用户名: 密码: 验证码:
地下磁流体探测技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水资源作为水资源的重要组成部分,它在人类生产、生活及国民经济发展中起着极其重要的作用。随着水资源短缺的日益加剧,采取有效措施防止地下水污染和过度开采、保护地下水已成为一种共识;因此合理开采和利用地下水资源是当今的重要课题。水源勘查是经济建设中重要的基础工程,而目前常用的地下水勘探方法是将勘探地下固体矿产的方法应用于地下水勘探,勘探所得到的数据信息表现的是地下地质体物理性质的综合数据值,但是,这个物理量反映的是地下的何种固体矿产、地下水仅取决于解释者的自身经验,因此探测结果并不可靠,勘探水源失败的实例很多。本课题组提出的地下磁流体探测方法是以一种探测地下天然电场携带地下信息的物探方法,从采集的信息中分离出地下水的动态信息或裂隙信息,再根据这些特征信息来分析地下水或是裂隙的分布位置及其状况。
     本文首先在理论上对地下磁流体探测技术进行了详细的分析研究,之后通过野外验证验证了其可行性与可靠性,全文主要内容如下:
     1、地下磁流体及其特征分析的研究。首先介绍了地下磁流体的定义及起源,然后是地下磁流体的传输特性,这部分内容是地下磁流体探测方法的基础和依据。
     2、地下磁流体特征信息的提取方法。这部分内容主要是地下磁流体信号的模型建立,其次是地下水、裂隙探测技术及特征信息提取方法的研究。
     3、探测仪总体方案设计。这部分内容中对仪器的硬件电路设计与探测软件设计作了简要的介绍。
     4、野外试验。通过湘潭金鼎建材制造有限公司水井勘测、邵东枫蓬煤矿采空区等探测实例,验证了地下磁流体探测方法能可靠探测地下水、裂隙等分布位置及其状况。
     本文的创新点在于找到了一种有效地将地下水资源与地下固体矿产资源区分开的物探方法,并分别从理论及野外试验进行了验证,是可行有效的。这些研究对今后地下物探领域的发展有着重要的理论意义及现实意义。
As a vital part of water source, groundwater resources play an important role in human’s manufacture and life , as well as the development of national economy. With the shortage of water source being more and more serious, people have reached consensus to take effective measures to prevent groundwater from pollution and overexploitation; Hence, rational exploitation and the use of groundwater resources are the main subject at present.Water source exploration is an significantly fundamental engineering in economic construction. The geophysical method is used to find the solid minerals, and applying it to the detection of groundwater is a conventional method. The detected data value is reflected in the physical properties of the integrated geological value, but the determination of the specific kinds of solid mineral or groundwater under the ground that expressed by this physical variable is closely related to the interpreter's subjective experience, as a result, there are multiple solutions of detection result , which lead a low exploration success rate. The method of underground magnetic fluid detection, a geophysical method that detects the electromagnetic response information of underground magnetic fluid in the natural electric field, is introduced in this thesis to help detect groundwater.
     According to this method, the dynamic information of the groundwater or fracture is extracted from the information collected before. Then the distribution of groundwater or fracture can be analyzed qualitatively and quantitatively depending on the information.
     Through theoretical analysis, instrument design and field test, the technology about underground magnetic fluid detection method is researched in the thesis. The peper mainly includes the following content:
     1. Studies of underground magnetic fluid’s basic theory. Firstly, the definition and origin of underground magnetic fluid are introduced, then followed the transmission properties of it. This part is the foundation and basis of underground magnetic fluid’s detection method.
     2. Extraction method of characteristic information in underground magnetic fluid. The main content of this chapter is the modeling of underground magnetic fluid signal; Then the detection technology of groundwater and fracture, the extraction method of characteristic information are studied.
     3. The overall scheme design of detection instrument. In this part,the hardware circuit design and the detection software design of that were introduced briefly.
     4. Field testing. With a large number of experiments and summaries at Xiangtan Jinding Building Materials Manufacturing Corporation’s wells investigation and goaf detection of Fengpeng, Shaodong, it verified that applying the underground magnetic fluid’s detection method can detect reliably the run-off channel of the ground water, fracture and so on.
     The innovative point of this paper lies in the finding of geophysical method which distinguishes groundwater resources from solid mineral resources effectively. It is verified feasible and effective from angels of theory and field test respective. The research provide important theoretical and practical significances to the development of underground geophysical method field in future.
引文
[1]张宗祜.中国地下水的现状与未来[R].北京国际会议中心:第34届国际水文地质大会,2006.
    [2]国家发展改革委关于印发煤矿瓦斯治理与利用总体方案的通知.http://www.lawtime.cn/info/laodong/ ldxw/2005111717061_5.html.
    [3]孙立东.自然放射性法探测煤矿隐伏水体的探讨[J].矿山测量,1990,16(3):55-56.
    [4]许小强,程顺有.地球物理找水方法概述[J].地下水,2007,(03).
    [5]王齐仁.地下水开采引起的地表变形调查方法[J].自然灾害学报,2007,(03).
