用户名: 密码: 验证码:
低电压毛细管电泳芯片集成系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳芯片是一种微量分离分析装置,它具有高效、高速、高通量、低消耗等优点,已成为蛋白质组学、临床医学、药物筛选等研究的重要手段之一。但是,通常意义上的毛细管电泳芯片系统的进样和分离过程往往需要高电压才能完成,且毛细管电泳芯片检测器的体积往往远大于芯片本身体积,使整个分析系统微型化面临诸多困难。为此,本文以低压、微型化、集成化为目标,开展低电压毛细管电泳芯片集成系统相关技术的研究工作。
     在分析毛细管电泳芯片非接触电导检测器结构、检测原理基础上,采用VHDL-AMS语言,建立平面四电极非接触电导检测器的VHDL-AMS模型,研究了待测溶液介电常数、绝缘层厚度、检测电极宽度、微沟道深度以及交流电压幅度等参数对非接触电导检测器输出信号频率响应的影响。在此基础上,对适合芯片电泳信号的检测方法进行分析,重点探讨了正交矢量锁定放大器以及互相关-Duffing混沌振子检测相结合的检测方法在电泳芯片非接触电导检测中的应用。并结合电泳芯片非接触电导检测特点,研究了小波消噪对电泳芯片非接触电导检测信号的降噪处理,并基于短时能量差函数对芯片电泳色谱的提取进行了探讨。
     研究了ITO微阵列电极、微沟道模具以及PDMS微沟道的制备工艺,并以ITO导电玻璃为基底制备了用于实验的低电压毛细管电泳芯片原型样品。
     基于SOPC嵌入式技术搭建了低电压毛细管电泳芯片集成系统。结合低电压毛细管电泳芯片微阵列电极特点以及阵列电极控制电路,提出了低压移动控制算法。并基于VHDL语言编制了低电压毛细管电泳芯片微阵列电极移动控制IP核,通过对8片MAX306多路选择开关构成的阵列电极控制电路的控制,使芯片微沟道内能产生驱动待测各组分定向迁移的电场;同时,为满足微阵列电极的驱动以及检测器激励的需要,采用模拟与数字两种方法设计了低电压毛细管电泳芯片微阵列电极控制、非接触电导检测所需的四相位信号源,一是基于MAX038信号发生器设计;一是基于DDS技术设计;结合非接触电导检测信号特点,设计了双差分阻抗/电压变换电路实现阻抗到电压转换以及信号放大,同时,采用模拟式锁定放大器实现检测器输出交流信号到直流信号的转换;采用SOPC Builder定制了以NIOSⅡ软核处理器为核心的SOPC系统,用于协调控制各功能模块,并基于C++Builder设计了低电压毛细管电泳芯片上位机电泳检测程序。在此基础上,进行低电压毛细管电泳芯片集成系统的初步实验,并提出了后续工作需解决的相关问题。
Capillary electrophoresis microchip is a microdosage separate and analysis instrument, which has many advantages of high-efficiency, high-speed, high-throughput, low-consumption, etc. It has become one important means for proteomics, clinical medicine, drug screening and others. However, the injection and separation processes of capillary electrophoresis microchip often require high voltage to drive, and the detector volume of capillary electrophoresis micochip is often much larger than the size of microchip itself, so that, the miniaturization of entire analysis system is facing many difficulties. In this dissertation, the integration system of capillary electrophoresis microchip has been studied, and aiming to the integration system characteristic which include the low-voltage, miniaturization and integration.
     The VHDL-AMS model of in-plane four-electrode contactless conductivity detector of electrophoresis microchip is built using VHDL-AMS language, and the effect parameters of output frequency response for contactless conductivity detector is investigated, such as the dielectric constant of electrolyte solution, insulation materials, the thickness of insulation materials, the distance of any two adjacent electrodes, the width of detection electrode and so on. On this basis, the detection methods suitable for chip electrophoresis are discussed. Especially, the orthogonal vector lock-in amplifier and cross-correlation-chaos detection methods are studied. According to the detection characteristics of contactless conductivity detector, the wavelet de-noising method is selected to reduce noise. And the extraction of electrophoresis chromatography of microchip based on short-time energy difference function is studied.
     The preparation technologies of ITO array-electrode, micro-channel mold and PDMS micro-channel are studied. Simultaneously, the experimental low-voltage capillary electrophoresis separation chips with ITO array-electrode is developed and fabricated based on ITO glass substrate.
