用户名: 密码: 验证码:
飞行模拟器操纵负荷系统力感模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行模拟器是一种培训飞行员的重要工具。操纵负荷系统作为飞行模拟器的关键子系统之一,其主要作用是为接受训练的飞行员提供驾驶杆处、脚蹬处的操纵力,以便在模拟器上逼真地复现驾驶真实飞机时的操纵力感。
     本文以哈工大电液伺服仿真与试验系统研究所承担的“985工程”二期——“飞行模拟器关键技术研究与试验平台”为背景,研究了操纵负荷系统力感模拟的关键技术,包括多余力的抑制、内回路带宽的增加和外回路稳定性的提高,并对相应的控制策略进行了深入的研究。
     为了研究力感模拟的关键技术,将操纵负荷系统从控制结构上分为内、外两个回路。内回路是电液力加载系统。外回路由操纵机构、力函数模型和内回路组成,它可等效为一个以操纵力为输入、以操纵位移为输出的力-位移阻抗。通过分析内回路多余力、内回路带宽和操纵机构参数对外回路阻抗频率特性和稳定性的影响,提出了内回路带宽的约束条件、内回路多余力的约束条件和外回路稳定性判据。
     为了有效抑制内回路的多余力,针对速度前馈补偿策略的局限性,提出了一种基于前馈逆模型观测器和速度前馈补偿的复合控制策略。推导了前馈逆模型观测器结构的鲁棒稳定性充分条件,并给出了一种观测器传递函数的设计方法,实现了对速度前馈补偿后的多余力的进一步抑制。在此基础上,对基于该复合控制策略的外回路稳定性进行了深入地分析,提出了一种阻尼补偿的方法来增强外回路稳定性。
     为了实现前馈逆模型观测器结构中的滤波器Q(s)的量化设计以使该结构的鲁棒性能接近最优,提出了一种Q(s)的间接优化方法。首先将逆模型观测器结构转化成一个二自由度控制结构,使前馈和反馈控制器均为含有Q(s)的函数,并推导出转化前、后的控制结构的等效性。然后以多余力的抑制为性能指标,采用H∞优化算法解算二自由度控制结构的反馈控制器,进而得到了优化的Q(s)。在优化设计过程中,由于观测器传递函数的逆模型是一个双正则传递函数,若以该模型作为名义模型,则不满足优化算法的条件,为了解决该问题,提出并证明了一种名义模型修正的方法。为了提高优化后系统的鲁棒性能,提出了一种基于二分法的性能加权函数的优化方法。最后分析了基于间接优化Q(s)的前馈逆模型观测器结构的鲁棒稳定性以及多余力抑制能力的影响因素。
     为了保证在外回路稳定的前提下增加内回路带宽,提出了基于内回路前馈逆模型和μ控制的外回路复合控制策略。首先利用前馈逆模型控制技术增加了内回路的带宽,并将内回路转化成了一个含有模型摄动的直通环节,避免了分析内回路具体形式对外回路稳定性的影响。然后分析了外回路的各个环节的不确定性,将外回路转化成了一个含有多处摄动模型的控制结构,并推导了操纵机构模型的摄动范围。最后设计了μ控制器来增强含有多处模型摄动的外回路稳定性。
     基于操纵负荷系统力感模拟实现的关键技术,在所研制的基于RT-LAB快速原型控制半实物仿真操纵负荷系统试验台上,开展了力感模拟的实验研究,验证了相关分析结论的正确性和提出控制策略的可行性及有效性。根据相应的力感模拟对象,设计了提出的控制器,从内回路的跟踪性能、多余力的抑制效果、外回路阻抗的稳定性和时域响应特性四个方面,进行了实验分析。实验结果表明,设计的内回路复合控制器可以有效抑制多余力,提出的阻尼补偿控制策略增强了外回路的稳定性,设计的外回路复合控制器在保证系统稳定的前提下有效拓展了内回路的带宽,从而使系统阻抗更加接近于力感模拟对象的力感特性。
Flight simulator is an important equipment for training pilot. Control loadingsystem(CLS), as one of key subsystems on flight simulator(FS), mainly providecontrol force feel of control columns and pedals for training student pilots,so that itcan realistically reproduce the control force feel of controlling the real airplane.
