用户名: 密码: 验证码:
埋地金属管线的杂散电流腐蚀防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正常情况下,电流应该按照设计要求在指定的导体中流动,如果由于某些原因,一部分电流离开了指定的导体而在原来不应有电流的导体中流动,即没有按照期望的路径流动的电流,这部分电流就叫作杂散电流,又叫迷走电流。杂散电流主要来源于铁路直流牵引系统、阴极保护系统、直流输电线路和电解系统等等。当杂散电流从规定的回路以外流动,流入埋地金属管线的地方带负电,称为阴极,处于阴极区的管线一般不会受到杂散电流腐蚀侵害的影响,若阴极区的电位值过负时,金属管线表面会发生析氢反应,造成此区域防腐涂层的剥落。电流流出的部位带正电称为阳极,在杂散电流的作用下,阳极区域发生激烈的电化学反应,从而造成埋地金属管线的电化学腐蚀侵害,即为杂散电流腐蚀。杂散电流的腐蚀作用严重影响到埋地金属管线的使用寿命和安全,极端情况下可以造成金属管线的泄露、土壤环境的污染等等。
     本文设计了杂散电流实验室模拟装置,并用此装置研究了土壤电阻率、管线埋地深度和管线涂层破损率等因素对埋地金属管线中杂散电流影响规律,实验结果可以为埋地金属管线的施工、设计提供理论依据,亦可为防止埋地金属管线的杂散电流腐蚀提供相关的数据。
     人工神经网络(ANN)是对人脑或自然神经网络若干基本特性的抽象和模拟,是一个非线性动力系统,具有大规模的并行处理和分布式的信息处理能力,具有良好的自适应性、自组织性及很强的学习、联想、容错和抗干扰能力,其中反向传播BP前馈网络即误差反传网络是人工神经网络中应用最为广泛的一种,适合用于复杂的逻辑操作和非线性关系的实现。为分析和评价杂散电流对埋地金属管线的腐蚀侵害作用,根据其不同的影响因素,采用部分实验数据基于BP神经网络方法分别构建了埋地金属管线的杂散电流预测模型和杂散电流密度预测模型,预测结果与实测结果的误差均小于10%,人工神经网络技术在杂散电流腐蚀预测中的可行性得到验证。
     在稳恒电流条件下,导线表面会有表面电荷的分布,则在导线外亦会形成外电场,本文采用感应电场理论提出了基于感应电场理论的杂散电流分布模型,并进行了实验验证,模拟计算结果与实验结果相符。
     杂散电流可以造成金属的电解腐蚀侵害,在实验室模拟装置中,采用动电位扫描和恒电流极化方法模拟杂散电流,研究了其对土壤环境中A3、16Mn和X70钢的电解腐蚀行为,并用数码相机和扫描电子显微镜对腐蚀产物及其表面钝化膜形貌进行了表征,探讨了其腐蚀机理,同时研究了杂散电流腐蚀的危害指标和焊缝的腐蚀情况。
     有机涂层作为经典的防腐蚀技术得以广泛的应用,已成为金属防腐保护方法中应用最广泛的手段之一,有机涂层和金属基体良好的附着、结合性能是保证防腐蚀效果的重要条件。当埋地金属管线表面涂层发生破损后,如果杂散电流从此破损点流进金属管线时,形成杂散电流反应的阴极区,极易造成金属管线表面涂层的阴极剥离作用,通过实验研究提出了氢和氢氧根离子(主要为氢)在涂层与金属基体界面间迁移导致二者之间附着力减弱,造成了涂层剥离的反应机理。
     最后研究了杂散电流对埋地金属管线阴极保护的影响作用,介绍了杂散电流的排流防护措施。
The current deviated from its intended path and escaped to the electrolyte (the soil, concrete or seawater) is called leakage current or stray current. Stray current may originate from the electrical railways, cathodic protection systems, electrolysis plants, electric cables and large electric plants. Stray current corrosion process in the metallic structure is totally similar to the classic one: current flows from anode to cathode through the electrolyte by ionic conductivity and from cathode to anode through the metal by electric conductivity. At the anode the metal oxidation occurs, and a total metal loss can be visible as the result of anodic dissolution. Whilst at the cathode hydrogen or oxygen reduction occurs, avoiding corrosion hazard to the cathode. However, organic coating at the cathodic region will be delaminated by stray current. Moreover, stray current density in the points where the current enters and leaves the structure is extremely high, a threshold ranging between 2 and 20mA/cm2 has been proposed. Stray current corrosion may influence the lifetime of the buried metallic structures, and in a few extreme cases, it can also induce big accident such as gas explosion, soil pollution, and so on.