     For satisfying the research of low-voltage capillary electrophoresis separation chip integrated system, a detection and control system based on SOPC embedded technology is present. According to the micro-array electrode distribution features and the circuit structure, a moving control algorithm suitable for low-voltage control strategy is proposed. The moving control IP core for micro-array-electrode of low-voltage capillary electrophoresis chip is developed using VHDL language. By eight chips multiplexers, MAX306, ordered arrangement, the directional moving electric field, which can drive the components to be determined directional migration, can be formed. At the same time, for satisfying the requirements of driving micro-array-electrode of low-voltage capillary electrophoresis microchip and excitating the contactless conductivity detector, two kinds of four-phase signal sources are designed. One is based on MAX038 function generator, another is based on DDS technology. According to the features of contactless conductivity detector, the corresponding dual differential impedance to voltage converter circuits are designed for impedance to voltage conversion and signal amplification, and the detection circuits based on analog lock-in amplifier are designed to realize detector output's AC signal to DC signal conversion. The SOPC system with NIOSⅡsoft-core processor, which is customized using SOPC Builder, is used to control coordinated functional modules. The PC detection program based on C++Builder is designed for low-voltage electrophoresis separation chip conductivity weak signal detection demand. On this basis, the preliminary experiments of low-voltage electrophoresis separation chip integration system were tested, and the related issues of future work are proposed.
引文
[1]Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing. Sensor and Actuators B,1990,1:244-248
    [2]Manz A. What can chips technology offer for next century's chemistry and life science?. CHIMIA International Journal for Chemistry,1996,50(4):140-143
    [3]Michelle M B, James W J. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins, Anal. Chem., 1990,62(2):161-167
    [4]Jacobson S C, Koutny L B, Hergenroeder R, et al. Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem.,1994,66(20): 3472-3476
    [5]Zhang J Z, Fang Y,, Hou J Y, et al. Use of non-cross-linked polyacrylamide for four-color DNA sequencing by capillary electrophoresis separation of fragments up to 640 bases in length in two hours. Anal. Chem.,1995,67(24):4589-4593
    [6]Woolley A T, Mathie R A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal. Chem.,1995,67:3676-3680
    [7]Xue Q F, Foret F, Dunayevskiy Y M, et al. Multichannel microchip clectrospray mass spectrometry. Anal. Chem.个,1997,69(3):426-430
    [8]Mangru S D, Harrison D J. Chemiluminescence detection in integrated post-separation reactors for microchip-based capillary electrophoresis and affinity electrophoresis. Electrophoresis,1998,19(13):2301-2307
    [9]Tanyanyiwa J, Hauser P C. High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis. Anal. Chem.,2002, 74(24):6378-6382
    [10]Lin C H, Lee G B, Chen S H, et al. Micro capillary electrophoresis chips integrated with buried SU-8/SOG optical waveguides for bio-analytical applications. Sensors and Actuators A,2003,107:125-131
    [11]Wang J, Zima J, Lawrence N S, et al. Microchip capillary electrophoresis with
    electrochemical detection of thiol-containing degradation products of V-type nerve agents. Anal. Chem.,2004,76:4721-4726
    [12]Pumera M. Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology. Journal of Chromatography A,2006,1113:5-13
    [13]Xu J J, Wang A J, Chen H Y. Electrochemical detection modes for microchip capillary electrophoresis. Trends in Analytical Chemistry,2007,26(2):125-132
    [14]Fu L M, Lee C Y, Liao M H, et al. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips. Biomed Microdevices, 2008,10:73-80
