用户名: 密码: 验证码:
炭基电化学电容器电极材料的制备与电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以研制廉价、高比能量和高比功率的电化学电容器炭电极材料为目的,开展了以酚醛树脂、石油焦和三聚氰胺树脂为碳前驱体制备高性能炭电极材料的研究工作,对炭电极材料的制备工艺、结构、电容性能和储能机理进行了深入研究。
     本论文首次提出以热固性酚醛树脂为原料,采用CO2物理活化法制备低成本炭电极材料,系统考察了活化温度和活化时间对酚醛树脂基活性炭结构及电容性能的影响。最优实验条件下制备的酚醛树脂基微孔炭具有超过2200m2/g的比表面积、孔径集中分布在1~2nm,其在30wt% KOH水溶液中具有高达211.6F/g的放电比电容、良好的功率性能和循环性能。
     采用KOH化学活化制备了不同比表面积和孔径分布的酚醛树脂基多孔炭,考察了其在30wt% KOH溶液和1M Et4NBF4/PC电解液中的电容性能。研究结果表明:酚醛树脂基多孔炭在水系电解液中不存在“离子筛分”现象,大于0.4nm的孔隙均能形成有效的双电层;而其在有机电解液中出现明显的“离子筛分”现象,小于0.7nm的极微孔中不能形成有效双电层;1~2nm的微孔是形成双电层的最佳孔径范围,适量的中孔有利于提高电容器的功率性能。
     采用KOH活化石油焦制备纳米微晶炭,研究了原料的预炭化和活化温度对其结构和电容性能的影响,并讨论了其实用化的可能性和新型储能机理。实验发现:适当的炭化处理与活化工艺的结合能够实现对纳米微晶炭孔结构和微晶结构的调控;获得的纳米微晶炭保持低比表面积、大层间距和高电极密度,并具有优于商品活性炭YP15的电容性能。恒电流充放电和半原位XRD分析表明,“电化学活化”的实质是电解质离子嵌入有序或无序炭微晶层间的过程。首次采用高分辨投射显微镜(HRTEM)观察到纳米石墨微晶炭内部有序炭微晶层间距的增大和表面类SEI膜的形成,结合扫描电镜观察和EDS能谱分析提出纳米微晶炭的插层储能机理。
     首次直接炭化商业产三聚氰胺树脂制备富氮炭材料,用作电化学电容器电极材料。研究发现:小比表面积(102.6m2/g)的富氮炭,具有高达205.5F/g的质量比电容、较好的功率性能和优异的循环稳定性。比电容和XPS分析表明,良好的电容性能与富氮炭材料表面的吡咯氮或羟基吡啶氮提供的准电容作用有关。
This paper was addressed on studying the carbon electrode materials for electrochemical capacitors with low cost, high specific energy and high power density. High performance carbon electrodes for capacitors were prepared using phenol-formaldehyde resin, petroleum coke and melamine resin as precursor. The preparation technology, structure, capacitance performance and the mechanism of energy storage for carbon electrode material were investigated deeply.
     The low cost carbon electrode was prepared by CO2 one-step activation of resole phenol-formaldehyde resin for the first time. The effect of activation temperature and activation time on the structure and capacitance performance of phenolic resin based micropore carbon was investigated systematically. The phenolic resin based micropore carbon prepared under optimum conditions had specific surface area over 2200m2/g and pore size of 1~2nm. The specific discharge capacitance was as high as 211.6F/g in the 30wt% KOH aqueous solution showing excellent power performance and cycle performance.
     The phenolic resin based porous carbon with different specific surface area and pore size distribution was prepared by KOH activation. The capacitance performance was investigated both in 30wt% KOH aqueous and in 1M Et4NBF4/PC electrolyte.
     The phenolic resin based porous carbon did not exist“ion sieving”in aqueous electrolyte since almost all the pores could form effective electric double layer, while it exhibited“ion sieving”in organic electrolyte because the pores of size smaller than 0.7nm could not form effective electric double layer. Micropore of 1~2nm was the optimum pore size for the formation of electric double layer, and suitable amount of mesopore was beneficial to the improvement of power capacitance for capacitors.