     In this paper, the impacts factors of stray current in the buried metallic pipeline, such as the soil resistivity, the depth of the buried metallic pipeline and the pipeline dilapidation ratio, were studied by the laboratory simulation system. Pertinent experiment data are provided for the buried metallic pipeline in design, construction and the protection of corrosion.
     To analyze and estimate stray current corrosion hazard of the buried metallic pipeline, according to the BP neural network method and the part of experimental data, two predictive models for stray current of the buried metallic pipeline were built. Artificial neural network (ANN) has powerful, nonlinear, mapping ability, and the modeling process is easier and more direct than for empirical model. Feed-forward multilayer network with back propagation error is called BP network, which is a kind of ANN used the most widely, it provides a new method to solve the prediction and control problem for a non-linear system, and to be of widespread utility in engineering and is steadily advancing into new areas. The accuracy of BP neural network predictive model was tested by the test sample, and the feasibility of the BP neural network to forecast stray current of the buried metallic pipeline was testified, too.
     When the constant current flows through the stationary resistive wire connected to DC Power Supply, the inside inducted electric field driving the conduction electrons against the resistive friction of the wire is due to the free charges distributed along the surface of the wire, and generate as well an electric field outside the wire. The distribution model of stray current was discussed by the inducted electric field theory, which in accordance with the experiment results.
     Stray current corrosion behavior of steel in soil environments was investigated by using potentiodynamic polarization and constant current polarization methods in laboratory, the corrosion products and surface passive films morphology were observed with digital camera and scanning electron microscope. Stray current corrosion critical current density and potential and the weld corrosion were studied.
     In order to prevent aggressive species from direct contact with the metallic structure surface, organic coating is extensively applied to prevent corrosion of the metallic structure buried in soil or immersed in seawater because of the high corrosion resistance. To protect the metallic structure from corrosion, organic coating must maintain adequate adhesion to the metallic structure surface during environmental exposure. However, if organic coating has a defective region, the delamination of organic coating is easy to occur by stray current, which will lead to the adhesion degradation, and the delaminated rate is extremely rapid. Stray current delamination of organic coating on the metallic structure is caused by hydrogen and hydroxyl ions, which degrade the adhesive strength between the coating and the metal and lead up to organic coating delamination.
     In the end, the infection of cathodic protection by stray current in the soil and the means protecting from corrosion of stray current were studied.
引文
[1]杨德钧,沈卓身.金属腐蚀学(第二版)[M].北京,冶金工业出版社,1999,218-225.
    [2] R.winston Revie.编著,杨武等译.尤利格腐蚀手册(原著第二版)[M].北京,化学工业出版社,2005,244-247.
    [3]王风平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京,化学工业出版社,2008,149-156.
    [4] H.H.尤里克,R.W.瑞维亚著,翁永基译.腐蚀科学和腐蚀工程导论[M].北京,石油工业出版社,1994,220-228.
    [5] Pierre R. Roberger. Corrosion Engineering Principles and Practice[M].New York, McGraw-Hill Companies, 2008, 285-393.
    [6] Einar Bardal. Corrosion and Protection[M].London,Springer-Verlag,2004,206-209.
    [7]阿基莫夫著,余柏年,曹楚南,沈行素译.金属腐蚀理论及其研究方法[M].科学出版社,1958,133-134.
    [8]曹楚南.腐蚀电化学原理(第二版)[M].北京,化学工业出版社,2004,113-116.
    [9]唐明华.油气管道阴极保护[M].北京,石油工业出版社,1986,191-193.
    [10]杨清勇.杂散电流腐蚀基础研究(硕士学位论文)[D].大连,大连理工大学,2005,10-12.
    [11] Nestor Perez. Electrochemistry and Corrosion Science[M].New York, Kluwer Academic Publishers, 2004,260-261.
    [12]吴荫顺,曹备.阴极保护和阳极保护—原理、技术及工程应用[M].北京,中国石化出版社,2007,183-187.
    [13]王志宏.杂散电流及其防治[M].北京,煤炭工业出版社,1986,1-23.
    [14]朱孝信.地铁的杂散电流腐蚀与防治[J].材料开发与应用,1997,12(5):40-97.