    [15]Lu H, Yuan G X, He Q H, et al. Rapid analysis of anthracycline antibiotics doxorubicin and daunorubicin by microchip capillary electrophoresis. Microchemical Journal,2009,92:170-173
    [16]Lin Y C. Design of low voltage-driven capillary electrophoresis chips using moving electrical fields. Sensors and Actuators B,2001,80:33-40
    [17]Lin Y C, Wu W D. Arrayed-electrode design for moving electric field driven capillary electrophoresis chips. Sensors and Actuators B,2001,73:54-62
    [18]Woolley A T, Sensabaugh G F, Mathies R A. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips. Anal. Chem.,1997,69(11): 2181-2186
    [19]Simpson P C, Roach D, woolley A, et al. High-throughput genetic analysis using microrfabricated 96-sample capillary array electrophoresis microplates. Proc Natl Acad Sci USA,1998,95:2256-2261
    [20]Shi Y, Simpson P C, Scherer J R, Wexler D, et al. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal. Chem.,1999,71(23):5354-5361
    [21]Medintz I L, Paegel B M, Mathies R A. Micorfabricated capillary array electrophoresis DNA analysis systems. J. Chromatogr. A,2001,924:265-270
    [22]Medintz I L, Paegel B M, Blazej R G, et al. High-performance genetic analysis using micorfabricated capillary electrophoresis microplates. Electrophoresis,2001, 22:3845-3856
    [23]Woolley A T, Hadley D, Landre P, et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem.,1996,68(23):4081-4086
    [24]Lagally E T, Simpson P C, Mathies R A. Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B, 2000,63:138-146
    [25]Xu W, Uchiyama K, Shimosaka T, et al. Fabrication of polyester microchannels and their applications to capillary electrophoresis. J. Chromatogr. A,2001,907:279-289
    [26]Culbertson C T, Jacobson S C, Ramsey J M. Microchip devices for high-efficiency separations. Anal Chem,2000,72(23):5814-5819
    [27]Griffiths S K, Nilson R H. Design and analysis of folded channels for chip-based separations. Anal Chem,2002,74(13):2960-2967
    [28]Harrison D J, Fluri K, Chiem N, et al. Micromachining chemical and biochemical analysis and reaction systems on glass substrates. Sens AcW ators B,1996,33: 105-109
    [29]Fluri K, Fitzpatrick G, Chiem N, et al. Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips. Anal Chem, 1996,68(23):4285-4290
    [30]Zhang C X, Manz A. Narrow sample channel injectors for capillary electrophoresis on microchips. Anal. Chem.,2001,73(11):2656-2662
    [31]Jacobson S C, Michael Ramsey J. Integrated microdevice for DNA restriction fragment analysis. Anal. Chem.,1996,68(5):720-723
    [32]Zhang L L, Yeung E S. Postcolumn reactor in capillary electrophoresis for laser-induced fluorescence detection. Journal of Chromatography A,1996,734: 331-337
    [33]Fister J C, Jacobson S C, Davis L M, et al. Counting single chromophore molecules for ultrasensitive analysis and separations on microchip Devices. Anal. Chem., 1998,70 (3):431-437
    [34]Yang P D, Wirnsberger G, Huang H C, et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science,2000,287(5452):465-467
    [35]Tung Y C, Zhang M, Lin C T, et al. PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN
    photodiodes. Sensors and Actuators B,2004,98:356-367
    [36]Chen R, Guo H Z, Shen Y W, et al. Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection, Sensors and Actuators B, 2006,114, pp:1100-1107
    [37]Yu L F, Shen Z, Mo J K, et al. Microfluidic chip-based cell electrophoresis with multipoint laser-induced fluorescence detection system. Electrophoresis,2007,28: 4741-4747
    [38]Feng J, Arriaga E A. Quantification of carbonylated proteins in rat skeletal muscle mitochondria using capillary sieving electrophoresis with laser-induced fluorescence detection. Electrophoresis 2008,29:475-482
    [39]Shimomura T, Izawa C, Matsui T. A highly sensitive, highly reproduciblelaser-induced fluorescence detection system with optical pickup. Measurment science and technology,2008,19:1-10
    [40]Shen F, Yu Y, Yang M, et al. Dual confocal laser-induced fluorescence/moveable contactless conductivity detector for capillary electrophoresis microchip. Microsyst Technol,2009,15:881-885
