用户名: 密码: 验证码:
块体非晶合金Zr_(45)Cu_(48)Al_7激光焊接及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体非晶合金因其独特的结构而具有晶态合金所无法比拟的优异性能,如高的强度、硬度、耐磨性、耐蚀性和良好的软磁特性,在机械、电子、化工、航空航天等工程领域具有广阔的应用前景。块体非晶的连接是其工程应用的一个重要方面,因此,研究块体非晶合金在焊接过程的晶化机理具有非常重要的现实意义。
     本文在前人研究的基础上,对块体非晶合金Zr_(45)Cu_(48)Al_7的激光焊接性能进行研究,讨论了在小功率300~500W、焊接速度3~4m/min条件下激光焊接块体非晶合金Zr_(45)Cu_(48)Al_7的特点。焊接结果表明:所有试样焊缝和热影响区的过渡区出现了不同程度的晶化;在激光焊接功率为500W,焊接速度3.0 m/min,过渡区主要是粗大枝状晶,随着焊接速度的升高,达到4.0 m/min,过渡区的枝状晶组织变得短小,出现中心晶粒。在功率为500W,焊接速度从3.0 m/min上升到4.0 m/min的过程中,焊缝和热影响区的晶化程度均降低,在焊接速度为4.0 m/min的试样焊缝中没有看到晶粒,则可能保持了非晶态;从每个薄片的焊缝和热影响晶化程度来看,热影响区要比焊缝更容易发生晶化。在激光焊接功率为300W,焊接速度为4.0m/min,焊缝和热影响区均没有看到晶粒,则可能保持了非晶态,而过渡区则出现了呈弧形分布的稀疏的点状晶粒,发生了部分晶化。运用差热扫描量热法(DSC)和Kissinger法计算块体非晶合金Zr_(45)Cu_(48)Al_7的连续加热和冷却过程晶化激活能,从动力学角度分析了块体非晶合金Zr_(45)Cu_(48)Al_7热影响区内的合金比焊缝更容易发生晶化,这与实验的结果一致。焊缝区域的非晶合金在焊接过程中的非晶态结构的关键因素是如何保证其熔融冷却曲线避免与其等温转变(T-T-T)曲线相交,是液态金属合金的非晶形成能力的问题;热影响区的非晶合金在激光焊接热循环作用下始终保持固态,影响热影响区的非晶合金晶化的主要因素是在冷却降温阶段,这是块体非晶合金热稳定性问题。应用大型有限元分析软件ANSYS,以双椭球为热源模型,对块体非晶合金Zr_(45)Cu_(48)Al_7的激光焊接过程的温度场进行了模拟,得到各部分热循环曲线,在此基础上对激光焊接实验结果进行了验证和深入分析。
It is well known that bulk metallic glasses (BMGs) possess many excellent properties such as high strength, high stiffness, improved abrasion resistance, high corrosion resistances and good soft-magnetic properties compared with crystalline alloys. So the BMGs have a wide application prospect in mechanical industry, electronic industry, chemical industry and avigation industry. The joining of the BMGs is an important aspect in engineering application of BMGs. Therefore, the investigation of the crystallization mechanics under the action of the thermal cycle makes a good sense nowadays.
     In this dissertation, the laser beam welding technology continued to be used to joint the BMGs Zr_(45)Cu_(48)Al_7 under the low output power among 300~500W and the scanning velocity among 3~4m/min after some tries in high output power by some pioneers. The result showed crystallization occurred in the melt zones of all samples; and the main crystallization phase was like crassitude branches in the output of 500W and the scanning velocity of 3m/min, when the scanning velocity got to the 4m/min, which became shorter and the center crystallization phase turned up. The alloys in the bead and head-affected zone might keep amorphous when output power is 300W or 500W, and the scanning velocity is 4m/min, but crystallization occurred in the melt zone. The activation energy of BMGs had been calculated by the method of DSC and Kissinger in the continued heated and cooled processing, and that result suggested that head-affected zone was easier to crystal than the bead which agreed with the result of experiments. The key of alloys in bead which kept amorphous in the process of laser beam welding was that how to avoid the intersect of the melted -cooled cycle and T-T-T cycle, and that is related the formation ability of the liquid BMGs. The head-affected zone always kept solid in the process of laser beam welding and the main factor which deeply affected the zone lied in the cooled process, which was about the thermal stability of solid BMGs. The laser beam welding process were simulated using commercial Finite Element Method (FEM) program ANSYS. And the model of heated resource was double ellipse spheres. The dynamic temperature field and the heat cycle of the BMGs Zr_(45)Cu_(48)Al_7 had been obtained, on the base of which the result of the weld experiment is detailed analyzed.
