用户名: 密码: 验证码:
电流变液半主动发动机悬置隔振性能与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对平行平板式ERF半主动控制式发动机悬置所需的电流变液体研制、建模、动特性仿真分析、控制方法和试验验证等内容展开研究工作。在分析电流变液体组成及电流变效应机理的基础上,研制了三元纳米复合ERF和氧化铝ERF两种电流变液体,借助电流变仪对其流变性进行测试,试验数据证明氧化铝ERF的性能较好基本可以满足实际使用要求。运用键合图理论推导ERF悬置的动态特性表达式,通过调整电场强度、尺寸、性能等参数,研究其对ERF悬置动态特性的影响,并利用试验验证其正确性。搭建发动机和车架的二自由度系统键合图模型及仿真模型,分别采用模糊控制、模糊神经网络控制和模糊小波神经网络控制三种控制方法对系统的隔振特性进行分析,试验数据证实模糊神经网络控制效果最佳,所以采用此控制方法开发了ERF悬置的模糊神经网络单片机控制器。首次建立ERF动力总成悬置系统和发动机悬置系统模拟试验台架的键合图模型及仿真模型,对低频10Hz和怠速两种工况在有控制和无控制时的隔振特性进行仿真分析,通过搭建试验台进行试验的结果表明:ERF动力总成悬置系统在有控制的条件下,对发动机振动的隔离效果有明显的改善。
For that engine is the main vibration source and noise source in automobile, so how to isolate and attenuate the vibration of the engine is critical to the improvement of the automobile ride comfort. Mount is a connect part between engine and chassis, and also is a transfer part of engine vibration. Hign performance engine mount not only can effectively isolate and attenuate the vibration that is transmitted from engine to vehicle chassis, reduce the vibration and noise in body room, improve the ride comfort and also can protect the engine. Conventional passive mounts can not commendably satisfy the using need of people for their limits of the capability. While active control mounts' structure complexity, needing to consume a great deal outside energy and high costs make them can not be widely used. So semi-active control mount which only need partly change of mount's structure and lesser outside energy to realize the characteristics' modulation and control become the emphases of people's research.
     The intelligent control ERF engine mount which is studied in this dissertation is a kind of typical semi-active control mount. Intelligent control ERF engine mount is a semi-active control mount which can change the fluid of ERF through control outside electric field to realize characteristics' modulation. This dissertation, analyze the ER effect principle, yield shearing stress and mechanical characteristics of ERF; confect two kinds of ERF; study the structure design, bond graph model's set up and the dynamic characteristics of ERF mount; simulate and compare the isolation characteristics of two degree ERF mount using three different intelligent methods; design the single chip controller of ERF mount; and research the modeling, simulation analysis and test-bed of ERF engine mounting system. The work of this desertation is the detected research of ERF engine mount's development, main research content as follows:
     This paper analyzes the build up of the ERF, the principle of electrorheological effect and mechanical characteristics of ERF. Three elements nanometer compound ERF of kaolin, dimethylsulfoxide, Hydroxymethylstarch and alumina ERF two kinds of ERF are confected. HAKKE electrorheological equipment is used to test the rheological characteristics of this two ERF. The result that alumina ERF is better than three elements nanometer compound ERF is received through analyzing the test datum. The relation expression of shearing stress and electric field is received through fitting the test datum.
     The structure and working principle of typical ERF mount is analyzed. One kind of ERF mount is designed and manufactured. Bond graph theory modeling method is introduced. Bond graph modeling of ERF mount is built up based on its physical model. Frequency changing expression of ERF mount's dynamic stiffness and damping lagging angle is deduced. Meanwhile structure and characteristic parameters of ERF mount's influence to dynamic characteristics is analyzed. The dynamic characteristics of ERF mount samples with different dimensions in dissimilar electric fields are tested by using INSTRON dynamic equipment. The test datum is compared with simulation results, and they are similar. This indicates that the dynamic charactiristics' expression is correct.