    [41]Xu B J, Yang M, Wang H, et al. Line laser beam based laser-induced fluorescence detection system for microfluidic chip electrophoresis analysis. Sensors and Actuators A,2009,152:168-175
    [42]Ramsey R S, Ramsey J M. Generating electrospray from microchip devices using electroosmotic pumping. Anal. Chem.,1997,69(6):1174-1178
    [43]Li J, Thibault P, Bings N H, et al. Integration of microfabricated devices to capillary electrophoresis-electrospray mass spectrometry using a low dead volume connection:application to rapid analyses of proteolytic digests. Anal. Chem.,1999, 71(15):3036-3045
    [44]Licklider L, Wang X Q, Desai A, eal. A micromachined chip-based electrospray source for mass spectrometry. Anal. Chem.,2000,72(2):367-375
    [45]Kim J S, Knapp D R, Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices. Electrophoresis,2001,22(18): 3993-3999
    [46]Miketova P, Schram K H, Whitney J, et al. Tandem mass spectrometry studies of green tea catechins. Identification of three minor components in the polyphenolic extract of green tea. Journal of Mass Spectrometry,2000,35(7):860-869
    [47]Xue J, Ying X Y, Chen J S, et al. Amperometric ultramicrosensors for peroxynitrite detection and its application toward single myocardial cells. Anal. Chem.,2000,72 (21):5313-5321
    [48]Klett O, Nyholm L. Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Anal. Chem.,2003,75(6):1245-1250
    [49]Chen P, Xu B, Tokranova N, et al. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips. Anal. Chem.,2003,75(3):518-524
    [50]Garcia C D, Engling G, Herckes P, et al. Determination of levoglucosan from smoke samples using microchip capillary electrophoresis with pulsed amperometric detection. Environ. Sci. Technol.,2005,39(2):618-623
    [51]Shiddiky M J A, Park H, Shim Y B. Direct analysis of trace phenolics with a microchip:in-channel sample preconcentration, separation, and electrochemical detection. Anal. Chem.,2006,78(19):6809-6817
    [52]Zhai C, Li C, Qiang W, et al. Amperometric detection of carbohydrates with a portable silicone/quartz capillary microchip by designed fracture sampling. Anal. Chem.,2007,79(24):9427-9432
    [53]Chen C P, Hahn J H. Dual-Channel Method for Interference-Free In-Channel Amperometric Detection in Microchip Capillary Electrophoresis. Anal. Chem., 2007,79(18):7182-7186
    [54]Lee H L, Chen S C. Microchip capillary electrophoresis with amperometric detection for several carbohydrates. Talanta,2004,64:210-216
    [55]Mecker L C, Scott Martin R. Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection. Anal. Chem.,2008,80(23):9257-9264
    [56]Pai R S, Walsh K M, Crain M M, et al. Fully integrated three-dimensional electrodes for electrochemical detection in microchips:fabrication, characterization, and applications. Anal. Chem.,2009,81(12):4762-4769
    [57]Wang J, Tian B M, Sahlin E. Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal. Chem.,1999,71(23):5436-5440
    [58]Martin R S, Gawron A J, Fogarty B A, et al. Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. Analyst,2001, 126(3):277-280
    [59]Garcia C D, Henry C S. Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Anal. Chem.,2003,75(18):4778-4783
    [60]Hrapovic S, Liu Y L, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem.,2004,76(4):1083-1088
    [61]Woolley A T, Lao K, Glazer A N, et al. Capillary electrophoresis chips with integrated electrochemical detection. Anal. Chem.,1998,70(4):684-688
    [62]Wang J, Tian B M, Sahlin E. Integrated electrophoresis chips/amperometric detection with Ssputtered gold working electrodes. Anal. Chem.,1999,71(17): 3901-3904
    [63]Wu C C, Wu R G, Huang J G, et al. Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection. Anal. Chem.,2003,75(4):947-952
    [64]Osbourn D M, Lunte C E. On-column electrochemical detection for microchip capillary electrophoresis. Anal. Chem.,2003,75(11):2710-2714