引文
[1]戴道生.非晶态物理.北京:电子工业出版社,1989
    [2]何圣静,高莉如.非晶态材料及其应用.北京:机械工业出版社,1987
    [3] H.S. Chen. Alloying effect on the viscous flow in metallic glasses. Non-Cryst Solids, 1978, 29: 223-229
    [4] H. W. Kui, A. L. Greer, D. Turnbull. Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984: 45(6): 615-616
    [5] A. Inoue, K. Ohtere, K. Kita, et al. New amorphous Mg-Ce-Ni alloys with high strength and good ductility. Japan. J. Appl. Phys., 1988, 27: L2248-2251
    [6] A. Inoue, T. Zhang, T. Masurmoto. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM, 1989, 30: 965-972
    [7] A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM, 1990, 31: 177-183
    [8] A. Inoue, T. Zhang, N. Nishiyama. Preparation of 16mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans. JIM, 1993, 34(12): 1234-1237
    [9] A. Inoue and J. S. Gook. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater. Trans. JIM, 1995, 36: 1180-1183
    [10] A. Inoue, T. Zhang, T. Itoi, et al. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid region and good soft magnetic properties. Mater. Trans. JIM, 1997, 38: 359-362
    [11] A. Inoue, N. Nishiyama, T. Matsuda. Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40mm in diameter by water quenching. Mater. Trans. JIM, 1996, 37: 181-184
    [12] T. Zhang and A. Inoue. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM, 1998, 39: 1001-1006
    [13] T. Zhang, A. Inoue. Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Mater. Trans. JIM, 1999, 40: 301-306
    [14] R. Akarsuka, T. Zhang, M. Koshiba et al. Preparation of new Ni-based amorphousalloys with a large supercooled liquid region. Mater. Trans. JIM, 1999, 40: 258-261
    [15] A.Peker,W.L. Johnson. A highly processable metallic glass: Zr41.2Yi13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett., 1993, 63(17):2342-2345
    [16] H. Ma, L. L. Shi , J. Xu, Y. Li and E.Ma. Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett., 2005, 87(18): 1916-1918
    [17]闫志杰,柴跃生.大块非晶合金.北京:兵器工业出版社,2005
    [18] A., Zhang T., Itoi T. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties. Mater. Trans. JIM , 1997, 38(4): 359
    [19]陈贻瑞,王健.基础材料与新材料.天津:天津大学出版社,1994
    [20]龚晓叁,陈鼎,吕洪等.非晶态材料的制备与应用.中国锰业,2002,20(4):44
    [21]张文钺主编.焊接冶金学.北京:机械工业出版社. 1993:79-80
    [22] Swift H.D.T, Gick A.E.F. Penetration Welding with Laser Welding. Journal of Applied Physics,1973, 44(11):2492-2498
    [23] H.E.Cline, T.R.Anthony. Heat Treating and Melting and Melting Material With a Scanning Laser or Electron Beam.Journal of Applied Physics,1977,48(9):3895-3900
    [24] J.Mazumder, W. M. Steen. Heat Transfer Model for CW Laser Material Processing. Applied Physics,1980,11(2):941-947
    [25] Goldak John, Chakravarti Aditya, Bibby Malcolm. New Finite Element Model For Welding Heat Sources. Metallurgical Transactions B, 1984, 5B(2):299-305
    [26] J.Dowden, P.Kapadia, N.Postacioglu. Analysis of the laser-plasma interaction in laser keyhole welding. Applied Physics, 1989, 22(6):741-749
    [27] W.M.Steen, J.Dowden, M.Davis, P.Kapadia. A Point and Line Source Model of Laser Keyhole Welding. Applied Physics, 1998, 31(7): 1255-1260
    [28]刘建华,李志远,胡伦骥.激光深熔焊传热模型的研究.激光技术,1995, 19(l): 10-13
    [29] Y.Matsuhiro, Yinaba, Toji, Emurakami. Study On Keyhole Formation in Laser Welding. Welding International,1995, 9(12):945-949
    [30] P.Solana, J.L.Ocana. A Mathematical model for penetration laser welding as A free-boundary problem. Applied Physics, 1997, 30(2): 130-131
    [31] S.Rabier, M.Medale, R.Fabbro. 3-D Numerical Modeling of Laser Welding. 20th International Congress on Applications of Lasers &Electro-Optics, 2001, Lulea, Sweden.
