用户名: 密码: 验证码:
热处理工艺对510L热轧钢氧化皮结构和腐蚀性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以510L热轧钢为基体,通过对氧气浓度、加热温度的控制,经过热处理工艺在其表面制备氧化皮;其次对热处理温度进行控制,对热轧钢原始氧化皮试样进行了一定的后续热处理。并采用XRD、SEM、EDS等手段,讨论了不同热处理工艺对氧化皮的物相组成、表面形貌和截面结构的影响。最后,通过室内干湿周期浸润腐蚀实验和电化学测试(极化曲线、交流阻抗)相结合,对氧化皮试样的耐腐蚀性能进行了测试。
     通过研究氧浓度对氧化皮的影响得出:氧化皮主要由Fe_3O_4、少量Fe_2O_3及Fe组成,随氧浓度提高,氧化皮中Fe_2O_3的量增加;随氧浓度提高,氧化皮厚度增加,氧浓度低于10%不利于氧化皮的生长使氧化皮较薄,但当氧浓度超过30%,氧浓度对氧化皮生长的影响不大,且氧浓度过高(大于30%)制备的氧化皮内部缺陷增多;通过腐蚀性能测试发现,氧浓度过高(大于30%)使氧化皮缺陷多和氧浓度过低(5%)使氧化皮薄都导致氧化皮耐腐蚀性能较差,20%制备的试样最耐蚀,其次为10%,60%,5%,40%。
     在500℃-580℃制备氧化皮,随温度的提高,氧化皮厚度增加,在0-24h氧化服从氧化抛物线规律;氧化皮主要由Fe_2O_3和Fe_3O_4组成,随温度的提高,Fe_2O_3的量增加,氧化皮微观孔隙增多。通过腐蚀性能测试发现,氧化皮厚度对氧化皮腐蚀性能起到较大作用,580℃制备的试样最耐蚀,其次分别为560℃、550℃和500℃。
     510L钢原始氧化皮主要由Fe_3O_4、少量Fe_2O_3及Fe组成,沿宽度方向从边缘至内部,Fe_2O_3的量逐渐减少,中心基本不含有Fe_2O_3相。同时,510L钢原始氧化皮存在较多结构缺陷,且整个氧化皮有大量的Fe存在。在350℃-550℃对原始氧化皮进行后续热处理,在一定程度上改善了原始氧化皮的结构,特别在550℃进行后续热处理,使得氧化皮表面更加连续,氧化皮内部孔隙和Fe的含量也明显减少。通过腐蚀实验结果发现,随着后续热处理温度的升高,氧化皮试样的耐腐蚀性能提高,550℃后续热处理试样最耐蚀,其次分别为500℃、450℃、400℃和350℃,原始氧化皮试样相对最不耐腐蚀。
In this paper, by using 510L hot-rolled steel as the basic compositions and oxide scales prepared on the surface of 510L steel, the effects of oxgyen concentration and heat treatment temperature on the oxide scales have been studied.Simultaneity,the influence of subsequent heat treatment temperature in primitive oxide scales on 510L hot-rolled steel also discussed here. By XRD,SEM,EDS etal, the phase composition and microstructure were analyzed and discussed.Finally, the corrosion resistance of steel with difference oxide scales were studied by using periodical immersion cyclic corrosion test, electrochemical polarization curve and inpedance test.
     The results were as follows: heat-treated at diferent oxygen concentration,the oxide scales consists chiefly of Fe_3O_4, some Fe_2O_3 and Fe,thickness of oxide scale and the Fe_2O_3 phase increased along with the increase of oxygen concentration, but oxygen concentration does not affect the survive of thickness of scale if the oxygen concentration was higher than 30%. If the oxygen concentration were used beyond the 10% concentration, they were shown to inhibit the growth of oxide scales, and too high oxygen concentration of chemical gas will cause increase remarkable. The results of corrosion test showed that the oxide scales have many defects produced belew high oxygen concentration and the oxide scale thickness was thin produced belew low oxygen concentration all were lead to the corrosion resistance of scales poor. The order of corrosion resistance of the scales under various oxygen contents from good to poor was as follows: 20%, 10%, 60%, 5%, 40%.
     Heat-treated at temperature between 500℃and 580℃,the oxide scales consists chiefly of Fe_3O_4 and Fe_2O_3.Thickness of oxide scale and the Fe_2O_3 increased along with the temperture ascension, and the oxidation behavior of steel follow the increment rule of the parabola as time increasement. The results of corrosion test showed that thickness of oxide scale might have a greater role in corrosion resistance, the order of corrosion resistance of the scale from good to poor was as follows: 580℃, 560℃, 550℃, 500℃.