    [15]吴光祐.阴极保护的原理和应用[M].北京,机械工业出版社,1965,207-210.
    [16]胡士信,孟宪级,徐快,等.阴极保护工程手册[M].北京,化学工业出版社,1999,257.
    [17]唐明华.油气管道阴极保护[M].北京,石油工业出版社,1986,193.
    [18] W.M Sim, C.P chan. Stray current monitoring and control on Singapore MRT system[C]. 2004 Intermationan Conference on Power System Technology, 2004,11: 1897-1903.
    [19] D.-K. Kim, T.-H. Ha, Y.-C. Ha. Alternating current induced corrosion[J]. Corrosion Engineering, Science and Technology, 2004,39:117-123.
    [20]李建民.城市轨道交通供电系统杂散电流检测与控制[J].仪表技术与传感器,2007,10:73-78.
    [21]林江,唐华,于海学.地铁迷流腐蚀及其防护技术[J].建筑材料学报,2002,5(1):74-76.
    [22]徐光强.直流牵引供电系统中杂散电流防护方案研究与设计(硕士学位论文)[D].四川,西南交通大学,2003:4-11.
    [24]周伟.直流牵引供电系统杂散电流分布于防护研究(硕士学位论文)[D].四川,西南交通大学,2004:7-11.
    [25]赵宇辉.地铁杂散电流腐蚀及其对隧道结构可靠性与耐久性的影响(硕士学位论文)[D].四川,西南交通大学,2004:8-18.
    [26]赵文友,刘彩虹.杂散电流的危害与防治[J].淮南职业技术学院学报,2006,6(1):51-52.
    [27] L.H.Schwalm,J.G.Sandor. Stray current-the major cause of underground plant corrosion[J]. Materials Perform,1969,6:31-36.
    [28] Ian Cotton. Stray current control in DC mass transit systems[J].Vehicular Technology, 2005,54:722-730.
    [29] R.Winston Revie, Herbert H.Uhlig. Corrosion and Corrosion Control( Fourth Edition) [M]. New Jersey, John Wiley & Sons, Inc.,2008, 244-245.
    [30]周晓军,高波.地球迷流对钢筋混凝土中钢筋腐蚀的实验研究[J].铁道学报,1999,21(5):99-105.
    [31]梁成浩,王杰,李淑英,蒋晔良.埋地管道杂散电流排流与阴极保护[J].腐蚀科学与防护技术,1998,10(2):114-116.
    [32]邓树滨.杂散电流腐蚀及其对牺牲阳极阴极保护的影响[J].材料开发与应用,1995,10(2):44-49.
    [33] F.Brichau, J.Deconinck, T. Driesens. Modeling of underground cathodic protection stray currents[J]. Corrosion,1996,52:480-487.
    [34]马洪儒.北京地下铁道的杂散电流腐蚀与防护[J].城市轨道交通,1990,10(1):10-11.
    [35]易友祥.一种积极有效的地铁杂散电流防护方案[J].天津理工学院学报,1995,11(2):1-5.
    [36] A.W.皮博迪著,吴建华,许立坤等译.管线腐蚀控制[M].北京,化学工业出版社,2004,1-7.
    [37]曹楚南.腐蚀电化学[M].北京,化学工业出版社,1994,1-3.
    [38] M.G.方坦纳,N.D.格林著.左景伊译.腐蚀工程(第二版)[M].北京,化学工业出版社,1982,1-5.
    [39]王增品,姜安玺.腐蚀与防护工程[M].北京,高等教育出版社,1991,1-8.
    [40]朱日彰.腐蚀与防护技术基础[M].北京,冶金工业出版社,1987,1-35.
    [41]梁成浩.现代腐蚀科学与防护技术[M].上海,华东理工大学出版社,2007,1-10.
    [42]魏宝明.金属腐蚀理论及应用[M].北京,化学工业出版社,2008,1-10.
    [43]刘永辉,张佩芬.金属腐蚀学原理[M].北京,航空工业出版社,1993,1-8.
    [44]陈旭俊.金属腐蚀与保护基本教程[M].北京,机械工业出版社,1988,1-4.
    [45]叶康民.金属腐蚀与防护概论[M].北京,高等教育出版社,1980,1-5.
    [46] Schweitzer, Philip A. Corrosion Engineering Handbook[M]. New York, CRC Press,1996, 1-22.