    [6]朱岗崑.古地磁学:基础、原理、方法、成果与应用[M].北京:科学出版社,2005.
    [7] (美)R.T梅里尔,(澳)M.W.麦克尔希尼.地球磁场:它的历史起源以及其它行星的磁场[M].北京:中国科学技术出版社,1986.7.
    [8]徐文耀.地磁学[M].北京:地震出版社,2003.4
    [9]阴正锡,程咏华.磁流体及其应用[J].机械,1991,18(1):26-28.
    [10]赵静,刘勇健.磁流体在印染废水处理中的应用研究[J].环境科学与管理,2008,33(5):118-120
    [11] de Biasi.RS,Gondim.EC.Use of ferromagnetic resonance to determine the size distribution of gamma-Fe2O3 nanoparticles[J].Solid State Communications, 2006,138(6):1051.
    [12]王卫东,傅佑麟.高频电子线路[M].北京:电子工业出版社,2004.8
    [13]张肃文.高频电子线路[M].北京:高等教育出版社,2004.11
    [14]黄采伦,应文亮.地下磁流体检测仪[P].中国: 98230684.9,1999-05-12.
    [15]黄采伦,应文亮.找水用地下磁流体检测方法及检测仪[P].中国: 98112538.7,2003-12-10.
    [16]黄采伦,张剑等.地下磁流体探测技术及应用[Z].国家科技成果.
    [17]陈抗生.电磁场与电磁波[M].北京:高等教育出版社,2007.6.
    [18] Kong Jin Au. Maxwell Eguations[M].Cambridge:EMW Publishing, 2002.
    [19]潘仲英.电磁波、天线与电波传播[M].北京:机械工业出版社,2003.7
    [20]屈燕微,程顺有,王小多等.综合电法在找水中的应用[J].地下水,2008,(02).
    [21]张荣,胡祥云,杨迪琨等.地面核磁共振技术发展述评[J].地球物理学进展,2006,(01).
    [22]潘玉玲.核磁共振找水方法的现状和发展趋势[J].地质科技情报,2000,19(1):106-108.
    [23]王光海,李高明.用核磁共振测井确定渗透率的原理和方法分析[J].测井技术,2001,25(1):101-104.
    [24]姬广柱,周强,侯国强.甚低频电磁法寻找地下水探讨[J].地下水,2002,(01)
    [25]孙昌斌,谢新生.甚低频电磁法在四川雀儿山错坝活动断裂研究中的应用[J].地壳构造与地壳应力文集,2006,(00).
    [26] Hasmonay E.Magnetic and optical properties of ionic ferrofluids based on nickel ferritenanoparticles[J].Journal of Applied Physics,2000,88(11):6628 6635.
    [27]张作伦,曾庆栋等.甚低频电磁法在矿体勘查中的应用[J].2008,44(1):68-69.
    [28] Dias CA.Developments in a model to describe low-frequency electrical polarization of rocks.Geophysisics[J],2000,65(6):437-451.
    [29]杨荣丰.利用天然电场选频法的动、静态信息确定地下径流通道[J].煤炭科学技术,2003,31(4):25-27.
    [30] Ludwig Reinhold, Bretchko Pavel. RF Circuit Design Theory and Applications[M].New Jersey: Pearson Education, 2002.
    [31] http://www.wanfangdata.com.cn/ [BOSP]
    [32]杨荣丰.地下径流通道的形成、特征及其探测技术研究[D].长沙:中南大学,2006.
    [33]王齐仁.天然交变电场动态特征研究[J].煤田地质与勘探,2001,29(2):52-55.
    [34]赵光辉.高密度电法勘探技术及其应用[J].矿产与地质,2006,20(2):167-178.
    [35]段青梅,龙文华等.内蒙古桌子山地区岩溶水特征及勘查方法[J].地质与资源,2006,(01).
    [36]黄锡荃,李惠明,金伯欣.水文学[M].北京:高等教育出版社,2005.
    [37]蔡力挺,韩玉庆.天然电场选频法在工程物探中的应用效果[J].西部探矿工程,2009,(04) .
    [38]杨桂林,刘金涛,王柱.直流电测深数据处理方法在地下水勘探中的应用效果[J].资源环境与工程,2008,(06).
    [39]肖丹凤,谢经磊.浅谈地下水勘查中两种常用的地球物理方法[J].黑龙江科技信息,2007,(23) .
    [40]于生宝,王忠等.瞬变电磁法浅层探测技术[J].电波科学学报,2006,(02).
    [41]黄亚平.高频电子线路[M].北京:北京机械工业出版社,2007.
    [42]黄采伦.列车故障在线诊断技术及应用[M].北京:国防工业出版社,2006.
    [43]李国忠,孙金龙.天然电场选频法动态信息在堵水工程中的应用[J].水利电力机械,2006,(09) .
    [44]周华.地下磁流体探测方法研究与仪器开发[D].湖南科技大学,2009.
    [45] Samsung Electronics Co.,Ltd.S3C2440A 32-Bit CMOS Microcontroller User's Manual, Revision1[M].2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700