用户名: 密码: 验证码:
电梯交通分析及电梯优化控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,高楼大厦不断兴建,电梯已经成为生产与生活中不可缺少的机电设备。如何让电梯更好的发挥其作用已成为备受关注的问题,电梯优化控制方法的研究也成为热点课题。目前,在电梯交通流的研究中,对其特性的分析较少。然而,作为电梯群控中的基础问题,对其特性的研究是很必要的。此外,理论基础扎实完善、简单有效和易于实现的群控算法是电梯群控调度的重要研究内容。良好的电梯速度控制方法是提高电梯控制水平的有效途径,而现有的速度控制方法主要停留在传统控制的基础上,智能控制方法的应用相对较少。
     电梯的交通分析是电梯控制的重要组成部分,本文首先对电梯的交通分析进行研究,并在此基础上对电梯群的优化控制方法进行研究;另一方面,从改善电梯的运行性能目标出发,对电梯的零速停靠控制方法进行研究。针对电梯交通的非线性,控制中的非线性和多目标性,在研究中采用智能控制理论,这将在很大程度上改善电梯的服务水平,提高电梯的运行质量。
     电梯交通流的预测是电梯群控的基本问题之一。针对电梯交通流时间序列的非线性和小样本的特征,利用支持向量机方法对电梯交通流时间序列进行预测。将混沌动力学系统的相空间延迟坐标重构理论引入预测中,解决时间序列预测模型输入维数确定困难的问题;应用小数据量法对电梯交通流时间序列的混沌特性进行判定,并应用庞卡莱截面法对其混沌特性进行验证;在此基础上构建电梯交通流混沌时间序列的支持向量机预测模型,并利用试验寻优的方法获得模型参数;利用实测的电梯交通流数据,分别针对进门厅客流时间序列和出门厅客流时间序列进行预测,并与RBF神经网络模型及传统的动平滑方法和指数平滑法进行比较。仿真结果表明,构建的模型能很好的跟踪电梯交通流的变化趋势,可以实现电梯交通流较好的拟合和预测。
     在电梯群控制研究中,针对不同的电梯交通模式采用相应的控制算法对电梯群进行优化调度,将大大改善电梯群控系统的性能。提出一种粒子群优化(Particle Swarm Optimization, PSO)模糊核聚类算法(Kernel Fuzzy C-Means, KFCM)对电梯交通模式进行识别,利用PSO算法代替KFCM算法的基于梯度下降的迭代过程,使算法具有较强的全局和局部搜索能力,并降低KFCM算法对初始值的敏感度。利用核方法将低维电梯交通流特征空间样本映射到高维特征空间,增加对交通流样本特征的优化,并使样本特征在高维特征空间线性可分,更加容易聚类。为了验证KFCM算法的有效性,采用某办公楼的电梯交通流数据作为测试样本,仿真结果表明该算法具有良好的性能指标,对电梯交通流的聚类效果更准确。
     电梯群控调度算法是电梯群控系统的核心,研究电梯群控策略对提高电梯的运行效率和综合性能有重要意义。在传统电梯群控制策略的基础上,基于电梯群控系统的非线性和多目标性,给出两种模糊控制策略,模糊区域多目标调度算法和模糊多规则多目标调度算法。结合目标函数对算法的实现过程进行描述,并就两种控制策略适合的交通模式进行讨论,通过仿真对各调度算法的性能进行验证及比较分析。
     电梯的零速停靠问题是电梯控制中的另一个重要问题。将预测控制应用于电梯的零速停靠中,利用预测的爬行距离增加到电梯速度曲线的匀速段,实现减小或消除爬行距离的目的,从而实现电梯的零速停靠。给出电梯速度曲线优化机理,分别建立电梯零速停靠的小波神经网络、RBF神经网络和BP神经网络预测模型;为提高小波神经网络的预测精度,采用遗传算法对小波网络的参数进行优化;通过仿真对三种预测模型的预测性能进行比较研究。对电梯采用零速停靠算法前后的运行性能进行仿真,验证本文方法的有效性。
With the development of the society, there are more and more high buildings. Elevator has become one of the necessary mechanical and electrical equipments in the life and industry. How to make the elevators play the parts better has been concerned. The study on elevator control is one of the hot research subjects. In current, there are fewer studies on the analysis of the characteristic for elevator traffic flow. However, as the basic problem in elevator group control, the characteristic study for elevator traffic flow is necessary. In addition, the elevator group control algorithm, which is with integrated theory basis, simple and effective, and easily realized, is an important content in the elevator group control scheduling. A well elevator speed control method is an effective way to improve the elevator control level, while the present method is mainly on the basis of the traditional control, the application of the intelligent control method is relatively less.