     This thesis is upon the background of “985Project” Phase II to develop Keytechniques of flight simulator and test platform, which is developed by IEST. Thekey technical of force feel simulation for control loading system is investigated,including surplus force retraining, inner loop bandwidth expanding and out loopstability enhancing. Then, the corresponding control strategies are further studied.
     To study the key technical of force feel simulation, the control structure ofloading system is considered as to be consisted of inner loop and an outside loop.The inner loop is a force loop, which is an electro-hydraulic loading system. Theoutside loop is consisted of control mechanism, force function model and innerloop,which takes control force as input and takes control displacement as output, sothat it can be seen as a force-displacement impedance. Through analyzing the effectsof inner loop surplus force, inner loop bandwidth and control mechanism parameterson frequency characteristics and stability of that impedance, constrains of inner loopbandwidth and surplus force are proposed, as well as outside loop stability criterion.
     Aiming at inner loop surplus force restraining, a control strategy combinedfeed-forward velocity compensation(FVC) with feed-forward inverse modelobserver(FIMOB) is proposed which is for the limitation of FVC. Then, sufficientstable condition of FIMOB structure is derived and a method to design observertransfer function is proposed and its rationality is proved, which can further restrainthe surplus force compensated by feed-forward velocity. Then the stability of thewhole CLS based on that compound controller is analyzed, and a dampingcompensation strategy is proposed to enhance system stability.
     To achieve the quantizing design for Q(s) of FIMOB to realize the robustperformance closed to optimum, a indirect optimal method for Q(s) is proposed,which firstly transforms the FIMOB structure into a2-DOF control structure withboth feed-forward and feedback controllers containing Q(s). Meanwhile, theequitation for restring surplus force between the transformed2-DOF controlstructure and FIMOB is derived. Then H∞optimization algorithm is used to solvesuboptimum feedback controller in transformed2-DOF control structure, and theoptimized Q(s) can be further solved according to the obtained feedback controller.In the processes of optimized controller design, the inverse model of observer transfer function is taken as the nominal model,which is a biholomorphic transferfunction and not satisfying the condition of H∞optimization algorithm. A method ofnominal model amended is proposed for that problem. An optimizing algorithmbased on method of bisection for performance weighting function is proposed,which can improve the robust performance of optimized system as far as possible.Then it is analyzed the robust stability and the affecting factor of ability forrestraining surplus based on optimized Q(s).
     Aiming at expanding the bandwidth for inner loop in premise of enhancingstability of outside loop, a compound outside loop control strategy combined withfeed-forward inverse model (FIVM) control and μ control is proposed.Feed-forward inverse model control technical is firstly used for expanding innerloop bandwidth. Meanwhile, it can transform the inner loop as a form of straight–through moment with a model perturbation, so that it is avoided analyzed that howthe specific form of inner loop to effect the outside loop stability. After that, themodel uncertainty of outside loop is analyzed, then the outside loop is transformedinto a structure with multiple model perturbations, and the range of controlmechanism model perturbation is derived. Finally, μ controller is designed forenhancing outside loop robust stability.
     Ground on key technical of force feel simulation for control loading system, aseries of experiments are carried out on the hardware-in-the-loop-simulation CLSplatform based on RT-LAB rapid control prototyping (RCP), through which thereasonability of the analyzed conclusion and the efficiency of control strategies areproved. The controllers are designed according to specific force feel simulationobject. Then, the experiments are carried out from these aspects, the tracking abilityof inner loop, the efficiency of surplus force restraining, stability of outside loop andtime domain response characteristic of outside loop impedance. It is can be derivedthe conclusions that the designed inner loop compound controller can restrainsurplus force effectively, the proposed damping compensation strategy can enhanceoutside loop stability, and the designed compound outside loop controller canexpand inner loop bandwidth in premise of keeping outside loop stable so that thecharacteristic of outside loop impedance comes closer to the force feel characteristicof force feel simulation object.
