta and B. Das, Appl. Phys. Lett.56,665 (1990).
    8 E. I. Rashba, Sov. Phys. Solid State 2,1109 (1960).
    9 Y. A. Bychkov and E. I. Rashba, JETP Lett.39,78 (1984).
    10R. C. Casella, Phys. Rev. Lett.5,371 (1960).
    11J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett 78,1335 (1997).
    12S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett.77,3419 (1996).
    13Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P. M. Echenique, and P. Hofmann, Phys. Rev. Lett.93,046403 (2004).
    14C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacile, P. Bruno, K. Kern, and M. Grioni, Phys. Rev. Lett.98,186807 (2007).
    15D. D. Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv. Mater.25,509 (2013).
    16S. Datta and B. Das, Appl. Phys. Lett.56,665 (1990).
    17J. Sinova, d. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett.92,126603 (2004).
    18E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A. Gribanov, Y. Seropegin, H. Noel, M. Sigrist, and P. Rogl. Phys. Rev. Lett.92,027003 (2004).
    19H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B 74,165310 (2006).
    20C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett.107,076802 (2011).
    21H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol.7,490 (2012).
    22Q. H. Liu, Y. Z. Guo, and A. J. Freeman, Nano Lett.13,5264 (2013).
    23D. Marchenko, A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba, A. Rybkin, A. M. Shikin, and O. Rader, Nature Commun.3,1232 (2012).
    24G. Kresse and J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    25G. Kresse and J. Furthmuller, Comput. Mater. Sci.6,15 (1996)
    26P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    27G. Kresse and D. Joubert, Phys. Rev. B 59,1758 (1999).
    28J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    29H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13,5188 (1976).
    30A. D. Corso and A. M. Conte, Phys. Rev. B 71,115106 (2005).
    31H. C. Lei, K. F. Wang, M. Abeykoon, E. S. Bozin, and C. Petrovic, Inorg. Chem.52, 10685 (2013).
    32W. A. Phelan, D. C. Wallace, K. E. Arpino, J. R. Neilson, K. J. Livi, C. R. Seabourne, A. J. Scott, and T. M. McQueen, J. Am. Chem. Soc.135,5372 (2013).
    33K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004).
    34J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 568,331 (2011).
    35Y. D. Ma, Y. Dai, M. Guo, L. Yu, and B. B. Huang, Phys. Chem. Chem. Phys.15, 7098 (2013).
    36Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, ACS Nano 6, 1695 (2012).
    37V. Nicolosi, M. Chhowalla, M. G Kanatzidis, M. S. Strano, and J. N. Coleman, Science 340,1226419 (2013).
    38C. Ataca, H.$ahin, and S. Ciraci, J. Phys. Chem. C 116,8983 (2012).
    39C. Ataca and S. Ciraci, J. Phys. Chem. C 115,13303 (2011).
    40Y. A. Bychkov and E. I. Rashba, J. Phys. C:Solid State Phys.17,6039 (1984).
    41Y. S. Gui, C. R. Becker, N. Dai, J. Liu, Z. J. Qiu, E. G Novik, M. Schafer, X. Z. Shu, J. H. Chu, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 70,115328 (2004).
    42S. Mathias, A. Ruffing, F. Deicke, M. Wiesenmayer, I. Sakar, G Bihlmayer, E. V. Chulkov, Y. M. Koroteev, P. M. Echenique, M. Bauer, and M. Aeschlimann, Phys. Rev. Lett.104,066802 (2010).
    43Z. Y Zhu, Y. C. Cheng, and U. Schwingenschlogl, Phys. Rev. B 84,153402 (2011).
    44Y. D. Ma, Y Dai, Y.-B. Lu, and B. B. Huang, J. Mater. Chem. C 2,1125 (2014).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700