     The elevator analysis is an important part of the elevator control, and which is studied firstly in the paper. On the basis of the elevator analysis, the optimal control of elevator group is studied; on the other hand, with the purpose to improve the running performance of the elevator, the zero speed parking control of elevator is studied. Due to the nonlinear of elevator traffic, the nonlinear and multi-objective of elevator control, intelligent control theory is used to improve the service level of the elevator as well as the running quality of the elevator.
     The prediction of elevator traffic flow is one of the basis problems in elevator group control. Combining with the nonlinear and small sample characteristic, support vector machine (SVM) is used to predict the elevator traffic flow time series. The takens’delay coordinate phase reconstruction of chaotic dynamical system is introduced, and the input dimension of the time series is ascertained. The small data set method is applied to analyze the chaotic property of elevator traffic flow time series, which is validated by Poincare section method. Then the prediction model of elevator traffic flow chaotic time series based on SVM is established, and the optimal model parameters are obtained by experiment. So the incoming and outgoing passenger flow time series are predicted respectively using the data collected in some building. Meanwhile, comparing research with RBF neural network model, traditional moving smoothing method and exponential smoothing method are given. Simulation results show that the trend of the factual traffic flow is better followed by traffic flow obtained by the proposed method. The fitting and prediction of elevator traffic flow with better effect can be realized.
     In the elevator group control system, when the elevator group is scheduled by suitable algorithm according to traffic mode, the performance of elevator group control system will be improved. The kernel fuzzy clustering (KFCM) algorithm based on particle swarm optimization (PSO) is proposed to realize the elevator traffic mode identification. The iterative process based on gradient descent in KFCM algorithm is replaced by PSO, which has stronger global and local search capability. Meanwhile the sensitivity to initial value of FCM is decreased. By using kernel method, the sample in the low-dimensional feature space is mapped into high-dimensional feature space. And the sample feature is optimized and can be linearly divided in high-dimensional feature space so that clustering could be performed efficiently. The elevator traffic flow data collected is regard as the test sample. The simulation results show that the algorithm proposed has better performance indices, and the clustering effect of traffic flow is more exact.
     Elevator group control scheduling algorithm is the core of elevator group control system, the research on which has important meaning to improve the running efficiency and holistic performance of elevator. On the basis of the traditional algorithm, based upon the uncertainty and the multi-target, two scheduling algorithms based on fuzzy control are proposed, including fuzzy area control scheduling algorithm with multi-objective and fuzzy multi-rule scheduling algorithm with multi-objective. The realization of algorithm is described combined with objective function, and the application range of the algorithm is discussed. The performances of the scheduling algorithm are validated by simulation.
     Zero speed parking problem of elevator is another basic problem in elevator control. The prediction control is applied in zero speed parking of elevator. The creeping-in distance predicted is added to the uniform motion stage to decrease or eliminate the distance, so the zero speed parking of elevator is realized. The optimal principle of elevator speed curve is given, and the prediction models based on wavelet neural network (WNN), RBF neural network and BP neural network are established respectively. The genetic algorithm is used to optimize the parameters to improve the prediction precision of WNN. Comparing research of the prediction performance among the three models is carried through by simulation. Meanwhile, the elevator running performance after using zero speed parking algorithm is obtained by simulation, and the effect of the proposed method is validated.