     The nanocrystallite carbon was prepared by KOH activation using petroleum coke as precursor. The effect of pre-carbonization temperature and activation temperature on the structure and capacitance performance of nanocrystallite carbon was investigated. The practical possibility and mechanism of novel energy storage were discussed. It was found that the combination of pre-carbonization and activation could realize the control of pore structure and nanocrystallite structure. And material with low specific surface area, large space interlayer and high electrode density could be obtained which displayed better capacitance performance than that of commercial activated carbon YP15. The essential of“electrochemical activation”was the process for the insertion of electrolyte ion into ordered or disordered crystallite interlayer which was confirmed by galvanostatic charge/discharge test and semi in-situ XRD analysis. For the first time the increase of interlayer space for ordered carbon crystallite and the formation of SEI-like layer on the surface of nanocrystallite carbon were observed by HRTEM. The mechanism of intercalation energy storage was shown by the combination of SEM, HRTEM observation and EDS spectra analysis.
     The nitrogen-enriched carbon material with low surface area was prepared using commercial melamine resin as precursors by carbonization for the first time. Results showed that the nitrogen-enriched carbon with low surface area had a high gravimetric capacitance of 205.5F/g, good power capacitance and cycle stability. The excellent power performance was associated with the pseudocapacitance provided by pyrrolic nitrogen or pyridine nitrogen on the surface of nitrogen-enriched carbon materials.
引文
[1] Andrew C, Paul B. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization [J]. Journal of Power Sources, 2002, 112(1): 236-246.
    [2] Aurelien D P, Irene P, Serafin M, et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications [J]. Journal of Power Sources, 2003, 115 (1): 171-178.
    [3] K?tz R, Carlen M. Principles and applications of electrochemical capacitors [J]. Electrochimica Acta, 2000, 45 (15-16): 2483-2498.
    [4] Andrew B. Ultracapacitors: why, how, and where is the technology [J]. Journal of Power Sources, 2000, 91 (1): 37-50.
    [5] Minato E, Okada S, Korai Y, et al. Toluene-insoluble fraction of fullerene-soot as the electrode of a double-layer capacitor [J]. Journal of Power Sources, 2005, 148 (15): 116-120.
    [6] Adhyapak P V, Maddanimath T, Pethkar S, et al. Application of electrochemically prepared carbon nanofibers in supercapacitors [J]. Journal of Power Sources, 2002, 109 (1):105-110.
    [7] Eugenio F, Piergeorgio R, Veronique D, et al. Supercapacitors for the energy management of electric vehicles [J]. Journal of Power Sources, 1999, 84 (2): 261-269.
    [8] Holland C E, Weidner J W, Dougal R A, et al. Experimental characterization of hybrid power systems under pulse current loads [J]. Journal of Power Sources, 2002, 109 (1): 32-37.
    [9] Jurewicz K, Vix G C, Frackowiak E, et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure [J]. Journal of Physics and Chemistry of Solids, 2004, 65 (2-3): 287-293.
    [10] Gamby J, Taberna P L, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors [J]. Journal of Power Sources, 2001, 101 (1): 109-116.
    [11] Amatucci G.G, DuPasquier A, Gozdz A, et al., Beyond Batteries, Telcordias Bonded, Flat Plate Energy Storage Technology”[C] Proceeding of 18th International Seminar & Exhibit on Primary and Secondary Batteries, 2001.
    [12] Spamaay M J. The electric double layer [M], Sydney: Pergamon Press Pty. Ltd., 1972 :4-6.
    [13] Matsumoto M. Electrical phenomena at interface: fundamentals, measurements, and applications, Surfactant science series. New York: Marcel Dekker, Inc., 1998, 76: 87-99.
    [14] Pandolfo A G., Hollenkamp A F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources, 2006, 157 (1): 11-27.
    [15] Sarangapani S, Tilak B V, Chen C P. Materials for electrochemical capacitors [J]. Journal of the Electrochemical Society, 1996, 143 (11): 3791-3799.
    [16] An K H, Kim W S, Park Y S, et al. Supercapacitors Using Single-Walled Carbon Nanotube Electrodes [J]. Advanced Materials, 2005, 2001, 13 (7): 497-500.
    [17] Kim C, Kim J S, Kim S J, et al. Supercapacitors Prepared from Carbon Nanofibers Electrospun from Polybenzimidazol [J]. Journal of the Electrochemical Society, 2004, 151 (5): A769-773.
