用户名: 密码: 验证码:
激光焊接典型航空材料金属蒸汽/等离子体特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光焊接技术由于其能量密度高、热影响区小、焊接变形小、焊接速度高等突出的优点,在航空航天、船舶工业、汽车制造、压力容器制造、民用及医用等多个领域都有重要的应用。激光深熔焊接时,金属材料对激光的吸收可以高达80%以上,焊接效率也急剧增大,因此深熔焊接是比较理想的焊接状态。激光深熔焊接最显著的特征就是小孔和等离子体的产生。等离子体是激光焊缝缺陷如未穿透、气孔、成分变化等一个潜在的根源。但是,它的存在也提供了一种有用的对焊接条件监测的方法,它能被光和光谱传感器进行采样分析。分析从等离子体辐射中获得的光谱分量可以得到等离子体的重要物理特征。
     本文以三种典型航空材料:铝锂合金5A90、钛合金TA15和不锈钢SUS304为研究载体,分别对其YAG激光焊接、CO_2激光焊接以及YAG-MIG激光电弧复合焊过程中所产生金属蒸汽/等离子体进行研究。利用光谱仪对焊接过程进行光谱监测,获得了这些典型航空材料在不同激光焊接过程中金属蒸汽/等离子体的光谱分布特征,在此基础上,利用光谱相对强度法计算获得了各种工艺条件下金属蒸汽/等离子体的温度及电子密度,并对工艺参数、激光波长等对它的影响进行了深入的探讨。
     针对铝锂合金5A90主要对比研究了YAG激光焊接、MIG电弧焊接以及YAG-MIG激光电弧复合焊接三种焊接方法时金属蒸汽/等离子体的光谱分布特征,以及温度和电子密度的变化特点。研究结果表明,铝锂合金5A90在单激光焊接、单电弧焊接以及复合焊接热源下光谱分布特征均有较大不同。复合焊接中等离子体的平均温度在6554K左右,与MIG电弧焊接比较接近,而比YAG激光焊接中高出1200K左右;平均的电子密度在2.7X10~(12) cm~(-3)左右,也与MIG电弧焊比较接近,而YAG激光焊时的电子密度在3.9X10~(14) cm~(-3)左右。
     针对TA15钛合金,主要研究了波长为1.06微米的YAG激光焊接和波长为10.6微米的CO_2激光焊接时,金属蒸汽/等离子体的特征对比。研究表明,YAG激光与CO_2激光焊接TA15钛合金光谱分布特征不尽相同。同等工艺参数水平下,CO_2激光焊接等离子体温度比YAG激光焊高出1000K左右,电子密度比YAG激光焊高出两个数量级。
     针对SUS304不锈钢,得到一组工艺参数下YAG激光焊接中金属蒸汽/等离子体的平均温度为7436K,平均电子密度为1.36X10~(16)(cm~(-3));同样激光热输入下CO_2激光焊接中金属蒸汽/等离子体的平均温度为7870K,电子密度为2.94X10~(16)(cm~(-3))。
     以上研究结果表明,金属蒸汽/等离子体的温度和电子密度除了与被焊材料密切相关外,同时也与激光波长及工艺方法相关,但同样工艺方法时,焊接参数对它的影响相对比较小。
     本课题所获得的典型航空材料激光及其复合焊接时金属蒸汽/等离子体的相关数据,为激光及其复合焊接的过程研究和工艺研究提供了基础。
Laser welding technology has been applied in the field of aerospace, ship industry, automotive industry, and pressure vessel manufacture, civilian and medical industry for its prominent merits. Such as the high energy density, low heat-affected zone, low weld deformations, and high welding speed. The absorptivity of laser for metal material can reach to more than 80%, and the welding efficiency rises sharply while in the laser deep penetration welding. Therefore laser deep penetration welding is the ideal welding state. The notable characteristic of it is keyhole and plasmas. Plasmas are the potential root of some weld defects, such as unfused, gas porosity, and change of component, and so on. However, the existence of it provided a method of monitor the welding process. It can be sampled and analyzed by light and special sensor. Important physical characteristic of plasmas can be obtained by analyzing the spectral component which gained by the radiation of the plasmas.
     Three typical aerial materials were studied in this research. There are 5A90 Al-Li alloy, TA15 titanium alloy, and SUS 304 steel. The vapor/plasmas induced in YAG laser welding, CO_2 laser welding, and YAG-MIG hybrid welding of these materials were researched. The process of laser welding was monitored by a spectrometer to obtain the distribution of typical spectral of vapor/plasma. On this basis, the temperature and electron density values of vapor/plasmas were calculated by the methods of relative intensity and the intensity of obtained typical spectral, and influence of process parameters and laser wavelength on them were discussed.
     For 5A90 Al-Li alloy, the distribution of the spectral and variety of the temperature and electron density of vapor/plasma induced in YAG laser welding, MIG welding, and YAG-MIG hybrid welding were researched. Results were shown that the distribution of the spectral in YAG laser welding, MIG welding, and YAG-MIG hybrid welding are quite different. The average temperature of vapor/plasma in YAG-MIG hybrid welding of 5A90 is about 6554K, which is near to the values in MIG welding, but 1200K higher than that in YAG laser welding. The average electron density was 2.7X10~(12) cm~(-3), which is also near to the values in MIG welding. However, the average electron density of vapor/plasma in YAG laser welding is about 3.9X10~(14)cm~(-3).