    [32] Sudnik W, Radaj D. Numerical Simulation of Weld Pool Geometry in Laser Beam Welding. Applied Physics,2000,33(6):662-671
    [33]薛忠明,顾兰,张彦华.激光焊接温度场数值模拟.焊接学报,2003, 24(2):79-82
    [34]徐九华,罗玉梅,张靖周.高能束流焊接模式传热过程的数值模拟.中国激光,2000,27(2):174-176
    [35]郑启光、辜建辉,王涛.激光深熔焊接的熔池行为与焊接缺陷的研究.激光技术,2000,24(2): 90-94
    [36]邹德宁,雷永平,黄延禄.移动热源条件下熔池内流体流动和传热问题的数值研究.金属学报,2000,36(4):387-390
    [37]熊建钢.深熔激光焊接小孔和熔池形状数学模型及工艺参数ANN优化设计:[博士学位论文].华中科技大学图书馆,2001
    [38]杜汉斌.钛合金激光焊接及其熔池流动场数值模拟:[博士学位论文].华中科技大学图书馆,2004
    [39] A. L. Greer. Materials Science: Confusion by Design. Nature, 1993, 366: 303-304
    [40] D. Turnbull. Formation of crystal nuclei in liquid metals. Journal of Applied Physics, 1950, 21(10): 1022-1028
    [41] H. Chen, Y. He, G. J. Shiflet, et al. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature, 1994, 367(6463): 541-543
    [42] F. Spaepen and D. Turnbull. Laser processing of semiconductors. Academic [A]. New York. 1982, 15-19
    [43] Frans Spaepen. Thermodynamics and kinetics of metallic alloy formation by picosecond pulsed laser Irradiation. Laser Surface Treatment of metals. 1986, 11: 34-37
    [44] Liu Lin, Wu Zhifang, Chen Li. A kinetic of the Non-isothermal Crystallization of a Zr-based bulk metallic glass. CHIN. PHYS. LETT., 2002, 19(10):1483-1487
    [45]李波. Zr基块体非晶合金的连接:[博士学位论文].华中科技大学图书馆,2005
    [46] H. Chen, Y. He, G. J. Shiflet, et al. Deformation-induced nanocrystal formation inshear bands of amorphous alloys. Nature, 1994, 367(6463): 541-543
    [47]李波,李志远,熊建钢等.块体非晶合金Zr45Cu48Al7激光焊接过程中的晶化行为的研究.电焊机,2005,7(7),30-34
    [48]辜磊.铝合金激光-电弧复合焊接工艺研究及其温度场数值模拟:[硕士学位论文].华中科技大学图书馆,2005
    [49] John Goldak, Aditya Chakravarti. A New Finite Element Model for Welding Heat Sources. Metallurgical Transactions B,1984,15B(6):300~305
    [50] H. S. Chen. The chang of density in amorphous with increase of temperature.Rep. Prog. Phys, 1980, 43:353-355
    [51] P. Villas, A. Prince, H. Okamato (Ed.). Handbook of ternary alloy phase diagrams. ASM International, 1995, 3540
    [52] M. Yamasaki, S. Kagao, Y. Kawamura. Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scripta Materrialia, 2005, 53: 63-67
    [53]彭善德.钛合金激光搭接焊及数值模拟:[硕士学位论文].华中科技大学图书馆,2005
    [54] F. Schurack, J. Eckert. Synthesis and mechanical properties of cast quasicrystal-reinforced Al-alloys. Acta. Meter., 2001, 49: 1351-1361
    [55] Inoue A., Shinohara Y., Yokoyama Y., et al. Solidification analyses of bulky Zr60Al10Ni10Cu15Pd5 glass produced by casting into wedge-shape copper mold. Mater. Trans., JIM, 1995, 36 (10): 1276~1281
    [56] Kim Y.J., Busch R., Johnson W.L., et al. Experimental determination of a time-temperature diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique. Apply Physics Letter, 1996, 68 (8): 1057~1059
    [57] Sehroers J., Masuhr A., Johnson W.L., et al. Pronounced asymmetry in the crystallization behavior during constant heating and cooling of bulk metallic glass-forming liquid. Phys. Rev., 1999, B60 (17): 11855~11858

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700