    [47] Dieter Landolt. Corrosion and Surface Chemistry of Metal [M]. New York, CRC Press,2003,1-9.
    [48]曹楚南.腐蚀电化学原理[M].北京,化学工业出版社,2008,35-37.
    [49] Brichau F, Deconinck J. A Numerical model for cathodic protection of buried pipes. Corrosion 1994,50:39-49.
    [50] Philippe Marcus. Corrosion Mechanisms in Theory and Practic(eSecond Edition) [M].New York, Marcel Dekker, Inc.,2002,9-17.
    [51]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京,化学工业出版社,2008,20-22.
    [52] Nestor Perez. Electrochemistry and Corrosion Science[M]. New York, Kluwer Academic Publishers,2004, 2-3.
    [53]俞蓉蓉.地下金属管道的腐蚀与防护[M].北京,石油工业出版社,1998,126-127.
    [54]曹晓斌,吴广宇,付龙海,等.地铁杂散电流的危害及其防治[J].电气化铁道,2006,4:32-34.
    [55] P.Ferenc. Do we determine the corrosion aggressivity correctly[J].Koroze a Ochrana materialu,1992,36:81.
    [56] K.W.Park et al. Evaluation of stray current effect on the cathodic protection of underground pipeline[J]. The Corrosion Science Society of Korea,1995,24:176.
    [57] B.Bazzoni, L.Lazzari.The lateral gradient technique for potential measurements in presence of stray current[J]. Corrosion, 1996,53:202.
    [58] B.A.Martin,H.J.Brinsmead.A method for determining pipeline polarized potentials in stray current areas using linear regression analysis[J].India Corrosion,1985,3:10.
    [59] K. Zakowski, W. Sokolski. 24-hour characteristic of interaction on pipelines of stray currents leaking from tram[J]. Corrosion Science, 1999,41:2099-2111.
    [60] Luca Bertolini, Maddalena Carsana, Pietro Pedeferri. Corrosion behaviour of steel in concrete in the presence of stray current [J]. Corrosion Science, 2007, 49:1056-1068.
    [61] Shi-Lin Chen,Shih-Che Hsu,el ta. Analysis of rail potential and stray current for Taipei metro[J].IEEE Transactions on Vehicular Technology,2006,55:67-74.
    [62] J.Trevelyan, H.P.Hack. Analysis of stray current corrosion problems using the boundary element method[J]. Boundary Element Technology IX,1994,347-356.
    [63] K.Darowicki,K.Zakowski. A new time-frequency detection method of stray current field interference on metal structures[J].Corrosion Science 2004,46:1061-1070.
    [64] I.A.Metwally,H.M.Al-Mandhari. Stray cerrents of ESP well casings[J].Engineering Analysis with Boundary Elements, 2008,32:32-40.
    [65] Y.C.Liu,J.F.Chen.Control scheme for reducing rail potential and stray current in MRT systems[J].IEE Proceedings - Electric Power Applications,2005,152:612-619.
    [66] W.M Sim,C.F Chan.Stray cyrrent monitoring and control on Singapore MRT system[C]. 2004 International Conference on power System technology .Singapore,2004.
    [67] Jeong-Hyo Bae, Yoon-Cheol ha , el ta. datalogger appartus for stray current measurement of subway and power line[C].The 30th Annual Conference of the IEEE industrial Electronics Society.Busan,Korea.2004.
    [68] C.S.Chang,L.F.Tian.Worst-case identification of touch voltage and stray current of DC railway system using genetic algorithm[J]. IEE Proc-Electr.Power Appl,1999,146:570-576.
    [69] Kinh D.Pham.Analysis of stray current track-to-earth potentials & substation negative grounding in DC traction electrification system[C].ASME Joint Rail Conference,2006.
    [70]赵晋云,腾延平,等.新大线管线杂散电流干扰的分析与防护[J].管道技术与设备,2007,2:38-40.
    [71]尚秦玉,许进,等.高压线路对地下输油管道中杂散电流影响规律[J].腐蚀科学与防护技术,2007,19(5):371-372.
    [72]张国新,吴平,等.管道电焊过程中杂散电流分布规律研究[J].腐蚀科学与防护技术,2006,18(3):176-179.
    [73]颜挺进,李淑英,等.地下输水管道杂散电流的测试与分析[J].材料保护,2002,35(3):57-58.
    [74]王明贤,张博生,等.杂散电流沿输液管形结构的分布及电腐蚀规律[J].腐蚀科学与防护技术,1990,2(4):43-47.