    [65]Chen D C, Hsu F L, Zhan D Z, et al. Palladium film decoupler for amperometric detection in electrophoresis chips. Anal. Chem.,2001,73(4):758-762
    [66]Tantra R, Manz A. Integrated potentiometric detector for use in chip-Based flow cells. Anal. Chem.,2000,72(13):2875-2878
    [67]Kumar S D, Maiti B, Mathur P K. Determination of boron by flow injection analysis using a conductivity detector. Anal. Chem.,1999,71(13):2551-2553
    [68]Johnston S E, Fadgen K E, Jorgenson J W. Development of a conductivity-based photothermal absorbance detector for capillary separations. Anal. Chem.,2006, 78(15):5309-5315
    [69]Eduardo G B, Barat J M, Torres O L. et al. Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A,2008,148:63-67
    [70]Mayrhofer K, Zemann A J, Schnell E, et al. Capillary Electrophoresis and Contactless Conductivity Detection of Ions in Narrow Inner Diameter Capillaries. Anal. Chem.,1999,71(17):3828-3833
    [71]Pumera M, Wang J, Opekar F, et al. Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Anal. Chem.,2002,74(9):1968-1971
    [72]Wang J, Chen G, Muck A. Movable contactless-conductivity detector for microchip capillary electrophoresis. Anal. Chem.,2003,75(17):4475-4479
    [73]Villar E M, Tanyanyiwa J, Abedul M. T, et al. Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with Contactless Conductivity Measurements. Anal. Chem.,2004,76(5):1282-1288
    [74]Gong X Y, Kuban P, Tanyanyiwa J, et al. Separation of enantiomers in capillary electrophoresis with contactless conductivity detection. Journal of Chromatography A,2005,1082:230-234
    [75]Felix F S, Quintino M S M, Carvalho A Z, et al. Determination of salbutamol in syrups by capillary electrophoresis with contactless conductivity detection. Journal of Pharmaceutical and Biomedical Analysis,2006,40:1288-1292
    [76]Chen Z G, Li Q W, Li O L, et al. A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis. Talanta,2007,71:1944-1950
    [77]Shadpour H, Hupert M L, Patterson D, et al. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Anal. Chem.,2007,79(3):870-878
    [78]Kang Q, Shen D Z, Li Q L, et al. Reduction of the impedance of a contactless conductivity detector for Microchip Capillary Electrophoresis:Compensation of the Electrode Impedance by Addition of a Series Inductance from a Piezoelectric Quartz Crystal. Anal. Chem.,2008,80(20):7826-7832
    [79]Harrison D J, Gtavina P C. Towards miniaturized electrophoresis and chemical analysis systems on silicon:an alternative to chemical sensors. Sens Actuators B, 1993,10:107-116
    [80]Harrison D J, Manz A, Fan Z, et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem,1992,64(17):1926-1932
    [82]Effenhauser C S, Manz A, Widmer H M. Glass chips for high-speed capillary electrophoresis separation with submicrometer plate heights. Anal. Chem,1993,
    65(19):2637-2642
    [83]Seiler K, Harrison D J, Manz A. Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Anal. Chem, 1993,65(10):1481-1488
    [84]Harrison D J, Fluri K, Seiler K, et al. Micromaching a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science.1993,261(13): 895-897
    [85]Fan Z H, Harrison D J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem.,1994,66(1):177-184
    [86]Jacobson S C, Hergenroder R, Koutny L B, et al. High-speed separations on a microchip. Anal. Chem.,1994,66(7):1114-1118
    [87]Effenhauser C S, Manz A, Widmer H M. Manipulation of sample fractions on a capillary electrophoresis chip. Anal. Chem,1995,67(13):2284-2287
    [88]Koutny L B, Schmalzing D, Taylor T A, et al. Microchip electrophoretic innmunoassay for serum cortisol. Anal. Chem,1996,68(1):18-22
    [89]Schmalzing D, Koutny L, Adourian A, et al. DNA typing in thirty seconds with a nucrofabricated device. Proc. Natl. Acad. Sci. USA,1997,94:10273-10278
    [90]Oki A, Adachi S, Takamura Y, et al. Electroosmosis injection of blood serum into biocompatible microcapillary chip fabricated on quartz plate. Electrophoresis,2001, 22:341-347