引文
[1] Ant nio O. Dourado, C.A.Martin. New concept of dynamic flight simulator,Part I[J]. Aerospace Science and Technology,2013, In Press, Corrected Proof,Available online.
    [2] Fu Jiacai, Liu Xianhua and Ma Tianchu. Experiment and study of electriccontrol loading system[C]. Advanced Materials Research,2012,462:720-726.
    [3]齐潘国.飞行模拟器液压操纵负荷系统力感模拟方法研究[D].哈尔滨工业大学博士论文,2009:1-21.
    [4] Gerretsen A, Mulder M and Van Paassen MM. Comparison of position-loopvelocity-loop and force-loop based control loading architectures[C]. AIAAmodeling and simulation technologies conference,2005:813-827.
    [5]王辉,闫祥安,王立文等.操纵负荷系统电液伺服加载控制方式的比较研究[J].中国机械工程,2007,18(2):142-145.
    [6]王子才.现代仿真技术发展及应用[J].科技和产业,2002,2(2):1-4.
    [7]赵震炎.地面飞行模拟器的现状和发展趋势[J].航空学报,1987,8(10):453-454.
    [8]张燕燕,黄其涛,韩俊伟等.飞行模拟器视景系统的设计与实现[J].系统仿真学报,2009,21(12):3662-3667.
    [9]马登武,叶文.虚拟现实技术及其在飞行仿真中的应用[M].北京:国防工业出版社,2003:166-183.
    [10] J.M.ROLFE, K.J.STAPLES. Flight Simulation [M]. Cambridge UniversityPress,2004:1-35.
    [11]刘丽,彭晓原,王行仁.基于网络的大型民用大型飞机飞行仿真系统[J].北京航空航天大学学报,2000,26(3):5-9.
    [12]文传源.系统仿真学科与仿真系统技术[J].系统仿真学报,1992,4(3):1.
    [13]熊端琴,刘宝善,郭西.现代飞行模拟的进展[J].人类工效学,2004,10(3):69.
    [14] W. J. Bezdek, D. J. Mays, R. R. Powell. The History and Future of MilitaryFlight Simulators[C]. Collection of Technical Papers-AIAA Modeling andSimulation Technologies Conference,2004:563-583.
    [15] Olaf Stroosma, Rene van Paassen, and Max Mulder. Using the SIMONAResearch Simulator for Human-Machine Interaction Research[C]. AIAAModeling andSimulation Technologies Conference and Exhibit,2003:1-8.
    [16] NLR. Virtual flight into the future[R]. National Aerospace Laboratory.2008:1-22.
    [17]郑淑涛.飞行模拟机实时仿真管理系统的研究[D].哈尔滨:哈尔滨工业大学,2009:6-9.
    [18]王行仁,彭晓源.仿真器及其在我国的发展[J].系统仿真学报,1990,3:15-22.
    [19] Shutao Zheng, Qitao Huang and Jun Jin. Flight simulator architecturedevelopment and implementation[C].2009International Conference onMeasuring Technology and Mechatronics Automation,2009:230-233.
    [20] Zhang Yanyan, Huang Qitao and Han Junwei. Real-time Rendering ofLarge-scale Terrain Based on GPU[C]. The4th IEEE Conference on IndustrialElectronics andApplications,2009:3795-3799
    [21] Zhang Lei, Jiang Hongzhou, Li Hongren. Object-oriented landing gear model ina pc-based flight simulator[J]. Simulation Modelling Practice and Theory,2008,16(9):1514-1532.
    [22] Shupeng Zheng, Shutao Zheng, Junwei Han. Cots and Design Pattern BasedHigh Fidelity Flight Simulator Prototype System[J]. Journal of computers,2011,6(1):28-35.
    [23] Xiong Haiguo, Huang Qitao and Ma Jianming. Research on co-modeling virtualprototype of motion system of flight simulator[C].2009IEEE InternationalConference on Mechatronics and Automation,2009:2260-2264.