引文
1张汉杰,王锡仲,朱学莉.现代电梯控制技术.哈尔滨工业大学出版社, 2001: 1~4, 117~122
    2 G. C. Barney, S. M. Dos Santos. Elevator Traffic Analysis, Design and Control. Peter Peregrinus, 1985
    3 M. L. Siikonen. Customer Service in an Elevator System during Up-peak. Transpn Res. 1997, 31(2): 127~139
    4 G. F. Newell. Strategies for Serving Peak Elevator Traffic. Transpn Res. 1998, 32(8): 583~588
    5朱德文,牛志成.电梯选型、配置与量化.中国电力出版社, 2005: 1~4,115~119
    6 Z. Pan, F. Luo, Y. Xu. Elevator Traffic Flow Model Based On Dynamic Passenger Distribution. IEEE International Conference on Control and Automation. Guangzhou, 2007: 2386~2390
    7 T. Nagatani. Complex Behavior of Elevators in Peak Traffic. Physica A. 2003, (326): 556~566
    8 T. Nagatani. Dynamical Transitions in Peak Elevator Traffic. Physica A. 2004, (333): 441~452
    9 Q. Zong, L. J. Wei, Y. J. Cheng. Elevator Configuration Based on the Markov Network Queuing Model. Proceedings of World Congress on Intelligent Control and Automation. Hangzhou, 2004: 236~239
    10徐国圣,朱昌明.一种电梯客流交通分布的求法.应用基础与工程科学学报. 2004, 12(1): 86~92
    11杨广全,朱昌明,张亚刚,等基于电梯交通实测数据的乘客O-D矩阵推算.上海交通大学学报. 2005, 39(6): 849~852
    12杨祯山,邵诚.基于双层规划模型的电梯交通系统群组优化.沈阳建筑大学学报. 2007, 23(1): 170~176
    13宗群,岳有军.电梯群控系统交通流的预测方法.系统工程与电子技术. 2001, 23(7): 103~105
    14 M. Huang, L. Xu, J. H. Wang, et al. Predictive Method for Traffic Flow of Elevator Systems Based on Neural Networks. IEEE International Conference on Control and Automation. Montreal, Canada, 2003: 683~687
    15黄敏,崔宝同,顾树生.基于小波神经网络的电梯交通流预测.控制与决策. 2006, 21(5): 589~592
    16 X. Yan, Y. Liu, Z. Mao, Z. H. Li, et al. Tan. SVM-based Elevator Traffic Flow Prediction. Proceedings of the World Congress on Intelligent Controland Automation. Dalian, 2006: 8814~8188
    17 F. Luo, Y. G. Xu, J. Z. Cao. Elevator Traffic Flow Prediction with Least Squares Support Vector Machines. International Conference on Machine Learning and Cybernetics. Guangzhou, 2005: 4266~4270
    18杨祯山,邵诚,马海丰.电梯群控系统交通需求的迭代学习预测方法.控制与决策. 2008, 23(3): 302~305, 309
    19胡志刚,杨广全,乔现玲.基于小波支持向量机的电梯交通流预测模型.系统仿真学报. 2009, 21(19): 6321~6324
    20 C. Kim, K. A. Seong, H. L. Kwang, et al. Design and Implementation of a Fuzzy Elevator Group Control System. IEEE Trans. on systems, man, and cybernetics. 1998, 28(3): 277~287
    21宗群,尚晓光,岳有军,等.电梯群控系统的交通模式识别.控制与决策. 2001, 16(2): 163~166
    22许玉格,罗飞.新型电梯群控系统交通模式识别方法.控制理论与应用. 2005, 22(6): 900~904
    23李中华,朱燕飞,李春华,等.基于人工免疫聚类算法的电梯交通流分析.华南理工大学学报. 2003, 31(12): 26~29
    24 G. Z. Tang, G. M. Zhang, W. Zhu. EGCS Traffic Pattern Identification. Elevator World, 2005, 53(12): 116~120
    25唐桂忠,张广明,朱炜.免疫规划K-均值聚类算法识别电梯群控交通流模式.计算机测量与控制. 2005, 13(9): 938~940
    26宗群,孙志明,童玲.一种电梯交通流多模式预测方法的研究.信息与控制. 2006, 35(1): 93~97
    27 Q. Zong, W. J. Wang, A. N. Shang. A Multi-mode Prediction Method for Elevator Traffic Flow Based on Classification Off-line. Proceedings of Chinese Control Conference. Kunming, 2008, 522~526
    28杨广全,朱昌明,王向红.基于粒子群K均值聚类算法的电梯交通模式识别.控制与决策. 2007, 22(10): 1139~1142
    29张玉梅,曲仕茹,温凯歌.交通流量的混沌特性分析及预测模型研究.土木工程学报. 2009, 42(1): 119~123
    30 J. Sun, Q. C. Zhao, P. B. Luh. Optimization of Group Elevator Scheduling with Advance Information. IEEE Trans. on Automation Science and Engineering. 2010, 7(2): 352~363