     The two degree system mechanical model and bond graph of engine and body considering stiffness and damping of ERF mount and suspension are built up. The simulation model of this two degree system is set up by using Simulink module of MATLAB software. Three different intelligent control methods-Fuzzy control, fuzzy neural network control and wavelet fuzzy neural network control are used to control the ERF mount. The velocity and acceleration time domain variational curves of engine and body in different working conditions are simulated through software. The isolation effects of these three methods are compared, and the resit that the fuzzy neural network control method is better sutiable for application is achieved.
     The system function and compose of single-chip fuzzy neural network controller is analyzed. The ATmega16L type AVR single-chip made by Atmel is chosed to develop the single-chip controller of ERF mount based on the Comparation of different products made by different company in the market. The exploitation tool of AVR single-chip, and the chip pin, whole structure and central processing unit of ATmegal6L are introduced. The hardware and software structure of ERF mount's single-chip fuzzy neural network controller is designed.
     The bond graph model of ERF engine mounting system is built up based on the structure of it. And simulation model of ERF engine mounting system is set up by using Simulink module of MATLAB software, this simulation model can simulate isolation characteristics of ERF engine mounting system in different working situations. Fuzzy neural network control program is writed using MATLAB language. The sinusoidal excitation signal is used to simulate second order inertia force of four-cylinder-four-stroke engine. The isolation characteristics of ERF engine mounting system in 10Hz and idle working condition is simulated. The results indicate that intelligent control ERF engine mount relative to normal hydraulic mount is more effective to isolate and attenuation the vibration transfer from engine to body both in 10Hz and idle working condition. It improves the ride comfort of automobile.
     The hardware test-bed of intelligent control ERF engine mount is built up. The engine vibration excitation is simulated through electromotor, gear box, eccentric block and tranducer. The revolving velocity of electromotor is modulate by transducer to realize the simulation of engine excitation in different vibration frequency. The vibration signal collection of engine and body and the output of control signal are finished by ERF engine mount single-chip controller, acceleration sensor, charger amplifier and power amplifier, alteriorly through controlling high voltage source to modulate the characteristics of ERF mount. This test-bed can finish dynamic simulation of ERF engine mounting system in different working condition indoor, this economizes the exploitation costs and shorten the exploitation period. The test results show that the effectiveness of intelligent control ERF mount for reducing the vibration transmittion from engine to body. Meanwhile it validates the correctness of the simulation results.
     ERF engine mount is one kind of semi-active control engine mount having good prospect of application. Its research in china is still in the earlier phase of development. Some relevant key technologies are not solved yet. The study of this paper has reference value and guiding action for the exploitation of ERF semi-active control engine mount.
引文
[1]王立公.轿车动力总成液压悬置隔振降噪技术的理论和应用研究[D].吉林工业大学,1996.
    [2]Yunhe Yu.,Nagi G.Naganathan,Rao V.Dukkipati.A literature review of automotive vehicle engine mounting systems[J].The U.S.A.:Mechanism and Machine Theory,2001,Vol.36,P123-142.
    [3]Takao Ushijima,Kazuya Takano and Hiroshi Kojima.High Performance Hydraulic Mount for Improving Vehicle Noise and Vibration[C].SAC Paper,No.880073.
    [4]Richard A.Muzechuk,Hydraulic Mounts Improved Engine Isolation[C].SAC Paper No.840410.
    [5]Marcke,Le.Hydroelastic Support in Particular for the Suspension of a Motor in a vehicle [P].美国专利,No.4893797.
    [6]Toshiyuki Shibayama.Active Engine Mount for a large Amplitude of Idling Vibration[C].SAC Paper,No.951298.
    [7]郑瑞卿.智能型电致伸缩液压悬置隔振特性研究[D].吉林大学硕士学位论文,2004.