    [24]王辉,高媛媛,史永胜.位置扰动性电液力伺服控制系统的复合控制研究[J].计算机与数字工程,2010,38(2):35-38,186.
    [25] Qi Panguo, Zhao Liwei and Cong Peichao. Stability of velocity-loop-basedhydraulic control loading system[C].1st International Workshop on HydraulicEquipment and Support Systems for Mining,2012:472-475.
    [26]党维,顾宏斌,关理想.飞行模拟器电动操纵负荷系统多余力抑制研究[J].航空计算技术,2011,41(2):117-120.
    [27]金肇鹏.飞行模拟器数字式电动操作负荷系统研究[J].科技信息,2013,(13):68,122.
    [28]李玉涛.数字人感系统的研制[D].北京:北京航空航天大学,2001:1-10.
    [29]王芳.飞行模拟器操纵负荷系统研究[D].南京:航空航天大学,2001:1-8.
    [30]徐鑫福,冯亚昌.飞机飞行操纵系统[M].北京航空航天大学出版社.1989:45-350.
    [31] John P. Realistic feel in Flight Simulators is Based on Precise ControlLoading[J]. Aircraft Engineering.1983,55:10-12.
    [32] Larry A. Moody. The History and Future of Flight Control Simulation[C].AIAA Modeling and Simulation Technologies Conference and Exhibit,2004:1-10.
    [33] General Precision Inc. Flight Simulator Control Loading System[P]. UnitedStatesPatent1,117,414filed1965.
    [34] Rodger A. Mueller. Optimizing the Performance of the Pilot Control Loaders atthe NASA Vertical Motion Simulator[J]. Journal of aircraft,2010,47:682-693.
    [35] P. Rinaldi, K. Beckham. Digital Control Loading-a Modular Approach[C].Control Conference,1982:269-273.
    [36] James R. Takats, Eddy Van Duivenbode. Advances in Electric Control Loadingand Electric Motion Technology[C]. FSEMC2002,2002:78-98.
    [37] Hildreth, Bruce L. Motor control loading system and method[P]. EuropeanPatent US604479filed1991.
    [38] William K. Prendergast. Apparatus and Method for Primary Control Loadingfor Vehicle Simulation[P]. United States Patent5,370,535filed1994.
    [39]黄安祥.现代军机飞行仿真系统的研究[D].北京:北京航空航天大学,2002:1-20.
    [40]廖峰.运七-100飞行模拟器操纵负荷系统[J].飞行仿真,1999,2:14-15.
    [41]彭晓源,戴树龄,吴章寅等.飞行模拟器操纵负荷系统及自动驾驶仪系统[J].北京航空航天大学学报,1997,23(2):163-168.
    [42]王辉.飞行模拟器操纵负荷系统关键技术及原理样机研制[D].天津:天津大学,2006:17-18.
    [43] Zheng Shutao, Huang Qitao, Cong Dacheng. Experiment and Study of ControlLoading System in Flight Simulator Based on RCP[C]. Proceedings of the2007IEEE International Conference on Integration Technology, Shenzhen,China,2007:208-212.
    [44]宋传涛,郭卫东,刘斌.一种用于飞行模拟力觉交互设备的控制系统设计[J].机械制造,2012,41(2):9-12.
    [45]王立文,信光成.基于力矩电机的飞行模拟机操纵负荷系统的研究[J].计算机测量与控制,2010,18(8):1818-1820.
    [46]王勇亮,卢颖.基于MATLAB的飞行模拟器操纵负荷系统设计[J].微计算机信息,2006,22(10):56-58.
    [47]李宏图,黄安祥,张大伟.电传操纵系统的仿真方法及实现[C].2001年中国系统仿真学会学术年会论文集,2001:382-387.
    [48]王勇亮.歼击机飞行模拟器座舱设备仿真研究[D].吉林:吉林大学,2003:50-60.
    [49]段永胜,卢颖,闫梁.飞行模拟器操纵负荷系统建模与仿真[J].兵工自动化,2012,8:24-28.
    [50]俞志刚,飞行模拟逼真度概念[J].飞行力学,1997,15(1):18-22.