    [18] Mikhail E K, Ryan C C, William M A, et al. Spinning solid and hollow polymerfree carbon nanotube fibers [J]. Advanced Materials, 2005, 17 (5):614-617.
    [19] Thierry Brousse, Mathieu Toupin, Daniel Belanger. A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte [J]. Journal of the Electrochemical Society, 2004, 151 (4): A614-A622.
    [20] Endo M, Kim Y J, Takeda T, et al. Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte [J]. Journal of the Electrochemical Society, 2001, 148 (10): A1135-A1140.
    [21] 孟庆函, 李开喜, 凌立成. 碳基双电层电容器的结构、机理与研究进展 [J]. 化学通报, 2001, 11: 680-685.
    [22] Becker H I. US Patent : 2 ,800 ,616 , 1957.
    [23] Yukari K, Takashi S, Mitsuyoshi K, et al. Fabrication of high-power electric double-layer capacitors [J]. Journal of Power Sources, 1996, 60 (2): 219-224.
    [24] Egashira M, Okada S, Korai Y, et al. Advanced capacitors and their application [J]. Journal of Power Sources 2001, 97-98: 807-811.
    [25] 王晓峰, 解晶莹, 孔祥华, 等. “超电容”电化学电容器研究进展 [J]. 电源技术, 2001, 25 (S1): 166-170,190.
    [26] Boos D L. Electrolytic capacitor having carbon paste electrode [P]. US Patent: 3536093, 1970.
    [27] 张文保, 王国庆. 发展中的电化学电容器 [J]. 电池工业, 2006, 11 (1):42-47.
    [28] Murphy T C, Wright R B, Sutula R A. Electrochemical Capacitors II, Proceedings, vols. 96-25, The Electrochemical Society, Pennington, NJ, 1997, p. 258.
    [29] 程夕明,孙逢春. 电动汽车能量存储技术概况 [J].电源技术,2001,45 (1):47~52.
    [30] 张浩, 程杰,曹高萍,等. 电化学电容器的研究进展——第15届国际电化学电容器研讨会概述 [J]. 电池, 2006, 36(2):109-110.
    [31] Alar J, Enn L. Organic carbonate-Organic ester-based non-aqueous electrolytes for electrical double layer capacitors [J]. Electrochemistry Communications 2005 7 (5) 510-514.
    [32] Alar J, Enn L. Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance [J]. Journal of Electroanalytical Chemistry, 2006, 588 (2): 285-295.
    [33] Teng H, Chang Y J, Hsieh C T. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching [J]. Carbon, 2001, 39 (13): 1981-1987.
    [34] Wu F C, Tseng R L, Hu C C, et al. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors [J]. Journal of Power Sources, 2005, 144 (1): 302-309.
    [35] Grazyna G, Jacek M, Ewa L G, et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochimica Acta, 2005, 50 (5): 1197-1206.
    [36] Guo Y P, Qi J, Jiang Y Q, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk [J]. Materials Chemistry and Physics, 2003, 80 (3): 704-709.
    [37] 杨裕生, 曹高萍. 电化学电容器用多孔炭的性能调节 [J]. 电池. 2006, 36 (1): 34-36.
    [38] 邓梅根; 杨邦朝; 胡永达. 石油焦制备超级电容器用中孔活性炭研究. 第九届全国化学工艺学术年会论文集. 北京昌平, 2005.
    [39] Qiao W M, Yoon S H, Mochida I. KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC [J]. Energy & Fuels, 2006, 20: 1680-1684.
    [40] Ruiz V, Blanco C, Raymundo E, et al. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors [J]. Electrochimica Acta, 2007, 52 (15): 4969-4973.
    [41] 黄小文, 谢忠巍, 曲晓光, 等. 以食糖热裂解碳为电极的双电层电容器的电化学特性 [J]. 高等学校化学学报. 2002, 23 (2): 291-293.
    [42] Huang X W, Xie Z W, He X Q. et al. Electric Double Layer Capacitors Using Activated Carbon Prepared from Pyrolytic Treatment of Sugar as Their Electrodes [J]. Synthetic Metals, 2003, 135-136: 235-236.