    [91]Udea M, Kiba Y, Abe H, et al. Fast separation of oligonucleotide and triplet repeat DNA on a microfabricated capillary electrophoresis device and capillary electrophoresis. Electrophoresis,2000,21:176-180
    [92]Nakanish H, Nishimoto T, Arai A, et al. Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems. Electrophoresis,2001,22:230-234
    [93]Sera Y, Matsubara N, Otsuka K, et al. Sweeping on a microchip:concentration profiles of the focused zone in micellar electrokinetic chromatography. Electrophoresis,2001,22:3509-3513
    [94]Suzuki S, Shimotsu N, Honda S, et al. Rapid analysis of amino sugars by microchip electrophoresis with laser-induced fluorescence detection. Electrophoresis,2001,22: 4023-4031
    [95]Roberts M A, Rossier J S, Bercier P, et al. UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem,1997,69(11): 2035-2042
    [96]McCormick R M, Nelson R J, Alonso-Amigo M Q et al. Microchannel electrophoresis separations of DNA in injection-molded plastic substrates. Anal. Chem,1997,69(14):2626-2630
    [97]Martynova L, Locascio L E, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem,1997,69(23):4783-4789
    [98]Duffy D C, McDonald J C, Schueller O J A, et al. Rapid prototyping of microfluidic systems in poly(dimenthylsiloxane). Anal. Chem,1998,70(23):4974-4984
    [99]Paulus A, Williams S J, Sassi A P, et al. Integrated capillary electrophoresis using glass and plastic chips for multiplexed DNA analysis. SPIE, Part of the SPIE Conference on Microfluidic Devices and Systems, Santa Clara, California, September 1998,3515:94-103
    [100]McCreedy T. Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems. Trends in Analytical Chemistry,2000,19(6):396-401
    [101]Lee L J, Madou M J, Knelling K W, et al. Design and fabrication of CD-like microfluidic platforms for diagnostics:polymer-based microfabrication. Biomedical Microdevices,2001,3(4):339-351
    [102]Boone T D, Fan Z H, Hooper H H, et al. Plastic advances microfluidic devices. Anal. Chem,2002,174(3):78A-86A
    [103]Li Y C, Wang Z, Ou L M L, et al. DNA detection on plastic:surface cctivation protocol to convert polycarbonate substrates to biochip platforms. Anal. Chem., 2007,79:426-433
    [104]Niggemann M, Ehrfeld W, Weber L. Fabrication of miniaturized biotechnical devices. SPIE, Part of the SPIE Conference on Micromachining and Microfabrication Process Technology IV, Santa Clara, California, September 1998, 3511:204-213
    [105]McDonald J C, Duffy D C, Anderson J R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis,2000,21:27-40
    [106]Hong J W, Fujii T, Seki M, et al. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis, 2001,22:328-333
    [107]Vahey P G, Smith S A, Costin C. D, et al. Toward a fully integrated positive-pressure driven microfabricated liquid analyzer. Anal. Chem,2002,74(1): 177-184
    [108]Locascio L E, Perso C E, Lee C S. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of proteiwadsorption on flow rate. J Chromatogr. A,1999,875:275-284
    [109]Mizukami Y, Rajniak D, Rajniak A, et al. A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array. Sens Actuators B,2002,81:202-209
    [110]Becker H, Gartner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis,2000,21:12-26
    [111]Yan J L, Du Y, Liu J F, et al. Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition and micromolding in capillary technique. Anal. Chem.,2003,75(20):5406-5412
    [112]LiuY J, Ganser D, Schneider A, et al. Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem.,2001,73(17):4196-4201
    [113]Munce N R, Li J Z, Herman P R, et al. Microfabricated system for parallel single-cell capillary electrophoresis. Anal. Chem.,2004,76 (17):4983-4989
    [114]Qu H Y, Wang H T, Huang Y, et al. Stable microstructured network for protein patterning on a plastic microfluidic channel:strategy and characterization of on-chip enzyme microreactors. Anal. Chem.,2004,76(21):6426-6433
    [115]Dang F Q, Tabata O, Kurokawa M, et al. High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding. Anal. Chem.,2005,77 (7):2140-2146