    [51] Reinoud L. Hermans. Design of an Actuated Side Stick Controller for theSIMONA Research Simulator[R]. Delft University of Technology, Delft, TheNetherlands September,1999:20-100.
    [52] S.J.A. Streefkerk, M. Baarspul. Preliminary Design and Modeling of theControlColumn for the SIMONA Research Simulator[R]. Delft University ofTechnology, Delft, The Netherlands September,1996:67-80.
    [53] T. van der Post. Programmers Guide Ecol8000Electric Control LoadingSystem[R],2002.
    [54] T. van der Post. Installation&Operation Manual ECol8000Electric ControlLoading System[R],2003.
    [55] T. van der Post. System Description&Specification ECoL8000ElectricControl Loading System[R],2003.
    [56] A W Gubbels, K R Goheen. Digital Redesign of the NRC BELL205ArtificialFeel System[J]. Canadian Aeronautics and Space Journal,1997,43(1):57-68.
    [57]彭晓源,戴树岭,乔少杰.飞行模拟器数字式操纵负荷系统[J].系统仿真学报,1996,8(1):30-36.
    [58] Wang Hui, Wang Liwen, Yan Xiangan. Development of Servo-hydraulicControl Loading System and Research on its Force Tracking Performance[C].Proceedings of the International Conference on Advanced Design andManufacture,Harbin,Beijing Aerodynamics Institute,2006:135-138.
    [59]齐潘国,王慧,韩俊伟.液压操纵负荷系统惯性补偿方法研究[J].液压气动与密封,2010,(8):37-41.
    [60]詹家宾,卢颖,闫梁.数字式电动操纵负荷系统的研究[J].计算机技术与发展,2009,19(12):162-165.
    [61]王辉,黄文明.操纵负荷系统精确模型的建立以及仿真研究[J].机械科学与技术,2009,28(1):48-51.
    [62]段永胜,卢颖,任贝贝.飞行模拟器电动操纵负荷系统的迭代学习控制研究[J].电光与控制,2013,20(3):89-92.
    [63]刘彦文,王广雄,李佳.飞行模拟器操纵负荷系统的无源性设计[J].航空学报,2011,32(12):2303-2309.
    [64]刘旭华,关爱锐,张强.飞机飞行模拟机鉴定性能标准分析[J].航空科学技术,2011(5):39-40.
    [65]王行仁.飞行实时仿真系统及技术[M].北京航空航天大学出版社,1998:118-125.
    [66]董新民,王小平.飞行模拟器电动式纵向操纵人感系统的研究[C].中国航空学会第八次飞行器控制与操纵学术交流会论文集,1999:92-96.
    [67]齐潘国,黄其涛,姜洪洲.基于位置控制的液压操纵负荷系统[J].吉林大学学报(工学版),2008,38(Sup.2):128-133.
    [68]刘佳晨,麦云飞,顾凯凯.转向器综合试验台加载系统多余力抑制研究[J].机械科学与技术,2013,32(5):683-687.
    [69]汪成文.电液负载模拟器理论分析与仿真研究[D].太原:太原理工大学,2009:5-10.
    [70]王东海,麦云飞.对电液加载系统中余力消除的研究[J].制造业自动化,2013,35(3):89-91.
    [71]田巨.被动式加载系统的发展与现状[J].液压与气动,2009,(8):48-51.
    [72]张彪.电液负载模拟器多余力矩抑制及其反步自适应控制研究[D].哈尔滨:哈尔滨工业大学,2009:5-7.
    [73]邵俊鹏,李建英,王仲文.电液负载模拟器多余力抑制的结构补偿控制[J].电机与控制学报,2009,13(4):586-591.
    [74] JIAO Zong-xia, GAO Jun-xia and HUA Qing. The Velocity SynchronizingControl on the Electro-Hydraulic Load Simulator[J]. CHINESE JOURNALOF AERONAUTICS,2004,17(1):39-46.
    [75] Matsui Takashi. Effect of positive angular velocity feedback on torque controlof hydraulic actuator[J]. JSME. Int. J. ser C372,1992(6):406-412.