    [43] Kim Y J, Lee B J, Suezaki H. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors [J]. Carbon, 2006, 44 (8): 1592-1595.
    [44] Phan N H, Rio S, Faur C, et al. Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications [J]. Carbon,2006, 44(12): 2569-2577.
    [45] Park S J, Seo M K, Lee Y S. Surface characteristics of fluorine-modified PAN-based carbon fibers [J]. Carbon, 2003, 41 (4):723-730.
    [46] Kim C, Park S H, Lee W J, et al. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning [J]. Electrochimica Acta, 2004, 50 (2-3): 877-881.
    [47] Wang K P, Teng H. The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin [J]. Carbon, 2006, 44 (15): 3218-3225.
    [48] Zhang S J, Yu H Q, Feng H M. PVA-based activated carbon fibers with lotus root-like axially porous structure [J]. Carbon, 2006, 44 (10): 2059-2068.
    [49] Tanahashi I, Yoshida A, Nishino A. Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors [J].Carbon, 1990, 28 (4): 477-482.
    [50] Yoshida A, Tanahashi I, Nishino A. Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers [J]. Carbon, 1990, 28 (5): 611-615.
    [51] 刘春玲, 文越华, 程杰, 等. 酚醛基活性炭纤维孔结构及其电化学性能研究 [J]. 物理化学学报. 2005, 21(7): 786-791.
    [52] Shiraishi S, Kurihara H, Oya A. Electric double layer capacitance of mesoporous activated carbon fiber [J]. Electrochemistry, 2001, 69 (6): 440-443.
    [53] Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors [J]. Journal of the Electrochemical Society, 1990, 137 (10): 3052-3057.
    [54] 田艳红, 付旭涛, 吴伯荣. 超级电容器用多孔碳材料的研究进展 [J]. 电源技术, 2002, 26 (6): 466-479.
    [55] Miura K, Nakagawa H, Okamoto H. Production of high density activated carbon fiber by a hot briquetting method [J]. Carbon, 2000, 38 (1): 119-125.
    [56] Nakagawa H, Shudo A Miura K. High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes [J]. Journal of the Electrochemical Society, 2000, 147 (1): 38-42.
    [57] Hsieh C T, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fibrics [J]. Carbon, 2002, 40 (5): 667-674.
    [58] Yamashita A, Minoura S, Miyake T, et al. Modification of functional groups on ACF surface and its application to electric double layer capacitor electrode [J]. TANSO. 2004, 214: 194-201.
    [59] Momma T, Liu X, Osaka T, et al. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor [J]. Journal of Power Sources, 1996, 60: 249-253.
    [60] 邓梅根,电化学电容器电极材料研究:[博士学位论文],合肥,中国电子科技大学,2005.
    [61] Scherer D W. Polymers, fractals, and ceramic materials [J]. Science, 1989, 243: 1023-1027.
    [62] 孟庆函, 刘玲, 宋怀河, 等. 炭气凝胶为电极的超级电容器的研究 [J]. 功能材料. 2004, 35 (4): 457-459.
    [63] Celzard A, Collas F, Marêché J F, et al. Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance [J]. Journal of Power Sources, 2002, 108, (1-2): 153-162.
    [64] Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemical applications [J]. Journal of Non-Crystalline Solids. 225 (1): 74-80.
    [65] Li W C, Reichenauer G, Fricke J. Carbon aerogels derived from cresol- resorcinol-formaldehyde for supercapacitors [J]. Carbon, 2002, 40: 2955-2959.
    [66] Mayer S T. Method of low pressure and/or evaporation srying of aerogel [P]. WO Patent 94/22943, 1994.
    [67] Tamon H, Ishizaka H, Yamamoto T, et al. Preparation of mesoporous carbon by freeze drying [J]. Carbon, 1999, 37(12): 2049-2055.
    [68] Tamon H, Ishizaka H, Yamamoto T, et al. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors [J]. Carbon, 2000, 38 (7): 1099-1105.
    [69] Yamamoto T, Nishimura T, Suzuki T, et al. Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying [J]. J. Non-Crystalline Solides, 2001, 288(1-3): 46-55.
    [70] Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society, 1991, 138 (6): 1539-1548.
    [71] Iijima S. Helical microtubules of graphic carbon [J]. Nature, 1991, 354:56.