     The primitive oxide scales on 510L steel consists chiefly of Fe_3O_4, some Fe_2O_3 and Fe. The amount of Fe_2O_3 is decreased from the margins to center across the width, the central area hardly containing Fe_2O_3. Fruthermore,there are quite many defect and Fe exists in the oxide scale. Subsequent heat treating has a certain influence on primitive oxide scales in the temperature range from 350℃to 550℃, especially subsequent heat treating at 550℃made the surface of oxide scale more continuous, the amount of pore and Fe present on the oxide scales were decreased. The results of corrosion test showed that the corrosion resistance of the scales increaced with the ascension of subsequent heat treatment temperature. The order of corrosion resistance of the scale from good to poor was as follows: 550℃, 500℃, 450℃, 400℃, 350℃, and the primitive oxide scale.
引文
[1]何爱花.热轧钢板氧化膜对基体碳钢腐蚀电化学行为的影响[D].青岛:中国海洋大学,2007
    [2]中国金属学会热轧板带学术委员会编著.中国热轧宽带钢轧机生产技术[M].北京:冶金工业出版社,2002
    [3]石杰.热轧碳钢表面氧化皮结构、机械研磨酸洗及无酸酸洗研究[D].北京:北京科技大学,2008
    [4]李铁藩编著.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:170~173
    [5]I Iordanova,M Surtchev,K S Forcey,V Krastev.High-temperature surface oxidation of low-carbon rimming steel[J].Surface and Interface Analysis,2000,30:158~160
    [6]张人佶.钢的氧化膜与磨损间的关系[J].固体润滑,1989,3:200~209
    [7]揭晓华,向梅.5CrNiMo钢的高温氧化特性[J].材料与工艺,1998,(2):41~44
    [8]张立,吴恩熙,黄伯云.金属的高温氧化原理及其在硬质合金材料设计中的应用[J].稀有金属与硬质合金,2000,(143):19~22
    [9]SMELTZER W W,YOUNG D J.Oxidation properties of transiton metals[J].Progr. Solid-State Chem.,1975,(10):17~54
    [10]F Matsuno.Blistering and hydraulic removal of scale films of rimmed steel at high temperature[J].Trans. ISIJ.,1980,20(6):413~421
    [11]Martin Torresa,Rafael Colas.A model for heat conduction through the oxide layer of steel during hot rolling[J].Journal of Materials Processing Technology,2000,105(3):258~263
    [12]Szpunar J A,Kim B K.High Temperature Oxidation of Steel:New Descrip-tion of Structure and Properties of Oxide[J].Materials Science,2007,539–543:223~227
    [13]Legodi M A,Waal D D.The Preparation of Magnetite,Goethite,Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste[J].Dyes and Pigments,2007,74(1):161~168
    [14]J W Kim,J W Choi,D B Lee.Characterization of Oxide Scales Formed on Low Carbon Steel between 1100 and 1250℃in Air[J].2005,11(2):131~134
    [15]纪国富.利用差热天平研究钢在高温下的氧化特性[J].分析仪器,2003,(2):23~26
    [16]纪显彬,袁泽喜,宋新莉,等.热轧卷取板的氧化层结构及热力学分析[J].武汉科技大学学报,2009,32(5):505~509
    [17]R Y Chen,W Y D Yuen.Oxide-Scale Structures Formed on Commercial Hot-Rolled Steel Strip and Their Formation Mechanisms[J].Oxidation of Metals,2001,56(1-2):89~118
    [18]J Ehlers,D J Young,E J Smaardijk,et al.Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments[J].Corrosion Science,2006,(48):3428~3454
    [19]S R J Saunders,M Monteiro,F Rizzo.The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour:A review[J].Progress in Materials Science,2008,(53):775~837
    [20]B Schmid,N Aas,(?) Grong,et al. High-Temperature Oxidation of Iron and the Decay of Wustite Studied with in situ ESEM[J].Oxidation of Metals,2002,57:115~130
    [21]林方婷,石旺舟,马学鸣.冷却速度对低碳钢线材表面氧化皮微观结构的影响[J].华东师范大学学报(自然科学版),2006,(4):24~28
    [22]王银军,董汉君,穆海玲,等.卷取后的热轧带钢氧化铁皮显微分析[J].中国冶金,2007,17(10):40~44
    [23]王冰,贾文征,马冬鸣.论钢板在加热炉中氧化皮的生成[J].国外金属热处理,2003,24(2):11~14