    [76]贾文铜,周瑞祥,张忠.阀控液压马达速度伺服系统仿真分析[J].火力与指挥控制,2012,37(4):170-171,184.
    [77] Garcia C E, Morari M. Internal Model Control.1. A Unifying Review and SomeNew Results[J]. I&EC Process Des. Dev.,1982,21(2):308-323.
    [78]陆朱卫,顾怀敏基于内模控制的变频调速方案的设计[J].电力电子技术,2011,45(11):96-98.
    [79]吴杰.变负载伺服系统自适应内模控制研究[D].南京:南京理工大学,2009:35-39.
    [80]袁兵,吴维峰,姚郁.基于内模方法的电动负载模拟器控制系统设计[J].系统仿真学报,2009,21, suppl.2:12-125.
    [81]穆永雷.基于内模控制的电动式加载系统设计与控制算法研究[D].哈尔滨:哈尔滨工业大学,2011:43-50.
    [82] H. Coelingh,E. Schrijver, T. De Vries, et.al. Design of Disturbance Observersfor the Compensation of Low-Frequency Disturbances[C]. Proc. of Int. Conf.Motion and Vibration Control (MOVIC), Sydney, Australia,2000:75-80.
    [83] KAWAJI S, SUENAGA Y, MAEDA T, et al. Control of cutting torque in thedrilling process using disturbance observer[C]. Proceedings of AmericanControl Conference. Seattle, IEEE,1995,1:723-728.
    [84] J. Profeta, W. Vogt, M. Mickle. Disturbance Estimation and Compensation inLinear Systems[J]. IEEE, Transaction on Aerospace Electronic Systems,2002,26(2):225-231.
    [85] Hyungbo Shima and Nam H. Jo. An almost necessary and sufficient conditionfor robust stability of closed-loop systems with disturbance observer[J].Automatica,2009,45(1):296-299.
    [86] WU Yunjie, LIU Xiaodong and TIAN Dapeng. Research of CompoundController for Flight Simulator with Disturbance Observer[J]. Chinese Journalof Aeronautics,2011,24(5):613-621.
    [87] OHNISHI K. Microprocessor2controlled DC motor for load insensitive positionsystems[J]. IEEE Trans Ind Electron,1987,(IE-34):44-49.
    [88] H. S. Lee, M. Tomizuka. Robust Motion Controller Design for High AccuracyPositioning Systems[J]. IEEE Trans. On Industrial Electronics,1996,43(1):46-55.
    [89] UMENO T, KANEKO T, HORIY. Robust servosystem design with two degreeof freedom and its application to novelmotion control of robot manipulators[J].IEEE Trans Ind Electron,1993,40:473-485.
    [90] KIM B K, CHUNG W K. Advanced disturbance observer design for mechanicalpositioning systems [J]. IEEE Transactions on Industry Electronics,2003,30(6):1207-1216.
    [91]方强.被动式力矩伺服控制系统设计及应用研究[D].哈尔滨:哈尔滨工业大学,2006:52-68.
    [92] Yan M-T, Shiu Y-J. Theory and application of a combinedfeedback-feedforward control and distur-bance observer in linear motor drivewire-EDM machines[J]. Int J Mach Tool Manu,2008,48(3-4):388-401.
    [93] Lu Yu-Sheng and Lin Shuan-Min. Disturbance-observer-based adaptivefeedforward cancellation of torque ripples in harmonic drive systems[J].Electr Eng,2007,90(2):95-106.
    [94] Shim H,Jo NH. An almost necessary and sufficient condition for robuststability of closed-loop systems with disturbance observer[J]. Automatica,2009,45(1):296-299.
    [95] Ryoo JR, Doh T-Y, Chung MJ. Robust disturbance observer for thetrack-following control system of an optical disk drive[J]. Control Eng Pract,2004,12(5):577-585.
    [96] K K Ahn,S Yokota. Design of a robust force control system for an automaticlive-line maintenance robot using a force disturbance observer[J]. ProcIMechE, Part I: J Systems and Control Engineering,2004,218(7):545-556.