    [8]Chiharu Togashi.Study on Hydraulic Active Engine Mount[C].SAC Paper,No.2003-01-1418.
    [9]M.S.Foumani,A.Khajepour,Application of Shape Memory Alloys to a New Adaptive Hydraulic Mount[C].SAC Paper,No.2002-01-2163.
    [10]Jack yamaguchi.Electronically_controlled engine mounting system smooth transfers [J].The U.S.A.:Automotive Engineering,1983.
    [11]范让林.汽车动力总成悬置系统隔振特性的分析及液压阻尼式橡胶悬置隔振技术研究[D].吉林工业大学,1995.
    [12]吕振华,梁伟.汽车发动机液阻悬置动特性仿真与试验分析[J].汽车工程2002,24(2):105-111.
    [13]王利荣,吕振华.汽车动力总成液阻型橡胶隔振器的研究发展[J].汽车工程,2001,23(5):323-328.
    [14]庞剑等编著.汽车噪声与振动——理论与应用[M].北京理工大学出版社,2006年6月 第一版.
    [15]魏宸官编著.《电流变技术——机理·材料·工程应用》 北京理工大学出版社2000年3月第一版
    [16]H.Block,J.P.Relly.Electronheological fluids[P].US Patent,4687589,1987.
    [17]F.E.Filisko,W.F.Armstrong.Electric field dependent fluids[P].US Patent,4744914,1988.
    [18]赵晓鹏,尹建波,向礼琴.包覆表面活性剂的 Ti02 电流变液[J].材料研究学报,2001,Vo1.15,NO.3,P308.
    [19]K.O.Havelka,J.W.Pailet.Electrorheological Fluid of Polar Solid and Organic Semiconductor[P].US Patent,5879582,1999.
    [20]Y.N.Asako,Y.K.Mori.Electrorheological fluid composition comprising an electrically insulating oil and dielectric particles of polymer grafted carbon black dispersed thereon[P].US Patent,6096235,2000.
    [21]M.S.Cho,Y.H.Cho,H.J.Choi,M.S.Jhon.Potyaniline-coated PMMA microshere for electrorheological fluids[J].Synthetic Metals,2003,Vol.135-136,P15-16.
    [22]王宝祥,李佳,赵晓鹏.高岭土/羧甲基淀粉插层复合颗粒微粒及其电流变性能[J].材料研究学报,2002,Vo1.17,No.3,P235-240.
    [23]赵晓鹏,段旭.CMS/TiO2杂化材料电流变液的制备及其性能[J].复合材料学报,2002,V01.19,No.2,P54-58.
    [24]D.L.Hartsock,R.F,Novak and G.J.Chaundy.ER fluid requirements for automotive devices[J].Rheol.1991,Vo1.35,No.7,P1305-1326.
    [25]J.Onoda H.U.Oh and K.Minesugi.Semi-Active Vibration Suppression of Truss Structure by Electro-Rheologicat Fluid[C].46th International Astronutical Congress.Oslo,Norway October 2-6,1995.
    [26]Theodore G.Duclos.An Externally Tunable Hydraulic Mount Which Uses Electro-rheological FluidiC].SAE Paper,No.870963.
    [27]Theodore G.Duclos Design of Devices Using Electrorheological Fluids[C].SAE Paper,No.881134.
    [28]Morishita S.,Mitsui J.An Electronically Controlled Engine Mount Using Electro-Rheological Fluid[C].ShE Paper,No.922290.
    [29]A.Hosseini-Sianaki,W.A.Bullough,R.C.Tozer,M.Whittle and J.Makin. Experimental Investigation into the Electrical Modeling of Electrorheological Fluids in the Shear Mode [J]. IEE Proceedings-Science, Measurement and Technology, November 1994, Vol.141, Issue 6, P531-537.
    [30] Little, Eric F., Kashani, A. Reza, Kohler, John T., Morrison, Faith A. Tuning of an electrorheological fluid-based intelligent Helmholtz resonator as applied to hydraulic engine mounts[J]. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC v 54, Transportation Systems, 1994, P43-51.