    [24]于洋,钟莉莉,郭晓波,等.化学成分对热轧带钢氧化铁皮生长速率的影响[J].中国冶金,2008,18(3):24~28
    [25]Taro KIZU,Yasunobu NAGATAKI,Toru INAZUMI,et al.Effects of Chemical Compositon and Oxidation Temperature on the Adhesion of Scale in Plain Carbon Steels[J].The Iron and Steel Institute of Japan International,2001,41(12):1494~1501
    [26]曹杰,项长祥,陈东,等.几种高速钢的氧化脱碳行为[J].北京科技大学学报,2000,22(1):16~18
    [27]李美栓,辛丽,钱余海,等.氧化膜应力研究进展[J].腐蚀科学与防护技术,1999,11(5):300~305
    [28]屈庆,严川伟,曹楚南.金属大气腐蚀实验技术进展[J].腐蚀科学与防护技术,2003,15(4):216~222
    [29]梁彩凤.钢在中国大陆的大气腐蚀研究[J].电化学,2001,7(2):215~219
    [30]赵雷娥,蒋军成,朱兆华.6种金属材料在典型工业大气中的腐蚀规律[J].石油化工腐蚀与防护,2006,23(1):21~23
    [31]Mansfeld F,Kenkel J V.Electrochemical monitoring of atmospheric corrosion phenomenon [J].Corrosion Science,1976,16:111
    [32]张万灵,刘建容.交流阻抗法对耐候钢腐蚀行为的研究[J].钢铁研究,1996,(5):39~43
    [33]付安庆,邢少华,张胜涛,等.交流阻抗技术监测碳钢在海洋大气中的腐蚀[J].腐蚀科学与防护技术,2007,19(4):243~246
    [34]葛红花,周国定,吴文权.316不锈钢在模拟冷却水中的钝化模型[J].中国腐蚀与防护学报,2004,24(2):65~70
    [35]王佳,水流彻.使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响[J].中国腐蚀与防护学报,1995,15(3):180~188
    [36]王佳.气相环境中无机盐微粒沉积金属表面的电位分[J].中国腐蚀与防护学报,2004,24(1):1~5
    [37]邹锋,韩薇.利用Kelvin探针进行金属薄液层下电化学测量[J].腐蚀科学与防护技术,1995,7(3):192~195
    [38] Sun Wei-hua,A K Tieu,Jiang Zheng-yi,et al.High Temperture Oxide Scale Characteristics of Low Carbon Steel in Hot Rolling[J].Journal of Materials Processing Technology,2004,155-156(1-3):1307~1312
    [39]SHEASBY J S,BOGGS W E,TURKDOGAN E T.Scale growth on steels at 1200℃:rationale of rate and morphology[J]. Metal Science and Heat Treatment,1984,18:127~136
    [40]R Y CHEN,W Y D YUEN.Oxidation of low-carbon,low-silicon mid steel at 450~900℃under conditions relevant to hot-strip processing[J].Oxidation of Metals,2002,57(1/2):53~79
    [41]A C D Chaklander,G R Blair.Differential Thermal Study of FeO and Fe_3O_4[J].Journal of Thermal Amalysis,1970,2:165~179
    [42]R Y Chen,W Y D Yuen.A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling[J].Oxidation of Metals,2000,53(5/6):539~560
    [43]J W Kim,J W Choi,D B Lee.Characterization of Oxide Scales Formed on Low Carbon Steel between 1100 and 1250℃in Air[J].Metals and Materials International,2005,11(2):131~134
    [44]R Bhattacharya,G Jha,S Kundu,et al.Influence of cooling rate on the structure and formation of oxide scale on low carbon steel wire rods during hot rolling[J].Surface and Coatings Technology,2006,201:526~532
    [45]Shi Jie,Wang De-ren,He Ye-dong,et al.Reduction of oxide scale on hot-rolled strip steels by carbon monoxide[J].Materials Letters,2008,62:3500~3502
    [46]GLEESON B,HADAVI S M M,YOUNG D J.Isothermal transformation behavior ofthermally-grown wüstite[J].Materials at High Temperatures,2000,17(2):311~319
    [47]R Y Chen,W Y D Yuen.Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen[J].Oxidation of Metals,2003,59(5/6):433~468
    [48]林方婷,石旺舟,马学鸣.冷却速度对低碳钢线材表面氧化皮微观结构的影响[J].华东师范大学学报,2006,(4):23~28
    [49]章华明,车彦民,陈其安,等.CSP热轧板卷氧化皮结构[J].钢铁,2006,41(6):67~70
    [50]王银军,董汉君,穆海玲,等.卷取后的热轧带钢氧化铁皮显微分析[J].中国冶金,2007,17(10):40~44
    [51]Lucía Suárez,Yvan Houbaert,Xavier Vanden Eynde,et al.High temperature deformation of oxide scale[J].Corrosion Science,2008,51(2):309~315
    [52]李美栓编著.金属的高温腐蚀[M].北京:冶金工业出版社,2001:132~133
    [53]杨峥,赵明琦,杨仁江.薄板氧化铁皮组织结构分析[J].物理分析,2003,5:24~27
    [54]薛会斌.热轧带钢氧化皮组成与结构对其腐蚀行为的影响[D].北京:北京科技大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700