    [116]Ping G C, Zhu B M, Jabasini M, et al. Analysis of lipoproteins by microchip electrophoresis with high speed and high reproducibility. Anal. Chem.,2005,77(22): 7282-7287
    [117]Shadpour H, Soper S A. Two-dimensional electrophoretic separation of proteins using poly(methyl methacrylate) microchips. Anal. Chem.,2006,78 (11): 3519-3527
    [118]Inoue A, Ito T, Makino K, et al. I-shaped microchannel array chip for parallel electrophoretic analyses. Anal. Chem.,2007,79(5):2168-2173
    [119]EmoryJ M, Soper S A. Charge-coupled device operated in a time-delayed integration mode as an approach to high-throughput flow-based single molecule analysis. Anal. Chem.,2008,80(10):3897-3903
    [120]Koesdjojo M T, Tennico Y H, Remcho V T. Fabrication of a microfluidic system for capillary electrophoresis using a two-Stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial Layer. Anal. Chem.,2008,80(7):2311-2318
    [121]Sun X F, Li D, Lee M L. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis. Anal. Chem.,2009,81(15):6278-6284
    [122]Sikanen T, Heikkila L, Tuomikoski S, et al. Performance of SU-8 microchips as separation devices and comparison with glass microchips. Anal. Chem.,2007, 79(16):6255-6263
    [123]Natarajan S, Chang-Yen D A, Gale B K. Large-area, high-aspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices. Journal of micromechanics and microengineering,2008,18:1-11
    [124]Koesdjojo M T, Koch C R, Remcho V T. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding. Anal. Chem.,2009,81(4):1652-1659
    [125]Voegel P D, Zhou W H, Baldwin R P. Integrated capillary electrophoresis/electrochemical detection with metal film electrodes directly deposited onto the capillary tip. Anal. Chem.,1997,69(5):951-957
    [126]Zeng Y, Chen H, Pang D W, et al. Microchip capillary electrophoresis with electrochemical detection. Anal. Chem.,2002,74(10):2441-2445
    [127]Yan J L, Du Y, Liu J F, et al. Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition
    and micromolding in capillary technique. Anal. Chem.,2003,75(20):5406-5412
    [128]Shin D H, Sarada B V, TrykD A, et al. Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis. Anal. Chem., 2003,75(3):530-534
    [129]Xu J J, Bao N, Xia X H, et al. Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis. Anal. Chem.,2004,76(23):6902-6907
    [130]Sekula J, Everaert J, Bohets H, et al. Coated Wire potentiometric detection for capillary electrophoresis studiedusing organic amines, drugs, and biogenic amines. Anal. Chem.,2006,78(11):3772-3779
    [131]Du Y, Wei H, Kang J Z, et al. Microchip capillary electrophoresis with solid-state electrochemiluminescence detector. Anal. Chem.,2005,77(24):7993-7997
    [132]Colon L A, Dadoo R, Zare R N. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal. Chem.,1993,65 (4):476-481
    [133]Blasquez G, Favaro P. Silicon glass anodic bonding under partial vacuum conditions: problems and solutions. Sensors and Actuators A,2002,101:156-159
    [134]Shibata T, Takahashi Y, Kawashima T, et al. Micromachining of electroformed nickel mold using thick photoresist microstructure for imprint technology. Microsystem Technologies,2008,14:9-11
    [135]KimS J, Wang F, Burns M A, et al. Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber. Anal. Chem,2009,81(11):4510-4516
    [136]Liu J S, Qiao H C, Liu C, et al. Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B: Chemical,2009,141(2):646-651
    [137]Molho J, Herr A E, Mosier B P, et al. Optimization of turn geometries for microchip electrophoresis. Anal Chem,2001,73(6):1350-1360
    [138]Keir R, Igata E, Arundell M, et al. SERBS, in situ substrate formation and improved detection using microfluidics. Anal Chem,2002,74(7):1503-1508
    [139]Sirichai S, Mello A J. A capillary electrophoresis chip for the analysis of print and film photographic developing agents in commercial processing solutions using indirect fluorescence detection. Electrophoresis,2001,22:348-354