    [75]张庆杰.油水井套管腐蚀及防护理论、实验与应用[J].大庆石油学院学报,2004,28(4):107-108.
    [76]庞原冰,李群湛.地铁杂散电流模型讨论[J].重庆工学院学报(自然科学版),2007,21(11):110-114.
    [77]庞原冰,李群湛,等.基于电场的地铁杂散电流模型研究[J].城市轨道交通研究,2008,2:27-31.
    [78]李威,王爱兵,等.地铁杂散电流腐蚀的模糊综合评价方法研究[J].腐蚀科学与防护技术,2007,19(5):221-224.
    [79]李威,王禹桥,等.地铁杂散电流监测中的IR将误差的消除方法研究[J].腐蚀与防护,2007,28(6):279-282.
    [80]李威,王禹桥,等.地铁杂散电流监测系统的研制[J].电气化铁道,2004,5:40-42.
    [81]李威,王爱兵,等.应用于地铁杂散电流腐蚀测量的硫酸铜电极实验研究[J].中国矿业大学学报,2005,34(1):62-66.
    [82]王崇林,马草原,等.煤矿杂散电流自动监测系统的设计与开发[J].煤炭科学技术,2007,35(5):54-58.
    [83]李国欣,王崇林.矿井直流杂散电流分布规律的仿真研究[J].工矿自动化,2006,3:8-11.
    [84]赵玉珍,杨川,等.低温气体多元共渗工艺抗杂散电流腐蚀的研究[J].材料保护,2003,36(2):22-24.
    [85]黄泉玉,王健,等.杂散电流对阴极保护效果影响的模拟实验[J].全面腐蚀控制,2003,17(4):13-15.
    [86]万平玉,邵景华,等.溶液等电位法用于盐水预热器杂散电流腐蚀研究[J].化工机械,1993,24(2):73-77.
    [87]孙立娟,王洪仁.快轨杂散电流腐蚀自动监测系统的研究[J].海洋科学,2005,29(7):45-49.
    [88] Pierre R. Roberger. Corrosion Engineering Principles and Practice[M].New York, McGraw-Hill Companies, 2008, 390.
    [89]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京,化学工业出版社,2008,150.
    [90] Rhoades J D, Shouse P J , A lves N A , et al. Determ ining soil salinity from soil electrical conductivity using different models and estimates[J]. Soil Science Society of America Journal ,1990, 54:46-54.
    [91]孙宇瑞.土壤含水率和盐分对土壤电导率的影响[J].中国农业大学学报,2006,5(4):39-41.
    [92]裴世建.土壤电阻率测试方法的研究[J].工程地球物理学报,2009,6(8):156-158.
    [93] Shuchen Li, Wei He, Kunpeng Fu, Xiaorui Fu. Research on soil resistivity with four-probe method[J]. Journal of Yunnan Normal University, 2008,28(1):53-57.
    [94]吴建华,陈凯,刘光洲,等.混凝土中钢筋杂散电流腐蚀危险电压的确定[C].海峡两岸材料腐蚀与防护研究进展,厦门大学出版社,1998:514-518.
    [95]吴荫顺,曹备.阴极保护和阳极保护原理、技术及工程应用[M].北京,中国石化出版社,2007:197-199.
    [96]高隽.人工神经网络原理及仿真实例[M].北京,机械工业出版社,2003,1-20.
    [97]张际先,宓霞.神经网络及其在工程中的应用[M].北京,机械工业出版社,1996:1-17.
    [98] P.G.J.Lisboa.著,邢春颖,阳影译.现代神经网络应用[M].北京,电子工业出版社,1996:5-16.
    [99]杨建刚.人工神经网络实用教程[M].杭州,浙江大学出版社,2001:1-16.
    [100]罗四维.大规模人工神经网络理论基础[M].北京,清华大学出版社,2004:1-17.
    [101] Erkan Sahinkaya. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies[J]. Journal of Hazardous Materials, 2009, 1164:105-113.
    [102] Zafer Aydogmus. A neural network-based estimation of electric fields along high voltage insulators[J]. Expert Systems with Applications, 2009,36:8705-8710.
    [103] H.R. Hafizpour, M. Sanjari, A. Simchi. Analysis of the effect of reinforcement particles on the compressibility of Al–SiC composite powders using a neural network model[J]. Materials and Design, 2009, 30:1518-1523.