    [31] Evguenia V. Korobko and Zinovy P. Shulman. Electrorheological Vibration System[J]. Smart Structures and Materials, July 2001, P487-493.
    [32] G. Georgiades and S. O. Oyadiji. Voltage Control Characteristics of Electrorheological Fluid Valves [J]. Int. J. of Vehicle Design, 2003, vol.33, nos. 1-3, P218-238.
    [33] J. M. Ginder, S. L. Ceccio The Effect of Electrical Transients on the Shear Stresses in Electrorheological Fluids. Journal of Rheology, January 1995, Vol. 39, Issue 1,P 211-234.
    [34] Andrew N. Vavreck, Kon-Well Wang. A new Hybrid Model for Electrorheological Fluid Dampers and Application to Dynamic Vibration absorption [J]. The Journal of the Acoustical Society of America, May 1997,Vol.101, Issue 5, P3109.
    [35] Choi, S. B., Choi, Y. T., Cheong, C. C. ,Jeon, Y. S. Performance Evaluation of a Mixed Mode ER Engine Mount via Hardware-in-the-Loop Simulation [J]. Journal of Intelligent Material Systems and Structures, Vol.10, no. 8, Aug 2000, P671-677.
    [36] Seung-Bok Choi, Hyun-Jeong Song Vibration Control of a Passenger Vehicle Utilizing a Semi-Active ER Engine Mount [J]. Vehicle System Dynamics 2002, Vol.37, No. 3, P193-216.
    [37] S. R. Hong, S. B. Choi, W. J. Jung, I. B. Ham, D. K. Kim Vibration Control of an ER Mount Subjected to High Static Loads [J]. Journal of Sound and Vibration, 2001, Vol.242, no. 4, P740-748.
    [38] S. R. Hong, S. B. Choi, Y. T. Choi and N. M. Wereley Comparison of Damping Force Models for an Electrorheological Fluid Damper [J]. Int. J. of Vehicle Design, 2003, Vol. 33, Nos. 1-3, P17-34.
    
    [39] 李美艳,张少华. 电流变隔振器工作特性的理论分析[J]. 中国机械工程,Vol.13, No.17, 2002年9月,P1509-1511.
    [40]王娟,张少华.车用电流变隔振器的动特性试验研究[J].北京汽车,No.5,2005年,P22-25.
    [41]张少华,王娟,李美艳.电流变隔振器系统的键合图分析及动特性仿真[J].北京理工大学学报,Vol.25,No.7,2005年7月,P570-574.
    [42]刘昕晖,宋玉泉,陈塑寰.电流变流体可变阻尼对系统振动的影响[J].吉林大学学报(工学版),Vol.34,No.1,2004年1月,P20-24.
    [43]许沧粟,黄承修,郦光明.键合图理论在发动机电流变液力悬置中的应用.机械工程学报,Vol.42,No.5,2006年5月,P219-223.
    [44]黄承修,许沧粟,楼少敏.半主动控制电流变液压悬置隔振性能仿真研究.功能材料,2006年,Vol.37,No.5,P840-843.
    [45]Chen L.,Qiu,K.,Chen D.Research on Continuous Damping Control Improving Force Isolation of a SDOF Mounting System[J].Journal of Intelligent Material Systems and Structures.2006,Vol.17,No.4,P347-351.
    [46]缪斌,龚雅萍,刘待刚,邱阳.柴油机双层隔振的自适应模糊控制方法及模拟试验的研究[J].船舶工程,2001年6月,No.6,P36-39.
    [47]肖革文,魏宸官.电流变流体及其在汽车中的应用[J].汽车工程,1999年3月,Vol.21,No.3,P145-150.
    [48]魏建红,官建国,马会茹,袁润章.电流变液的研究现状及应用前景[J].材料导报,2001年8月,Vol.15,No.8,P54-56.