    [72] Niu C, Sichel E K, Hoch R. High power electrochemical capacitors based on carbon namotube electrodes [J]. Applied Physics Letters, 1997, 70 (11):1480-1482.
    [73] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalled carbon nanotubes [J]. Applied Physics Letters, 2000, 77 (15):2421-2423.
    [74] 马仁志, 魏秉庆, 许才录, 等. 基于纳米炭管的超级电容器 [J]. 中国科学(E), 2000, 84 (7): 1186-1188.
    [75] 马仁志, 魏秉庆, 许才录, 等. 应用于超级电容器的纳米炭管电极的几个特点[J]. 清华大学学报(自然科学版), 2000, 40 (8): 7-10.
    [76] Jiang Q, Qu M Z, Zhou G M, et al. A study of activated carbon nanotubes aselectrochemical supercapacitors electrode materials [J]. Materials letters. 2002, 57: 988-991.
    [77] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes for supercapacitors [J]. Fuel Processing Technology, 2002, 77-78: 213-219.
    [78] Park J H, Ko J M, Park O O. Carbon nanotube/RuO2 nanocomposite electrode for supercapacitor [J]. J. Electrochem. Soc., 2003, 150 (7): A864-A867.
    [79] Nishino A. Capacitors: operating principles, current market and technical trends [J]. Journal of Power Sources, 1996, 60:137-147.
    [80] 吴峰, 许斌. 纳米炭管在超级电容器中的应用研究进展 [J]. 新型炭材料, 2006, 21 (2): 176-184.
    [81] 张琳, 李步广, 刘洪波, 等. 酚醛树脂为原料制备双电层电容器用电极材料的工艺研究 [J]. 炭素技术, 2004, 23 (4) :1-6.
    [82] 韩鹏献, 王成扬, 时志强, 等. 水蒸汽活化树脂炭用做双电层电容器电极材料 [J]. 无机材料学报, 2007.
    [83] 解强, 张香兰, 李兰廷, 等. 活性炭孔结构调节:理论、方法与实践[J]. 新型炭材料. 2005, 20 (2): 183-190.
    [84] Lozano-Castelló D, Lillo-Ródenas M A, Cazorla-Amorós D, et al. Preparation of activated carbons from Spanish anthracite I. Activation by KOH [J]. Carbon 2001, 39 (5) 741-749.
    [85] Hulicova D, Kodama M, Hatori H. Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors [J]. Chem. Mater. 2006, 18: 2318-2326.
    [86] 侯朝辉. 高比表面积中孔炭材料的制备及其双电层电容性能研究 [博士学位论文]. 长沙:中南大学, 2004.
    [87] 涂建华, 张利波, 彭金辉, 等.酚醛树脂基玻璃炭制备机理及结构的研究进展[J]. 炭素技术, 2005, 24 (6):21-29.
    [88] Portet C, Taberna P L, Simon P, et al. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications [J]. Electrochimica Acta, 2004, 49 (6): 905-912.
    [89] Nian Y R, Teng H. Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors [J]. Journal of Electroanalytical Chemistry. 2003, 540: 119-127.
    [90] Bleda-Martínez M J, Maciá-Agulló J A, Lozano-Castelló D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials [J]. Carbon, 2005 43 (13): 2677-2684.
    [91] Yang H, Yoshio M, Isono K, et al. Improvement of commercial activated carbon and its application in electric double layer capacitors [J]. Electrochem Solid State Lett, 2002, 5(6): A141-A144.
    [92] Kim Y, Horie Y, Matsuzawa Y, et al. Structural features necessary to obtain a high specific capacitance in electric double capacitors [J]. Carbon, 2004, 42: 2423-2432.
    [93] Qu D, Shi H. Studies of activated carbons used in double-layer capacitors [J]. Journal of Power Sources, 1998, 74 (1): 99-107.
    [94] Qu D, Shi H. Studies of the activated carbons used in double-layer supercapacitors [J]. Journal of Power Sources, 2002, 109: 403-411.
    [95] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon, 2001, 39 (6): 937-950.
    [96] 孟庆函, 李开喜, 宋燕, 等. 石油焦基活性炭电极电容特性研究 [J]. 新型炭材料, 2001, 16 (4): 18-21,26.