    [104] Murat Selek, Omer Sinan Sahin, Sirzat Kahramanli. Using artificial neural networks for real-time observation of the endurance state of a steel specimen under loading[J]. Expert Systems with Applications, 2009, 36:7400-7408.
    [105] Zhang Yudong, Wu Lenan. Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network[J]. Expert Systems with Applications, 2009, 36:8849-8854.
    [106] Li Zhang *, Jianhua Luo, Suying Yang. Forecasting box office revenue of movies with BP neural network[J]. Expert Systems with Applications, 2009, 36:6580-6587.
    [107] Li Qiang, Yu Jing-Yuan, Mu Bai-Chun, Sun Xu-Dong. BP neural network prediction of the mechanical properties of porous NiTi shape memory alloy prepared by thermal explosion reaction[J]. Materials Science and Engineering A, 2006, 419:214-217.
    [108] Y.P. Liu, M.G. Wu, J.X. Qian. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J]. Thermochimica Acta, 2007, 454:64-68.
    [109] LiMei Song, XingHua Qu, ShengHua Ye. Improved SFS 3D measurement based on BP neural network[J]. Image and Vision Computing, 2007, 25:614-622.
    [110] Jianqiang Yi, Qian Wang, Dongbin Zhao, John T. Wen. BP neural network prediction-based variable-period sampling approach for networked control systems[J]. Applied Mathematics and Computation, 2007, 18:976-988.
    [111] Shiwei Yu, Kejun Zhu, Fengqin Diao. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction[J]. Applied Mathematics and Computation, 2008, 195:66-75.
    [112] Liangpei Zhang_, Ke Wu, Yanfei Zhong, Pingxiang Li. A new sub-pixel mapping algorithm based on a BP neural network with an observation model[J]. Neurocomputing, 2008, 71:2046-2054.
    [113] WANG Ping, HUANG Zhen-yi , ZHANG Ming-ya, ZHAO Xue-wu. Mechanical Property Prediction of Strip Model Based on PSO-BP Neural Network[J]. Journal of Iron and Steel Research, International, 2008, 15:87-91.
    [114] C. Zhang,W.Wu, X.H.Chen,Y.Xiong. Convergence of BP algorithm for product unit neural networks with exponential weights[J]. Neurocomputing, 2008,72:513-520.
    [115] Zhi Xiao, Shi-Jie Ye, Bo Zhong, Cai-Xin Sun. BP neural network with rough set for short term load forecasting[J]. Expert Systems with Applications, 2009,36:273-279.
    [116] Yohsuke Kinouchi, Gen Ohara, Hirofumi Nagashino. Dipole Source Localization of MEG by BP Neural Networks[J]. Brain Topography, 1996,8:317-321.
    [117] Jiantao Liu, Hongbing Chang, T.Y. Hsu. Prediction of the flow stress of high-speed steel during hot deformation using a BP arti?cial neural network[J]. Journal of Materials Processing Technology, 2000, 103:200-205.
    [118] B.H.M. Sadeghi. A BP-neural network predictor model for plastic injection molding process[J]. Journal of Materials Processing Technology, 2000, 103:411-416.
    [119] Weiping Yan, Chengfeng Diao, Zhenan Tang. The study of gas sensor array signal processing with improved BP algorithm[J]. Sensors and Actuators B, 2003, 66:283-285.
    [120]邓春龙,李文军,孙明先.BP神经网络在碳钢、低合金钢海水腐蚀中的应用[J].腐蚀科学与防护技术,2006,18(1):54-57.
    [121]王海涛,韩恩厚,柯伟.基于人工神经网络模型的铝合金大气腐蚀的预测[J].中国腐蚀与防护学报,2006,26(10):272-274.
    [122]蔡建平,柯伟.应用人工神经网络预测碳钢、低合金钢的大气腐蚀[J].中国腐蚀与防护学报,1997,17(4):303-306.
    [123]储林华,査五生,刘锦云,等.基于BP神经网络的粘结NdFeB永磁体性能预测[J].材料科学与工程学报,2008,26(6):958-962.
    [124]马小彦,屈祖伟,李长荣. BP神经网络在碳钢及低合金钢大气腐蚀预测中的应用[J].腐蚀科学与防护学报,2002,14(1):52-54.
    [125]李威,王禹桥.用BP模型预测地铁杂散电流腐蚀危害性[J].腐蚀科学与防护技术,2005,17(6):438-441.