    [49]尹剑波,赵晓鹏.电流变材料设计与制备研究进展[J].材料导报,2000年9月,Vol.14.No.9,P10-13.
    [50]马会茹,官建国,卢国军等.电流变液及其应用[J].现代化工,2004年5月,Vol.24 No.5,P62-64.
    [51]杨道斌,吴季茂,费仁元,王民.高性能电流变材料的性能测定和实验研究.北京工业大学学报,2002.Vol.28 No.4.
    [52]邓旭东,郑玲,邓兆祥.添加剂对TiO2电流变液性能的影响.重庆大学学报,2003.Vol.26No.12.
    [53]林逸,马天飞,姚为民,张建伟.汽车NVH特性研究综述[J].汽车工程,2002,Vol.24,No.3,P177-181.
    [54]王利荣.液阻型橡胶隔振器非线性特性仿真分析的理论与方法研究[D].清华大学博士论 文,2002.
    [55]范让林,吕振华,冯振东,张建文.惯性通道-解耦膜式液压悬置动特性分析[J].汽车工程,1997.Vol.19,No.4,P226-233.
    [56]秦民,林逸,马铁利,朱启昕.汽车液压悬置系统动态特性研究[J].汽车工程,2001,Vol.23,No.6.P381-384.
    [57]吕振华,上官文斌.液阻悬置动态特性实验方法及实测分析[J].中国机械工程,2004.Vol.15,No.2,P182-186.
    [58]史文库,郑瑞卿.主动控制式电致伸缩液压悬置隔振特性仿真[J].吉林大学学报.2005,Vol.35,No.3,P116-121.
    [59]严济宽编著.机械振动隔离技术[M].上海科学技术文献出版社.1986年7月第一版.
    [60]史文库,林逸,吕振华等.CA7221轿车动力总成液力悬置隔振性能及其对整车舒适性影响的实验研究[J].汽车技术,1996年No.3,P32-35.
    [61]Seung-Bok Choi,Sung-Ryong Hong.Dynamic Modeling and Vibration Control of Electrorheological Mounts[J].Journal of Vibration and Acoustics.2004.10,Vol.126,P537-541.
    [62]Williams E.W.,Rigby S.G.,Sproston J.L.,and Stanway R.Electrorheological Fluids Applied to an Automotive Engine Mount[J].Non-Newtonian Fluid Mech,1993,Vol.47,P26-33.
    [63]Choi S.B.,Choi Y.T.Sliding Mode Control of a Shear-Mode Type ER Engine Mount.[J].KSME Int.1999,Vol.13,No.1,P26-33.
    [64]Petek N.K.,Romstadt D.J.,lizell M.B.etc.Demonstration of an Automotive Semi-Active Suspension Using Electro-Rheological Fluid[C].SAE Technical Paper.No.950586.
    [65]Choi S.B.Vibration Control of a Flexible Structure Using ER Dampers[J].ASME J.Dyn.Syst.,Meas.,Control.1999,Vol.121,No.9,P134-138.
    [66]Stanway R,Sproston J.L.,and Washed A.Adaptive Vibration Control Using the Electro-Rheological Squeeze-Flow Damper[J].Proceedings of SPIE,SPIE,Bellingham,WA,1999,Vol.2715,P110-120.
    [67]Lee H.G.,Choi S.B.Dynamic Properties of an ER Fluid Under Shear and Flow Modes[J].Mater.Des.,2002,Vol.23,P69-76.
    [68]Ruiping Wang.A Study of Vibration Isolation of Engine Mount System[D].Concordia University,Canada.2005,3.
    [69]Dino Sciulli.Dynamics and Control for Vibration Isolation Design[D].Blacksburg,Virginia.1997,4.
    [70]潘亚东.键合图概论——一种系统动力学方法[M].重庆大学出版社,1988年.