    31朱德文,付国江.电梯群控技术.中国电力出版社, 2006:197~199
    32李东,王伟,邵诚.电梯群控智能系统与智能控制技术.控制与决策. 2001, 16(5): 513~517
    33 T. Ishikawa, A.Miyauchi, M.Kaneko. Supervisory Control for Elevator Group by Using Fuzzy Expert System which also Addresses Traveling Time. IEEE International Conference on Industrial Technology. Goa, India, 2000: 87~94
    34 M. Iwata, K. Sasakawa, T. Yamamoto, et al. A Simple Modeling Method of Elevator Group Systems. Proceedings of SICE Annual Conference. Osaka, Japan, 2002: 981~986
    35 C. B. Kim, K. A. Seong, H. L. Kwang, et al. A Fuzzy Approach to Elevator Group Control System. IEEE Trans. on systems, man, and cybernetics. 1995, 25(6): 985~990
    36 A. T. So, J. K. Yu, W. L. Chan. Dynamic Zoning based Supervisory Control for Elevators. IEEE International Conference on Control Applications. Hawaii, USA, 1999: 1591~1596
    37宗群,罗欣宇,王振世.电梯上高峰动态规划分区控制方法的研究.控制与决策. 2002, 17(增刊): 781~784
    38 Z. H. Li, Z. Y. Mao, J. P. Wu. Research on Dynamic Zoning of Elevator Traffic Based on Artificial Immune Algorithm. IEEE lntemational Conference on Control, Automation, Robotics and Vision. Kunming, 2004: 2170~2175
    39 T. C. Chiang, L. C. Fu. Design of Modern Elevator Group Control Systems. IEEE International Conference on Robotics and Automation. Washington, USA, 2002: 1465~1470
    40 S. Lee, H. Bahn. An Energy-aware Elevator Group Control System. IEEE International Conference on Industrial Informatics. Perth, Australia, 2005: 639~643
    41 Z. S. Yang, C. Shao, G. Z. Li. Multi-Objective Optimization for EGCS Using Improved PSO Algorithm. Proceedings of American Control Conference. New York, USA, 2007: 5059~5063
    42李惠昇.电梯控制技术.机械工业出版社, 2003: 257~260
    43 S. Tanaka, Y. Uraguchi, M. Araki. Dynamic Optimization of the Operation of Single-Car Elevator Systems with Destination Hall Call Registration: Part I. Formulation and Simulations. European Journal of Operational Research. 2005, 167(2): 550~573
    44 S. Tanaka, Y. Uraguchi, M. Araki. Dynamic Optimization of the Operation of Single-Car Elevator Systems with Destination Hall Call Registration: PartⅡ. The Solution Algorithm. European Journal of Operational Research. 2005, 167(2): 574~587
    45 H. Heol, S. Mabul, Kotaro Hirasawal, et al. Elevator Group Supervisory Control System with Destination Floor Guidance System using Genetic Network Programming. SICE-ICASE International Joint Conference. Busan, Korea, 2006: 5489~5493
    46刘屿,邬依林,李中华,等.基于模糊控制的全数字键盘电梯群控系统.计算机测量与控制. 2006, 14(8): 1023~1026
    47许玉格,罗飞,曹建忠.目的层预约的模糊神经网络电梯群控策略.华南理工大学学报. 2007, 35(1): 13~18
    48李中华,郑日荣,毛宗源.基于模糊控制的半数字键盘电梯群控系统.计算机测量与控制. 2005, 13(4): 331~334
    49朱昌明,毕晓亮.电梯智能群控系统研究概况.现代城市研究. 2003(S1): 1~6
    50杨祯山,邵诚.电梯群控技术的现状与发展方向.控制与决策. 2005, 20(12): 1321~1331
    51 R. Gudwin, F. Gomide, M. A. Netto. A Fuzzy Elevator Group Controller with Linear Context Adaptation. IEEE International Conference on Computational Intelligence. Alaska, USA, 1998: 481~486
    52 D. M. Munoz, C. H. Llanos, M. A. Rincon, et al. Implementation, Simulation and Validation of Dispatching Algorithms for Elevator Systems. International Conference on Reconfigurable Computing and FPGA's. San Luis Potosi, Mexico, 2006: 1~8