    [126]孔涛,王佳,钟莲.组合人工神经网络模型预测海水腐蚀速度的研究[J].腐蚀科学与防护技术,2008,20(1):58-61.
    [127] A.K.T.Assis, J.A.hernandes, J.E.lamesa. Surface Charges in Conductor Plates CarryingConstant Currents[J]. Foundations of Physics, 2001, 31:1501-1511.
    [128] A.K.T.Assis, W.A.Rodrigues Jr., A.J.mania. The Electric Field Outside a Stationary Resistive Wire Carrying a Constant Current, Foundations of Physics[J]. 1999, 29: 729-753.
    [129] Benenson, W., Harris, J.W., St?cker, H.. Handbook of Physics[M]. Springer-Verlag Press, New York, 2001, 440-441.
    [130] J. A. G. Garcia, H. Singer. The consideration of singularities in the numerical calculation of electrostatic fields by means of the Surface Charge Method[J]. Electrical Engineering, 1997,80:215-219.
    [131]李应真.恒流条件下导体上电场及电荷分布分析[J].动力与电气工程,2009,2:148.
    [132]白占武.导体表面的电荷分布[J].大学物理,1998,17(3):20-22.
    [133]赵章吉.基于恒流条件下导线上的电荷分布研究[J].安阳工学院学报,2009,2:114-115.
    [134]谢实崇.带电导体表面的电场强度[J].青岛大学学报,2001,14(2):47-49.
    [135]刘成有.稳恒电路中导体上的电场与电荷分布[J].广州师院学报(自然科学版),1999,21(3):42-46.
    [136]郭祥,郑晓静.导体表面电荷分布的计算方法研究[J].兰州大学学报(自然科学版),2003,39(2):31-34.
    [137]高文渊,王华庆.大学物理学(第二册)[M].南京大学出版社,1990:5-7.
    [138]范中和.大学物理学(下册)[M].陕西师范大学出版社,2005:4-7.
    [139] Benenson, W., Harris, J.W., St?cker, H.. Handbook of Physics[M]. Springer-Verlag Press, New York, 2001: 447-448.
    [140] XIAO KUI, DONG CHAO-FANG, LI XIAO-GANG, et al. Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel[J]. Journal of Iron and Steel Research, International, 2008, 15:42-48.
    [141] A.I.M. ISMAIL, A.M. EL-SHAMY. Engineering behavior of soil materials on the corrosion of mild steel[J]. Applied Clay Science, 2009, 42(3):356-362.
    [142] SEON YEOB LI, SUNGWON JUNG, KYEONG-WAN PARK, et al. Kinetic study on corrosion of steel in soil environments using electrical resistance sensor technique[J]. Materials Chemistry and Physics, 2007, 103:9-13.
    [143] DU C.W., LI X.G., LIANG P, et al. Effects of microstructure on corrosion of X70 pipe steel in an alkaline soil[J]. Journal of Materials Engineering and Performance, 2009, 18:216-220.
    [144]蔡松崎,李伟善,J L LUO. Fe在水溶液中形成钝化膜的结构和性质[J].中国腐蚀与防护学报,2003,23(6):187-192.
    [145]李党国,朱杰武,郑茂盛,等. X80管线钢钝化膜的光学性能[J].金属学报,2008,44(6):739-744.
    [146]张宝宏,丛文博,扬萍.金属电化学腐蚀与防护[M].北京,化学工业出版社,2005,59-62.
    [147]魏宝明.金属腐蚀理论及应用[M].北京,化学工业出版社,1984,60-69.
    [148] E. Akbarinezhad, J. Neshati, F. Rezaei. Investigation on organic pipeline coating effectiveness via electrochemical impedance spectroscopy[J].Surface Engineering, 2007,23:380-383.
    [149] R.M. Souto, D.J. Scantlebury. Cathodic delamination of coil coatings produced with different Zn-based intermediate metallic layers[J]. Progress in Organic Coating, 2005,53:63-70.
    [150] U.bexell, P.Carsson, M.Olsson. Tribological characterization of an organic coating by the use of TOF-SIMS[J]. Applied Surface Science, 2003,203-204:596-599.
    [151] A. Collazo, M. Izquierdo, X.R. Novoa, C. Perez. Surface treatment of carbon steel substrates to prevent cathodic delamination[J]. Electrochimica Acta, 2007,52:7513-7518.