    [97] WANG Guang-xiong, WANG Xin-sheng. H∞two-block design of servosystems[J]. Journal of Harbin Institute of Technology (New Series),2002,9:142-144.
    [98]杨胜,房建成,郭雷.基于鲁棒H∞控制的DTG动基座锁定回路设计[J].航空学报,2009,30(12):2416-2422.
    [99] Hernández-Torres David, Riu Delphine and Sename Olivier. Design andexperimental validation of a robust control method for a hybrid fuel cellpower generation system[C].20102nd IEEE Energy Conversion Congressand Exposition,2010:4482-4489.
    [100]Yuan R B, Zhao K D, Cao J. Torque Control of Electro hydraulic Servo SystemBased on Robust Control Theory[C]. Proceedings of the Third InternationalSymposium on Instrumentation Science and Technology, Xi’an, China,2004:1027-1033.
    [101]Li Y. Development of hybrid control of electrohydraulic torque loadsimulator[J]. J Dyn Syst: T ASME,2002,124(3):415-419.
    [102]Sanada K. A method of designing a robust force controller of a water-hydraulicservo system[J]. Proc IMechE, Part I: J Systems and Control Engineering,2002,216(2):135-141.
    [103]Niksefat N, Sepehri N. Design and experimental evaluation of a robust forcecontroller for an electro-hydraulic actuator via quantitative feedback theory[J].Control Eng Pract,2000,8:1335-1345.
    [104]Nam Y, Hong SK. Force control system design for aerodynamic loadsimulator[J]. Control Eng Pract2002,10(5):549-558.
    [105]Kim JW, Xuan DJ, Kim Y-B. Design of a forced control system for a dynamicroad simulator using QFT[J]. Int J Automot Techn,2008,9(1):37-43.
    [106]Mark Karpenko and Nariman Sepehri. Electrohydraulic force control design ofa hardware-in-the-loop load emulator using a nonlinear QFT technique[J].Control Engineering Practice,2012,20(6):598-609.
    [107]Truong D Q, Ahn K K. Self-tuning quantitative feed-back theory for parallelforce/position control of electro-hydrostatic actuators[J]. Journal of Systemsand Control Engineering,2009,223(14):537-556.
    [108]Ahn KK, Truong DQ. Self-tuning of quantitativfeedback theory for forcecontrol of an electro-hydraulic test machine[J]. Control Eng Pract,2009,17(11):1291-1306.
    [109]Takashi Tanaka and Cédric Langbort. On the Use of the Generalized StructuredSingular Value for Decentralized Control Problems[C]. Joint48th IEEEConference on Decision and Control and28th Chinese Control Conference,2009:1632-1637.
    [110]Truong DQ, Ahn KK. Force control for hydraulic load simulator usingself-tuning grey predictor-fuzzy PID[J]. Mechatronics,2009,19(2):233-246.
    [111]Ahn KK, Truong DQ, Thanh TQ, et al. Online self-tuning fuzzyproportional-integral-derivative control forhydraulic load simulator[J]. ProcIMechE, Part I: J Systems and Control Engineering,2008,222(2):81-95.
    [112]Jianyong Y, Zongxia J, Yaoxing S, et al. Adaptive non-linear optimalcompensation control for electro-hydraulic load simulator[J]. Chinese JAeronaut,2010,23(6):720-733.
    [113] Xu Y., Hua H.X., and Han J.W. Modeling and controller design of a shakingtable in an active structural control system[J]. Mech. Syst. Signal Proc.,2008,2(3):1917-1923.
    [114]Yang C.F., Huang Q.T., Han J.W. Decoupling control for spatialsix-degree-of-freedom electro-hydraulic parallel robot[J]. Robotics andcomputer-Integrated Manufacturing,2012,28:14-23.
    [115]Plummer A.R. Feedback linearization for acceleration control ofelectrohydraulic actuators[J]. Proc Instn Mech Engrs Part I, J. Syst. ControlEng.,1997,3:139-169.