     For TA15 titanium alloy, the characteristic of vapor/plasma induced in 1.06 micron YAG laser welding and 10.6 micron CO_2 laser welding were compared. Results show that t the distribution of the spectral in YAG laser welding and CO_2 laser welding are different. The temperature of vapor/plasma in CO_2 laser welding is about 1000K higher than that in YAG laser welding, and the electron density is two orders of magnitude more than that in YAG laser welding.
     For SUS304 steel, the average temperature of vapor/plasma in YAG laser welding under a certain process parameters is 7436K, the average electron density isl.36X10~(16) (cm~(-3)) ; and the value in CO_2 laser welding is 7870K and 2.94X10~(16) (cm~(-3)) .
     Results of the study above show that the temperature and electron density of vapor/plasmas are not only associated with the materials being welded, but also be connected with laser wavelength and techniques methods. However, welding parameter has little impact on these when under the same techniques method.
     The related data of vapor/plasmas in laser welding and hybrid welding of typical aerial materials obtained in this research provided the process research and the technical study of laser welding and hybrid welding with base.
引文
[1]张永康.激光加工技术.北京:化学工业出版社,2004
    [2]菅井秀郎.等离子体电子工程学.科学出版社.
    [3]W.W.Duley Laser Welding[M].New York:John Wiley Sons Inc.1998,p 159-161
    [4]Yi Zhang,Li junli and Gang Zhang.Spectroscopic measurements of plasmas inside the keyhole in deep penetration laser welding.J.Phys.D:Appl.Phys.2005,38:703-710
    [5]苏彦东.激光深熔焊接热效率的研究[D].北京航空航天大学,2000
    [6]Moriaki Ono,Kiyokazu Nakada and Shigeyoshi Kosuge.An investigation on CO_2laser-induced plasma.Trans JWRI,Vol.10,1992:139-245
    [7]Ducharme R.,Williams.K.Kapadia.P.D.Dowden.J.,M.Steen.W.M.The laser welding of thin metal sheets an integrated keyhole and weld pool model with supporting experiments.J.Appl.Phys.27,1994:1619-1627
    [8]Fuerschbach,P.W.Measurement and prediction of energy transfer efficiency in laser beam welding.Ibid.1996,75(1):24s-34s
    [9]左铁钏.高强铝合金的激光加工.北京:国防工业出版社,2002
    [10]李廷钧.发射光谱分析.北京:原子能出版社,1983
    [11]贝克菲G..激光等离子体原理[M].上海科学技术出版社,1981
    [12]《中国航空材料手册》编辑委员会.中国航空材料手册第三卷(铝合金镁合金).中国标准出版社,2001,12:101-245
    [13]Sibillano.T.,Ancona.A.Berardi.V.Schingaro.E.Optical detection of conduction/keyhole mode transition in laser welding.Journal of Materials Processing Technology,2007,191:364-367
    [14]《中国材料工程大典》黄伯云,李成功等.第五卷.化学工业出版社,2005:123,566
    [15]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社,1985
    [16]彭艳萍,曾凡昌,王俊杰等.国外航空钛合金的发展应用及其特点分析,材料工程,1997,No.10,3-6
    [17]《中国航空材料手册》编辑委员会.中国航空材料手册(第2版),北京:中国标准出版社,2002
    [18]《中国材料工程大典》干勇,田志凌等.第三卷.化学工业出版社,2005:507
    [20]Aalderink.B.J.,Aarts.R.G.K.M.Jonker.J.B.and Meijer.J.Study of the optical emissions during Nd:YAG laser welding of AA5182.ICALEO 2004 Congress Proceedings:11-17
    [21]D.F.Farson,K.R.Kim.Generation of optical and acoustic emissions in laser weld plumes.Journal of Applied Physic,1999,85(3):1329-1336
    [22]Su.Y.Study on the welding orientation in laser welding,Published by NIMR,P.00.8.20 The Netherlands Institute for Metals Research,The Netherlands,JUNE,2000
    [23] Leon J., Radaiemski... Measurement of the properties of a CO2 laser induced air-plasma bydouble floating probe and spectroscopic techniques. Spectrochimica Acta, Vol40B, No.3,1985:517-525
    