    [152] Peter C.T. Ha, D.R. Mckenzie, M.M.M. Bilek. Control of stress and delamination in single and multi-layer carbon thin films prepared by cathodic arc and RF plasma deposition and implantation[J]. Surface & Coatings Technology, 2005, 200:6405-6408.
    [153]李荣光,刘明辉,汤兵.聚脲涂层的耐阴极剥离性能研究[J].油气储运,2008,27(3):33-35.
    [154]赵增元,王佳.有机涂层阴极剥离作用研究进展[J].中国服饰与防护学报,2008,28(2):116-120.
    [155] Hernondez M A,Galliano F,Landolt D. Mechanism of cathodic delamination control of zinc-aluminum phosphate pigment in waterborne coatings[J]. Corrosion Science, 2004, 46:2281—2300.
    [156] Flounders, Emer C. Jr., Daniilyak, Bons M. Stray current control on distribution water mains using diode microdrainges[J]. Materials Performance, 1995,34:17-21.
    [157] D.-K.Kim, T.-H.Ha, Y.-C.Ha, J.-H.Bae. Alternating current induced corrosion[J]. Corrosion Engineering, Science and Technology, 2004, 39:117-123.
    [158] C. Andrade, I. Martinez, M. Castellote. Feasibility of determining corrosion rates by means of stray current-induced polarisation[J]. Journal of Applied Electrochemistry, 2008, 38:1467-1476.
    [159] Christopher M. A. Brett, Ana Maria Oliveira Brett. Electrochemistry Principles, Methods, and Applications[M]. Oxford, Oxford University Press, 1994,481.
    [160] R.F. Hamade, C.Y. Seif, D.A. Dillard. Cathodic delamination of elastomer-to-metal adhesive joints: Experimental data and empirical modeling[J]. International Journal ofAdhesion & Adhesives, 2007,27:108-121.
    [161] P.A. Sorensen, S. Kiil, K. Dam-Johansen, C.E Weinell. Influence of substrate topography on cathodic delamination of anticorrosive coatings[J]. Progress in Organic Coatings, 2009, 64:142-149.
    [162] Kerry N. Allahar, Mark E. Orazem, Kevin Ogle. Mathematical model for cathodic delamination using a porosity–pH relationship[J]. Corrosion Science, 2007,49:3638-3658.
    [163] M.A. Hernandez, F. Galliano, D.landolt. Mechanism of cathodic delamination control of zinc–aluminum phosphate pigment in waterborne coatings[J]. Corrosion Science, 2004, 46:2281-2300.
    [164] W. Furbeth, M. Stratmann. The delamination of polymeric coatings from electrogalvanised steel– a mechanistic approach.: Part 1: delamination from a defect with intact zinc layer[J]. Corrosion Science, 2001,43:207-227.
    [165] W. Furbeth, M. Stratmann. The delamination of polymeric coatings from electrogalvanized steel– a mechanistic approach.: Part 2: delamination from a defect down to steel[J]. Corrosion Science, 2001,43:229-241.
    [166] W. Furbeth, M. Stratmann. The delamination of polymeric coatings from electrogalvanized steel– a mechanistic approach.: Part 3: delamination kinetics and influence of CO2[J]. Corrosion Science, 2001,43:241-254.
    [167]胡士信.阴极保护工程手册[M].北京,化学工业出版社,1999:55-121.
    [168]唐明华.油气管道阴极保护[M].北京,石油工业社,1986:38-192.
    [169]吴荫顺,曹备.阴极保护和阳极保护原理、技术及工程应用[M].北京,中国石化出版社,2007:44-181.
    [170] R. Winston Revie, Herbert H. Uhlig. Corrosion and Corrosion Contro(lFourth Edition)[M]. John Wiley & Sons, Inc., 2008:251-267.
    [171] Harvey P. Hack. Designing Cathodic Protection sysstems for Marine Structures and Vehicles[M]. ASTM Printed in the U.S.A., 1999:17-101.
    [172] Chess, Paul. Chess, Paul. Cathodic Protection of Steel in Concrete[M]. Taylor & Francis Routledge, 1998:37-131.
    [173]李威.地铁杂散电流腐蚀监测及防护技术[M].徐州,中国矿业大学出版社,2004:103-155.
    [174]米琪,李庆林.管道防腐蚀手册[M].北京,中国建筑工业出版社,1994:319-328.
    [175]茹慧灵.油气管道保护技术[M].北京,石油工业出版社,2008:200-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700