    53 J. Jamaludin, N.A.Rahim, W. Ping. An Elevator Group Control System with a Self-Tuning Fuzzy Logic Group Controller. IEEE Transactions on Industrial Electronics. 2010, (99): 1~10
    54万健如,刘春江,刘洪池.基于前向神经网络最佳派梯智能控制.系统工程与电子技术. 2003, 25(4): 466~468
    55高阳,胡景凯,王本年,等.基于CMAC网络强化学习的电梯群控调度.电子学报. 2007, 35(2): 362~365
    56 S. Nakai, S. Kubo, N. Imasaki. Elevator Group Control System with a Fuzzy Neural Network Model. Proceedings of IEEE International Conference on Fuzzy Systems. Yokohama, Japan, 1995: 37~38
    57 J. Wang, A. R. Yu, X. Y. Zhang, et al. Research of Dispatching Method in Elevator Group Control System Based on Traffic Mode Identify. International Conference on Business Intelligence and Financial Engineering. Beijing, 2009: 46~49
    58张苗苗,张学军,谢剑英.基于模糊神经网络的电梯群控系统的智能调度.电子技术与应用. 2000, (3): 30~33
    59 J. H. Kim, B. R. Moon. Adaptive Elevator Group Control with Cameras. IEEE Trans. on Industrial Electronics. 2001, 48(2): 377~382
    60 P. Cortés, J. Larra?eta, L. Onieva. Genetic Algorithm for Controllers in Elevator Groups: Analysis and Simulation during Lunchpeak Traffic. Applied Soft Computing. 2004, (4): 159~174
    61宗群,李胜涛,王维佳.基于遗传算法的电梯群控鲁棒优化模型.天津大学学报. 2007, 40(9): 1019~1024
    62万健如,李保海.群控电梯改进型遗传算法最佳派梯方法.起重运输机械. 2005, (4): 50~54
    63 J. Zhou, T. Eguchi, S. Mabu, et al. A Study of Applying Genetic Network Programming with Reinforcement Learning to Elevator Group Supervisory Control System. IEEE Congress on Evolutionary Computation. Vancouver, Canada, 2006: 3035~3041
    64 Y. Lu, S. Mabu, T. T. Zhang, et al. Multi-car elevator group supervisory control system using Genetic Network Programming. IEEE Congress on Evolutionary Computation. Trondheim, Norway, 2009: 2188~2193
    65李中华,毛宗源,郑日荣,等.基于人工免疫算法的电梯交通动态分区的优化.华南理工大学学报. 2004, 32(10): 46~50
    66李中华,谭洪舟,张雨浓,等.基于免疫算法的午饭时期层际高峰交通电梯群控制的动态优化.控制理论与应用. 2007, 24(2): 177~182
    67 L. Q. Dou, Q. Zong, L. J. Wei. Modeling and Analysis of Elevator System Based on Timed-Coloured Petri Net. Proceedings of World Congress on Intelligent Control and Automation. Hangzhou, 2004: 226~230
    68 J. M. Fernandes, J. B. Jorgensen, S. Tjell. Requirements Engineering for Reactive Systems: Coloured Petri Nets for an Elevator Controller. Asia-Pacific Software Engineering Conference. Nagoya, Japan, 2007: 294~301
    69许玉格,罗飞.基于细胞自动机的电梯群控系统建模及其面向对象实现.计算机工程与应用. 2004, (11): 40~42
    70 D. L. Pepyne, C. G. Cassandras. Optimal Dispatching Control for Elevator System during Uppeak Traffic. Proceedings of Conference on Decision and Control. Kobe, Japan, 1996: 3837~3842
    71 Y. Ogoshi, H. Kimura, S. Hirose, et al. Elevator Group Control System Using Multiagent System. Systems and Computers. 2003, 34(1): 45~58
    72 B. Xiong, P. B. Luh, S. C. Chang. Group Elevator Scheduling with Advanced Traffic Information for Normal Operations and Coordinated EmergencyEvacuation. Proceedings of IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 1419~1424
    73 M. Hamdi, D.J. Mulvaney. Prioritised A* Search in Real-time Elevator Dispatching. Control Engineering Practice. 2007, (15): 219~230
    74 H. Ujihara, S. Tsuji. The Revolutionary AI-2100 Elevator-group Control System and the New Intelligent Option Series. Mitsubishi Electric Advance. 1988, 12(45): 5~8.