    [71]Lee K.I.,Choi Y.T.,Hong S.P.Performance design of hydraulic mount for low frequency engine vibration and noise control[C].SAE Paper,No.941777.
    [72]Lee K.I.,Choi Y.T.,Hong S.P.Performance analysis of hydraulic mount by using bond graph method.SAE Paper,No.951347.
    [73]Steve J.Gan,Jeffry D.Cotton Experimental Study and Modeling of Hydraulic Mount and Engine System[C].SAE Paper No.951348.
    [74]郑冬黎.键合图理论在汽车动力总成液力悬置系统建模与仿真中的应用[J].湖北汽车工业学院学报,1997,Vol.13,No.4,P9-14.
    [75]王中双著.键合图理论及其在系统动力学中的应用[M].哈尔滨工程大学出版社,2000年3月第一版.
    [76]谢元凯.半主动控制液压悬置的动特性仿真与实验研究[D].吉林大学,2004年5月.
    [77]薛定宇著.控制系统计算机辅助设计——MATLAB语言与应用[M].清华大学出版社,2006年3月第二版.
    [78]张乃尧,闫平凡编著.神经网络与模糊控制[M].清华大学出版社,1998年10月第一版.
    [79]何渝生,魏克严,洪宗林等编著.汽车振动学[M].人民交通出版社,1990年5月第一版.
    [80]张也影著.流体力学[M].高等教育出版社,1986年11月第一版.
    [81]张国良,曾静等.模糊控制及其MATLAB应用[M].西安交通大学出版社.2002年11月第一版.
    [82]张吉礼编著.模糊-神经网络控制原理与工程应用[M].哈尔滨工业大学出版社,2004年6月第一版.
    [83]王士同编著.模糊系统、模糊神经阿络及应用程序设计[M].上海科学技术文献出版社,1998年12月第一版.
    [84]李国勇著.智能控制与MATLAB在电控发动机中的应用[M].电子工业出版社,2007年6月.
    [85]孙妍,樊文欣,蔡金君.发动机半主动液力悬置动特性研究与开发[J].机械设计与制造,2007年4月,No.4,P101-103.
    [86]孙涛,陈大跃.电流变智能半主动悬架模糊PID控制[J].汽车工程,2004年5月,Vol.26,No.5,P605-608.
    [87]陈无畏,王其东,王志君等.汽车半主动悬架的非线性神经网络自适应控制研究[J].机械工程学报,2000年1月,Vol.36,No.1,P75-78.
    [88]楼少敏,黄承修,许沧粟.发动机液压悬置动态特性研究分析[J].机电工程,2006年4月,Vol.23,No.4,P30-34.
    [89]吕振华,梁伟,上官文斌.汽车发动机液阻悬置动特性仿真与实验分析[J].汽车工程,2002年2月,Vol.24,No.2,P105-111.
    [90]李旭明.神经网络模糊控制器单片机实现[J].厦门大学学报(自然科学版),2000年1月,Vol.39,No.1,P52-57.
    [91]郭大蕾.车辆悬架振动的神经网络半主动控制[D].南京航空航天大学,2001年8月.
    [92]Y.Guozhi,M.Guang,F.Tong.Electro-Rheological fluid and its application in vibration control[J].Machine Vibration,1995,No.4,P232-240.
    [93]A.K.EI Wahed,J.L.Sproston,R.Stanway,E.W.Williams.An improved model of ER fluids in squeeze-flow through model updating of the estimated yield stress[J].Journal of Sound and Vibration,2003,Vol.268,P581-599.
    [94]H.B(o|¨)se,A.Trendler.Compatrative Investigations on ER Fluids with Different Polarization Mechanisms[J].International Journal of Modern Physics B,2002,Vol.16,Nos.17&18,P2751-2757.