    [97] Kierzek K, Machnikowski J, Raymundo-pi?ero E, et al. Ralation between capacitance and porous characteristics of a series of actibated carbons prepared by KOH activation of coal-derived chars. Carbon 2005, Gyeongju. S02-23.
    [98] Raymundo-Pi?ero E, Kierzek K, Machnikowski J, et al.Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes [J].Carbon , 2006, 44 (12): 2498-2507.
    [99] Trasatti S, Kurzweil P. Electrochemical supercapacitors as versatile energy stores, potential use for platinum metals [J]. Platinum Metal Rev, 1994, 38:46-56
    [100] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties [M]. New York: Kodansa Press, 1988: 326
    [101] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem. Commun, 1999, 2177-2178.
    [102] Endo M, Kim Y J, Ohta H, et al. Morphology and organic EDLC applications of chemically activated AR-resin-based carbons [J]. Carbon, 2002, 40 (12): 2613-2626.
    [103] Lozano-Castell? D, Cazorla-Amor?s D, Linares-Solano A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon, 2003, 41 (9): 1765-1775.
    [104] Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors [J]. Carbon, 2005, 43 (6): 1303-1310.
    [105] Teng H, Wang S C. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation [J]. Carbon, 2000, 38 (6): 817-824.
    [106] Harry M, Francisco R R. Activated carbon [M]. Great Britain: Elsevier Science Ltd. 2006, 98-103.
    [107] 刘振宇, 郑经堂, 王茂章, 等. PAN 基活性炭纤维的氮吸附研究 [J]. 物理化学学报, 2001, 17 (7): 594-599.
    [108] Mangun. C L, Daley M A, Braatz R D, et al. Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers [J]. Carbon, 1998, 36 (1-2):123-131.
    [109] Conway G.. Electrochemical Supercapacitors, Kluwer Academic Publishers/ Plenum Press, New York, 1999.
    [110] Hu C C, Wang C C. Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors [J]. Electrochemistry Communications, 2002, 4 (7): 554-559.
    [111] Levie R. On porous electrodes in electrolyte solutions [J]. Electrochimica Acta, 1963, 8:751-780.
    [112] Austin L G, Gagon E G. The triangular voltage sweep method for determining double-layer capacity of porous electrodes [J]. Journal of The Electrochemical Society, 1973, 120 (2): 251-254.
    [113] Song H K, Jung Y H, Lee K H, et al. Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution [J]. Electrochimica Acta, 1999, 44(20): 3513-3519.
    [114] Taberna P L, Simon P, Fauvarque J F. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors [J]. Journal of The Electrochemical Society, 2003, 150 (3): A292-A300
    [115] Eliad L, Salitra G, Soffer A, et al. Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions [J]. The Journal of Physical Chemistry B, 2001, 105 (29): 6880-6887.
    [116] Ue M, Takeda M, Takehara M. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors [J]. Journal of The Electrochemical Society, 1997, 144 (8): 2684-2688.
    [117] Shi H. Activated carbons and double layer capacitance [J]. Electrochimica Acta, 1996, 41 (10): 1633-1639.
    [118] Koresh J, Soffer A. StereoseIectivity in ion eIectroadsorption and in double-layer charging of molecular sieve carbon electrodes [J]. Journal of Electroanalytical chemistry, 1983, 147: 223-234.
    [119] Mitani S, Lee S I, Yoon S H, et al. Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor [J]. Journal of Power Sources, 2004, 133 (2): 298-301.
    [120] Morimoto T. Development and industrialization of electric double-layer capacitors [J]. TANSO, 2004 (214): 202-209.
    [121] Mochida I, Lee S I, Mitani S,et al. Performance, working mechanism and future development of active carbons in super capacitor [J]. TANSO, 2003, (210):1250-257.
    [122] 朱春野, 曹高萍. “纳米门”炭及“纳米门”电容器 [J]. 新型炭材料, 2005, 20 (4): 380-381.
    [123] Takeuchi M, Koike K, Maruyama T, et al. Electrochemical Intercalation of Tetraethylammonium Tetrafluoroborate into KOH Treated Carbon Consisting of Multi-Graphene Sheets for an Electric Double Layer Capacitor [J]. Electrochemistry. 1998, 66 (12): 1311-1317.