    75 H. Aoki. Group Supervisory Control System Assisted by Artificial Intelligence. Elevator World. 1990, (2): 70~80
    76 N. Imasaki, S. Kubot, S. Nakait, et al. Elevator Group Control System Tuned by a Fuzzy Neural Network Applied Method. Proceeding of IEEE Conference on Fuzzy Systems. Yokohama, Japan, 1995: 1735~1740
    77 A. Fujino, T. Tobita, K. Segawa, et al. An Elevator Group Control System with Floor-Attribute Control Method and System Optimization Using Genetic Algorithms. IEEE Trans. on Industrial Electronics. 1997, 4(44): 546~552
    78 S. K. Agrawal, H. R. Pota, Y. H. Zhang. A Flatness based Approach to Trajectory Modification of Residual Motion of High Rise Elevators. Proceedings of American Control Conference. Arlington, USA, 2001: 1587~1592
    79 S. Huseinbegovic, S. Kreso, O. Tanovic. Design and Implementation of the CAN Based Elevator Control System. International Symposium on Information, Communication and Automation Technologies. Sarajevo, Bosnia-Herzegovina, 2009: 1~6
    80 S. E. Cho, F. S. Kann, C. U. Kim. Optimal Design and Minimization of Conducted EMI Noise in Elevator Inverter System by Customized IPM. Annual Conference of the IEEE Industrial Electronics Society. Roanoke , USA, 2003: 2320~2325
    81 M. Osama, O. Abdul_Azim. Implementation and Performance Analysis of an Elevator Electric Motor Drive System. International Middle-East Power System Conference. Aswan, Egypt, 2008: 114~118
    82高国贤,马福军.电梯正弦运行速度曲线的分析与设计.自动化技术与应用. 2007, 26(11): 19~21
    83宋涵,郑尚透,李维国.电梯速度优化控制的研究.机电工程技术. 2008, 37(5): 47~48, 110
    84 H. M. Ryu, S. K. Sul. Position Control for Direct Landing of Elevator using Time-based Position Pattern Generation. IEEE Conference on Industry Applications. Pittsburgh, USA, 2002: 644~649
    85陈伟国,赵国军,王文良,等. VVVF电梯的绝对剩余距离的速度控制研究.机电工程技术. 2005, 34(4): 70~71, 95
    86 Q. Hu, Q. D. Guo, D. M. Yu, et al. A Novel Adaptive Control of Elevator Motion System. Proceedings of World Congress on Intelligent Control and Automation. Dalian, 2006: 2007~2010
    87马然,包金明,谈英姿.基于Rockwell PLC的电梯位移控制的实现.电气传动. 2006, 36(12): 54~57
    88胡庆,结硕,牟永洪.超高层电梯的H鲁棒控制.沈阳工业大学学报. 2007, 29(4): 413~417
    89张汝成,王广生,聂玉同.电梯系统的高精度S型速度曲线的生成和实现.起重运输机械. 2009, (4): 6~11
    90 X. L. Yang, Q. X. Zhu, H. Xu. Design and Practice of an Elevator Control System Based on PLC. Workshop on Power Electronics and Intelligent Transportation System. Guangzhou, 2008: 94~99
    91赵国军,杨华勇,李青.多模智能PID控制及其在液压电梯速度控制系统中的应用.中国计量学院学报. 1996, (1): 3~4
    92 H. Y. Yu, X. Zhang, Q. Hu. Application of NN-PID Control in Linear Elevator. International Conference on Natural Computation. Tianjin, 2009: 35~37
    93赵国军,杨华勇.多模式模糊控制理论在速度反馈式液压电梯系统中的应用.工业仪表与自动化装置. 1997, (1): 6~10
    94张琦,张广明,蔡龙.一种基于学习算法的交流电梯位置伺服系统模糊控制技术.控制理论与应用. 1994, 4(11): 36~40
    95刘剑,吴成东,李敏,等.电梯运行速度自适应神经元控制研究.计算机自动测量与控制. 2001, 9(1): 26~28
    96张广明,吕振坚.预测控制在交流电梯速度控制中的应用.解放军理工大学学报. 2002, 3(6): 60~63
    97诸小鹏,张广明.基于GPC的电梯运行速度控制.控制工程. 2004, 11(S0): 180~182
    98韩敏.混沌时间序列预测理论与方法.中国水利水电出版社, 2007: 28~34