    [95]Y.T.Choi,J.U.Cho,S.B.Choi and N.M.Wereley.Constitutive models of electrorheological and magnetorheological fluids using viscometers[J].Smart Materials and Structures,2005,Vol.14,P1025-1036.
    [96]S.R.Hong,S.B.Choi,D.Y.Lee Comparison of vibration control performance between flow and squeeze mode ER mounts:Experimental work[J].Journal of Sound and Vibration,2006,Vol.291,P740-748.
    [97]S.R.Hong,S.B.Choi,W.J.Jung,I.B.Ham,D.K.Kim Vibration control of an ER mount subjected to high static loads[J].Journal of Sound and Vibration,2001,Vol.242,No.2,P740-748.
    [98]Tang Hong,Zhao Xiaopeng and Liu Shu Design and performance research of an adaptive damper composed of electrorheological fluids and piezoelectric ceramics[J].Smart materials and Structures,2003,Vol.12,P347-354.
    [99]Wen-Hwar Kuo,Tsong-Neng Wu,Jenhwa Guo,Mao-Hsiung Chiang,etc.Design and performance evaluation of a serial multi-electrode electroehrological damper[J]. Journal of Sound and Vibration,2006,Vol.292,P694-709.
    [100]Y.Tian,K.Q.Zhu,Y.G.Meng and S.Z.Wen.Mechanical Properties of Electrorheotogical Fluids[J].International Journal of Modern Physics B,2005,Vol.19,Nos.7,8&9,P1311-1317.
    [101]P.Gardonio and S.J.Elliott.Passive and Active Isolation of Structural Vibration Transmission between Two Plates Connected by a set of Mounts[J].Journal of Sound and Vibration,2000,Vol.237,No.3,P483-511.
    [102]John Leavitt,Faryar Jabbari,James E.Bobrow.Optimal Performance of Variable Stiffness Devices for Structural Control[J].Journal of Dynamic Systems,Measurement,and Control,2007,Vol.129,No.3,P171-177.
    [103]Juan Wang,Shaohua Zhang Research on the Influence of Spring Stiffness in an ER Isolator[J].International Journal of Modern Physics B,2005,Vol.19,Nos.7,8&9,P1635-1640.
    [104]Hong S.R.,Choi S.B.and Han M.S.Vibration Control of a Frame Structure Using Electro-rheological Fluid Mounts[J].International Journal of Mechanical Sciences,2002,Vol.44,P2027-2045.
    [105]Kexiang Wei,Guang Meng Yield Stress Modeling of Electrorheological Fluids Using Neural Network[J].International Journal of Modern Physics B,2005,Vol.29 No.27,P4093-4102.
    [106]Jeong-Hoon Kim,Chong-Won Lee.Semi-active Damping Control of Suspension Systems for Specified Operational Response Mode[J].Journal of Sound and Vibration,2003,Vol.260,P307-328.
    [107]W.J.Tian,J.P.Huang,K.W.Yu.Theory of Nonlinear Ac Susceptibilities of Dynamic Electrorheological Fluids under a Dc Electric Field[J].Chemical Physics Letters,2006,Vol.427,P101-106.
    [108]叶子申,田煜,孟永刚,温诗铸.电场下电流变液静态以及流动和剪切状态的结构[J].清华大学学报(自然科学版),2005,Vol.45,No.5,P622-625.
    [109]赵晓鹏,唐宏,刘曙,尹剑波.电流变液与压电陶瓷复合的自耦合阻尼器[J].力学与实践,2006年2月,Vol.28,No.1,P7-13.
    [110]郑冬黎,陶健民.发动机液力悬置系统不同建模方法研究与比较[J].湖北汽车工业学院学报,2000年3月,Vol.14,No.1,P1-8.
    [111]郝洪涛,王娟,张少华.金属弹簧电流变隔振器动特性试验研究[J].汽车工程,2005年5月,Vol.27,No.5,P603-606.