    [140]Yakovleva J, Davidsson R, Lobanova A, et al. Microfluidic enzyme immtmoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal. Chem,2002,74(13):2994-3004
    [141]Rodriguez I, Jin L J, Li S F. High-speed chiral separations on microchip electrophoresis devices. Electrophoresis,2000,21:211-219
    [142]Wang J, Chatrathi M P, Tian B. Micromachined separation chips with a precolumn reactor and end-column electrochemical detector. Anal Chem,2000,72(23): 5775-5778
    [143]Graβ B, Neyerb A, Johnck M, et al. A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensors and Actuators B: Chemical,2001,72(3):249-258
    [144]Laugere F, Guijt R M, Bastemeijer J, et al. On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices. Anal. Chem,2003, 75(2):306-312
    [145]Sakai-Kato K, Kato M, Toyo'oka T. Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem,2003,75(3): 388-393
    [146]Xue Q, Wainright A, Gangakhedkar S, et al. Multiplexed enzyme assays in capillary electrophoretic single-use microfluidic devices. Electrophoresis,2001,22: 4000-4007
    [147]Belder D, Deege A, Maass M, et al. Design and performance of a microchip electrophoresis instrument with sensitive variable-wavelength fluorescence detection. Electrophoresis,2002,23:2355-2361
    [148]金亚,罗国安,王如骥.集成毛细管电泳芯片研究进展.色谱,2000,18,4:313-317
    [149]刘莉莉,马文丽,姚文娟等.集成毛细管电泳芯片研究进展.北京生物医学工程,2006,25(3):316-320
    [150]Fu L M, Yang R J, Low-voltage driven control in electrophoresis microchips by traveling electric field. Electrophoresis 2003,24:1253-1260
    [151]吴英,温志渝,蒋子平等.电泳芯片的低电压分离模型及讨论.光电工程,2002,29:28-31
    [152]李霞,温志渝,李星海等.电泳芯片的低电压分离模型及控制系统.微纳电子技术,2003,7/8:344-346
    [153]刘岗,温志渝,李霞等.影响低电压电泳芯片分离的主要因素.微纳电子技术,2003,7/8:347-350
    [154]陈超,赵湛,张搏军.基于线阵电极电泳芯片的微全分析系统.微纳电子技术,2003,(7/8),PP:362-364
    [155]陈超,赵湛.线阵电极电泳芯片与单片机控制系统.传感器技术,2004,23(1):77-80
    [156]王溢仲,赵湛.基于电泳分离的生物芯片的设计与改进.仪表技术与传感器,2006,3:6-8
    [157]陈里铭,闫卫平,刘军民.低电压驱动毛细管电泳芯片电势分布数值计算.仪器仪表学报,2005,26(8):183-184
    [158]Yan W P, Chen L M, Liu J M, etal. Numerieal simulation of integrated capillary electrophoresis chip electrokinetic injection. The 6th East Asian Conference on chemical Sensors, Guilin, China,2005:525-526
    [159]Guijt R M, Baltussen E, van der Steen G, et al. Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis,2001,22:2537-2541
    [160]Bastemeijer J, Lubking W, Laugere F, et al. Electronic protection methods for conductivity detectors in micro capillary electrophoresis devices. Senor and Actuator B,2002,83:98-103
    [161]Cao W D, Chen X Y, Yang X R, et al. Discrete wavelets transform for signal denoising in capillary electrophoresis with electrochemiluminescence detection. Electrophoresis,2003,24:3124-3130
    [162]曾庆勇.微弱信号检测(第二版).浙江大学出版社,2004:10-65
    [163]聂春燕,石要武.微弱正弦信号的时域处理方法研究.计量技术,2000,5:3-5
    [164]Wang G Y, Zheng W, He S L. Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator. Signal Processing,2002,82:103-15
    [165]Wang G Y, He S L. A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications,2003,50(7):945-953
    [166]李月,杨宝俊,石要武.用特定的混沌检测系统检测弱周期脉冲信号.仪器仪表学报,2002,23(3):35-36
    [167]李月,杨宝俊,石要武等.混沌用于强噪声背景下正弦信号的检测.吉林大学自然科学学报,2001,1 35(1):75-77
    [168]刘俊,张斌珍.微弱信号检测技术.北京:电子工业出版社,2005:149-152
    [169]李月,杨宝俊.混沌振子系统(L-Y)与检测.北京:科学出版社,2007:123-125
    [170]周玲,田建生,刘铁军.Duffing混沌振子用于微弱信号检测的研究.系统工程与电子技术,2006,28(10):1477-1479
    [171]葛哲学,王晓飞等.辅助小波分析与应用.北京:电子工业出版社,2003:5-10
    [172]唐晓初.小波分析及其应用.重庆:重庆大学出版社,2006:4-8
    [173]刘涛,曾祥利,曾军等.实用小波分析入门.北京:国防工业出版社,2006:40-44
    [174]高成.Matlab小波分析与应用(第2版).北京:国防工业出版社,2007:104-108
    [175]薛年喜.MATLAB在数字信号处理中的应用.北京:清华大学出版社,2003:326-330
    [176]李铁,金庆辉,陈继锋等.微通道电泳芯片系统中信号识别算法的设计与实现.现代科学仪器,2002,2:33-35
    [177]Kawamoto H. Some techniques on electrostatic separation of particle size utilizing electrostatic traveling-wave field. Journal of Electrostatics,2008,66:220-228
    [178]Garcia-Sanchez P, Ramos A, Green N G, et al. Traveling-wave electrokinetic micropumps:velocity, electrical Current, and impedance Measurements. Langmuir, 2008,24(17):9361-9369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700