    [24] Ducharme.R., Williams.K. Kapadia.P.D, Dowden.J.M, Steen.W.M. The laser welding of thinmetal sheets: an integrated keyhole and weld pool model with supporting experiments.J.Appl.Phys.27, 1994:1619-1627
    
    [25] B R Finke, P D Kapadiat, J M Dowden's. A fundamental plasma based model for energytransfer in laser material processing. J. Phys. D: Appl. Phys., 1990, 23: 643-654
    
    [26] Szymanski. Z., Kurzyna J.and Kalita W.. The spectroscopy of the plasma plume inducedduring laser welding of stainless steel and titanium. J.Phys.D:Appl.Phys.30, 1997:3153-3162
    
    [27] Glickstein.S.S. Temperature Measurement in a Free Burning Arc. Welding Journal. 1976,55(8):222s-229s
    
    [28] Mills.GS. Use of Emission Spectroscopy for welding arc analysis. Welding Journal. 1977,56(3):93s-96s
    
    [29] Key.J.F, et al. Process Variable Influence on Arc Temperature Distribution. Welding Journal.1983,60(7):179s-184s
    
    [30] Haddad.G.N., Farmer.A.J.D. Temperature Measurements in Gas Tungsten Arcs. Welding Journal.1985, 64(12):339s-342s
    
    [31] Farmer.A.J.D., Haddad.G.N. And Cram.L-E.Temperature Determination in a Free-Burning Arc: ш.Measurements with Molten Anodes. Journal of Physics D: Applied Physics. 1986,19(9): 1723-1730
    
    [32] Rudolf.H. Determination of Welding Arc Temperature. IIW Doc.212-769-90
    
    [33] Thornton.M.F. Spectroscopic Determination of Temperature Distributions for a TIG Arc. Journal of Physics D: Applied Physics. 1993,26(9): 1432-1438
    
    [34] Hiraoka.K., Shiwaku.T. And Ohji.T. Determining Temperature Distributions of Gas Tungsten Arc (TIG) Plasma by Spectroscopic Methods. Welding International. 1997,11(9):688-696
    
    [35] Hiraoka.K. Plasma Structures of Ar-H_2 Mixed Gas Tungsten Arcs Determined by Spectroscopic Measurements. Welding International. 1998, 12(3): 186-194
    
    [36] Beck.M., Berger. P., Hiige. H... The effect of plasma formation on beam focusing in deep penetration welding with CO~2 lasers. Journal of Applied Physic, 1995,28:2430-2442
    
    [37] Tu Jay F., Inoue Takashi and Miyamoto Isamu, Quantitative characterization of keyhole absorption mechanisms in 20kW-class CO2 laser welding processes, J.Phys. D: Appl. Phys, 2003,36: 192-203.
    
    [38] Griem.H.R. Principles of Plasma Spectroscopy. Cambridge University Press. 1997 11-27
    
    [39] Degout.D. And Catherinot.A. Spectroscopic Study Analysis of the Plasma Created by Double-Flux Tungsten Inert Gas (TIG) Arc Plasma Torch. Journal of Physics D: Applied Physics. 1986, 19(5):811-823
    
    [40] Birkeland.J, W., Oss.J.P. and Braun.W.G.Experimental Investigation of Stark Broadening in H_α.Physical Review.1969, 178(1):368-371
    [41]Griffith.R.,et al.Measurement of Emission and Absorption Coefficients of the Balmer Line H_α.Plasma Physics.1969,11(6):529-539
    [42]Griem.H.R.Spectral Line Broadening by Plasmas.Academic Press,1974:167-218
    [43]Baronnet.J.M.,Ershovpavlov.E.A.And Megy.S.Plasma Parameters of an Argon DC Arc with Graphite Electrode.Journal of Physics D:Applied Physics.1999,32(19):2552-2559
    [44]Singh.N.,Razafinimanana..M.And Gleizes.A.The Effect of Pressure on a Plasma Plume:Temperature and Electron Density Measurements.Journal of Physics D:Applied Physics.1998,31(20):2921-2928
    [45]Jacek Hoffman and Zygmunt Szymanski.Time-dependent spectroscopy of plasma plume under laser welding conditions.J.Phys.D:Appl.Phys.2004,37:1792-1799
    [46]过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986
    [47]科尼.A..原子光谱学和激光光谱学.北京:科学出版社,1984
    [48]陆大有.工程辐射传热.北京:国防工业出版社,1988
    [49]Ralchenko,Yu.Kramida,A.E.,Reader,J.,and NIST ASD Team(2008).NIST Atomic Spectra Database
    [50]W.L.Wiese and G.A.Martin,Center for Radiation Research National Measurement Laboratory,National Bureau of Standards,Washington.DC20234
    [51]William M.Steen.Arc augmented Laser Processing of Materials.J.Appl.Phys.51(11),November 1980,5636-5641
    [52]陈彦斌.现代激光焊接技术,北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700