    [112]郑玲,邓兆祥,李以农 基于电流变减振器的汽车半主动悬架最优控制[J].重庆大学学报,2003年7月,Vol.26(7),P1-5.
    [113]Norman M Wereley,Li Pang.Nodimensional Analysis of Semi-active Electrorheological and Magnetorheological Dampers Using Approximate Parallel Plate Models[J].Smart Material and Structures,1998,Vol.7,P732-743.
    [114]Gopalakrishna M Kamath.Analysis and Testing of Bingham Plastic Behavior in Semi-active Electrorheological Fluid Dampers[J].Smart Material and Structures,1996,Vol.5,P576-590.
    [115]谭立新,刘迎春等.应用电流变技术改善汽车平顺性研究[J].湖南工程学院学报,2005年12月,Vol.15,No.4,P34-37.
    [116]王振雷.模糊神经网络理论及其在复杂系统中的应用研究[D].东北大学博士学位论文,2002年1月.
    [117]孙海蓉.模糊神经网络的研究及其应用[D].华北电力大学博士学位论文,2006年4月.
    [118]李士勇.模糊控制、神经网络和智能控制论[M].哈尔滨工业大学出版社,1996年.
    [119]王立新.自适应模糊控制系统与控制—设计与稳定性分析[M].北京国防工业出版社,1995年.
    [120]E.T.Fonseca,P.C.G.da S.Vellasco,M.M.B.R.Vellasco,S.A.L.de Andrade A Neuro-fuzzy Evaluation of Steel Beams Patch Load Behaviour[J].Advances in Engineering Software,2008,Vol.39,P558-572.
    [121]董长虹编著.MATLAB神经网络与应用[M].北京国防工业出版社,2007年9月.
    [122]Neural Network Toolbox User' s Guide,The MathWorks.Inc,2003.
    [123]Kandel A,Luo Y.Stability Analysis of Fuzzy Control Systems[J].Fuzzy Sets and Systems,1999,Vol.105,No.1,P33-48.
    [124]李弼程,罗建书编著.小波分析及其应用[M].电子工业出版社,2003年5月第一版.
    [125]胡昌华,张军波等编著.基于MATLAB的系统分析与设计——小波分析[M].西安电子科技大学出版社,2001年9月.
    [126]周伟,桂林,周林等编著.MATLAB小波分析高级技术[M].2006年1月.
    [127]王军.模糊小波网络及其在永磁同步电机控制中的应用[D].西南交通大学博士论文,2005年9月.
    [128]闻新,周露,李翔等.MATLAB神经网络仿真与应用[M].北京科技出版社,2003年.
    [129]J.R.Jang,C.Sun.Neuro-fuzzy Modeling and Control[J].IEEE Proc.,1995,Vol.83,P378-406.
    [130]L.M.Reyneri.Unification of Neural and Wavelet Networks and Fuzzy Systems.[J].IEEE Trans.Neural Networks,1999,Vol.10,P801-814.
    [131]J.Y.Chen,C.C.Wong.Inplementation of the Takagi-Sugeno Model-based Fuzzy Control Using an Adaptive Gain Controller[J].IEEE Proc.Control Theory Appl,2000,Vol.147,P509-514.
    [132]D.Ho,P.A.Zhang,J.Xu.Fuzzy Wavelet Networks for Function Learning[J].IEEE Trans.Fuzzy Systems,2001,Vol.9,P200-211.
    [133]Maryam Zekri,Saeed Sadri,Farid Sheikholeslam.Adaptive Fuzzy Wavelet Network Control Design for Nonlinear Systems[J].Fuzzy sets and systems,2008,doi:10.1016/j.fss.2008.02.008,P1-28.
    [134]沈文,Eagle Lee,詹卫前编著.AVR单片机C语言开发入门指导[M].北京清华大学出版社,2003年5月第一版.
    [135]张军编著.AVR单片机应用系统开发典型实例[M].中国电力出版社,2005年8月第一版.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700