    [124] 朱春野, 许敏, 曹高萍, 等. 微晶炭的电化学电容特性 [J]. 海峡两岸青年交流会. 2006, 上海.
    [125] Kim Y J, Tantrakarm K, Abe Y. Correlation between the capacitor performance and pore structure [J]. TANSO. 2006, (221): 31-39.
    [126] Marsh H, Menendez R, Carbons from pyrolysis of pitches, coals and their blends [J]. Fuel processing technology, 1988, 20: 269-296.
    [127] 李同起,王成扬,郭春雨, 等. 中低温炭化过程中中间相炭微球的结构演变特征. 第七界全国新型炭材料学术研讨会, 西宁, 2005.07,49-54.
    [128] Mochida I, Ku C H, Yoon S H, et al. Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries [J]. Journal of Power Sources, 1998, 75: 214-222.
    [129] 邢伟, 张明杰, 阎子峰. 超级活性炭的合成及活化反应机理 [J]. 物理化学学报, 2002, 18 (4): 340-345.
    [130] Ricketts B W, Ton-That C. Self-discharge of carbon-based supercapacitors with organic electrolytes [J]. Journal of Power Sources, 2000, 89 (1): 64-69.
    [131] 刘希邈, 詹亮, 滕娜, 等. 超级电容器用沥青焦基活性炭的制备及其电化学性能[J]. 新型炭材料, 2006, 21 (1): 48-53.
    [132] Endo M, Maeda T, Takeda T, et al. Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes[J]. Journal of the Electrochemical Society, 2001, 148 (8): A910-A914.
    [133] 立本英機, 安部郁夫. 活性炭的应用技术——其维持管理及存在问题[M]. 南京: 东南大学出版社, 2002.476-477.
    [134] Otawa T, Tanibata R, Itoh M. Production and adsorption characteristic of MAXSORB: High-surface-area activated carbon[J]. Gas Separation & Purification. 1993, 7:241-245.
    [135] Vanasant E F, Devolfs R. Gas Separation Technology [M]. Amsterdam: Elsevier.1990: 263-264.
    [136] 王晓峰. 电化学超电容器的研究:[博士学位论文],北京;北京科技大学,2001.
    [137] Zheng T, Antoni S Goxdz, G G Amatucci, Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures [J], Journal of theElectrochemical Society, 1999, 146 (1): 4014-4018.
    [138] Fong R, Sacken U V, Dahn J R, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells [J]. J Electrochem Soc, 1990,137 (7): 2009-2013
    [139] Conway B E. Electrochemical Capacitors: Scientific Fundamentals and Technological Applictions, Kluwer Academic /Plenum, 1999.
    [140] 戴贵平, 刘敏, 王茂章, 等. 电化学电容器中炭电极的研究及开发 Ⅱ. 炭电极[J]. 新型炭材料, 2002, 17 (1): 71-79.
    [141] Jurewicz K, Babel K, Zió?kowski A, et al. Ammoxidation of brown coals for supercapacitors [J]. Fuel Processing Technology, 2002, 77-78: 191-198.
    [142] Sayoko Y, Masayuki K, Takeshi Y, et al. The effect of electrolyte on electric double layer capacitance of nitrogen-rich C/N material. Carbon 2005. Gyeongju. P02-03.
    [143] Masaya K, Junya Y, Yasushi S, et al. Structural characterization and electric double layer capacitance of template carbons [J]. Materials Science and Engineering B, 2004, 108 (1-2): 156-161.
    [144] 毕慧平. 三聚氰胺纤维改性及工艺研究:[硕士学位论文],南京;南京理工大学, 2004.
    [145] 赵元春. 碳氮前驱物的制备与脉冲放电处理的研究:[硕士学位论文],秦皇岛;燕山大学, 2004.
    [146] Raymundo-Pi?ero E, Cazorla-Amorós D, Linares-Solano A, et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin [J]. Carbon, 2002, 40 (4): 597-608.
    [147] Ahmadpour A, Do D D. Characterization of modified activated carbons: Equilibria and dynamics studies [J]. Carbon, 1995.33 (10): 1393-1398.
    [148] Hulicova D, Yamashita J, Soneda Y, et al. Supercapacitors Prepared from Melamine-Based Carbon [J]. Chemistry material, 2005, 17 (5): 1241-1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700