    99 V. Vapnik.The nature of statistical learning theory.New York: Springer-Verlag,1995
    100 F. Takens. On the numerical determination of the dimension of an attractor. Berlin:Spring-Verlag, 1985
    101肖方红,阎桂荣,韩宇航.混沌时序相空间重构参数确定的信息论方法.物理学报. 2005, 54(2): 550~556
    102 M. N. Islam, B. Sivakumar. Characterization and Prediction of Runoff Dynamics: a Nonlinear Dynamical View. Advances in Water Resources. 2002, (25): 179~190
    103吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉大学出版社, 2001: 85~87
    104 M. T. Rosenstein, J. J. Collins, C. J. Luca. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D. 1993, (65): 117~134
    105 R. Xu, D. Wunsch. Survey of Clustering Algorithms. IEEE Trans. on Neural Networks. 2005, 16(3): 645~678
    106 R. J. Hathaway, Y. K. Hu. Density-Weighted Fuzzy C-Means Clustering. IEEE Trans. on Fuzzy Systems. 2009, 56(1): 243~252
    107 Z. D Wu, W. X. Xie, J. P. Yu. Fuzzy C-means Clustering Algorithm based on Kernel Method. International Conference on Computational Intelligence and Multimedia Applications. Xi’an, 2003: 49~54
    108 K. L. Wu, M. S. Yang. Alternative C-means Clustering Algorithms. Pattern Recognition. 2002, (35): 2267~2278
    109 R. C. Eberhart, Y. H. Shi. Particle Swarm Optimization: Developments, Applications and Resources. Proceedings of IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001: 81~86
    110 B. Biswal, P. K. Dash, B. K. Panigrahi. Power Quality Disturbance Classification Using Fuzzy C-Means Algorithm and Adaptive Particle Swarm Optimization. IEEE Trans. on Industrial Electronics. 2009, 56(1): 212~220
    111 J. C. Bezdek. Numerieal Taxonomy with Fuzzy Sets. J. of Mathematieal Biology. 1974, 7(1): 57~71
    112 J. C. Bezdek. Cluster Validity with Fuzzy Set. J. of Cyberneties. 1974, 3(3): 58~72
    113 X. L. Xie, G. Beni. A Validity Measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1991, 13(8): 841~847
    114梁正峰,王磊.一种基于多规则加权的群控电梯模糊控制算法.电气传动自动化. 2005, 27(4): 14~17
    115王松青.基于模糊控制技术的电梯群控最优调度策略研究.重庆大学硕士论文. 2005: 33~34
    116李蕾.电梯群模糊控制调度算法及仿真研究.哈尔滨工业大学硕士论文. 2007: 42~53
    117 H. Mao, X. J. Zeng, G. Leng, et al. Keane. Short-Term and Midterm Load Forecasting Using a Bilevel Optimization Model. IEEE Trans. on PowerSystems. 2009, 24(2): 1080~1090
    118 G. Corani, G. Guariso. Coupling Fuzzy Modeling and Neural Networks for River Flood Prediction. IEEE Trans. on Systems, Man, and Cybernetics. 2005, 35(3): 382~390
    119 L. X. Yu, Y. Q. Zhang. Evolutionary fuzzy neural networks for hybrid financial prediction. IEEE Trans. on Systems, Man, and Cybernetics. 2005, 35(2):244 ~249
    120王群仙,李少远,李俊芳.小波分析及其在控制中的应用.控制与决策. 2000, 15(4): 385~389
    121 Q. H. Zhang. Using Wavelet Network in Nonparametric Estimation. IEEE Trans. on neural networks. 1997, 8(2): 227~236
    122田景文,高美娟.人工神经网络算法研究及应用.北京理工大学出版社, 2006: 90~94
    123崔万照,朱长纯,刘君华.薄膜场发射开启电场的小波神经网络预测模型研究.物理学报. 2004, 53(5): 1583~1587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700