    [116]Yoonsu Nam, Sung Kyung Hong. Force control system design for aerodynamicload simulator[J]. Control Engineering Practice,2002,10(5):549-558.
    [117] J. W. KIM, D. J. XUAN, Y.-B. KIM. Design of a forced control system for adynamic road simulator using QFT[J]. International Journal of AutomotiveTechnology,2008,9(1):37-43.
    [118]DAVID F. THOMPSON, JOHN S. PRUYN, AMIT SHUKLA. Feedbackdesign for robust tracking and robust stiffness in flight control actuators usinga modified QFT technique[J]. International Journal of Control,1999,72(16):1480-1497.
    [119]Kyoung Kwan Ahn, Quang Truong Dinh. Self-tuning of quantitative feedbacktheory for force control of an electro-hydraulic test machine[J]. ControlEngineering Practice,2009,17(11):1291-1306.
    [120]Kron Aymeric, De Lafontaine Jean and Alazard Daniel. Robust2-DOFH-infinity controller for highly flexible aircraft: Design methodology andnumerical results[J]. Canadian Aeronautics and Space Journal,2003,49(1):19-29.
    [121]H Berg and M lvantysynova. Design and testing of a robust linear controllerfor secondary controlled hydraulic drive[J]. Proc IMechE, Part I: J Systemsand Control Engineering,1999,213(2):387-406.
    [122]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用(第2版)[M].北京:清华大学出版社,2008:98-99.
    [123]Lee S.K., PARK E. C., MIN K.W. Real-time hybrid shaking table testingmethod for the performance evaluation of a tuned liquid damper controllingseismic response of building structures[J]. J. Sound Vibr.,2007,302:596-612.
    [124]Lee S.K., Park E.C., Min K.M. et al. Real-time substructuring technique forthe shaking table test of upper substructures[J]. Engineering Structures,2007,29(9):2219-2232.
    [125]Shen G., Lv G.M, Ye Z.M. et al. Adaptive inverse control of time waveformreplication for electrohydraulic shaking table[J]. J. Vib. control,2011,17:1611-1633.
    [126]Shen, G.,Lv G.M., Ye, Z. M. et al. Implementation of electrohydraulic shakingtable controllers with a combined adaptive inverse control and minimal controlsynthesis algorithm[J]. IET Proc-Control Therory Appl,2011,5(13):1471-1483.
    [127]沈刚.三自由度电液振动台时域波形复现控制策略研究[D].哈尔滨:哈尔滨工业大学,2011:33-34.
    [128]Luh G-C, Wu C-Y. Inversion control of non-linear systems with an inverseNARX model identified using genetic algorithms[J]. In Proceedings of theInstitution of Mechanical Engineers Part I: Journal of Systems and ControlEngineering,2000,214(4):259-271.
    [129]Cuyper JD, Veraegen M, Swevers J. Off-line feedfor-ward and H∞feedbackcontrol on a vibration rig[J]. Control Eng Pract2003,11(2):129-140.
    [130] Rigney BP, Lucy YP, Lawrence DA. Nonminimum phase adaptive inversecontrol for settle performance applications[J]. Mechatronics,2010,20:35-44.
    [131]Vaes D., Engelen K., Anthonis J. et al. Multivariable feedback design toimprove tracking performance on tractor vibration test rig[J]. Mech. Syst.Signal Proc.,2007,21:1051-1075.
    [132]Vaes D., Swevers J., Sas P. Experimental validation of differentMIMO-feedback controller design methods[J]. Control Eng. Pract.,2005,13:1439-1451.
    [133]Cuyper J.D., Verhaegen M. State space modeling and stable dynamic inversionfor trajectory tracking on an industrial sat test rig[J]. J. Vib. Control,2002,8:1033-1050.
    [134]Jeffrey A. Butterworth, Lucy Y. Pao, Daniel Y. Abramovitch. The effect ofnonminimum-phase zero locations on the performance of feedforwardmodel-inverse control techniques in discrete-time systems[C].2008AmericanControl Conference,2008:2696-2702.
    [135] Panguo Qi,Hui Wang,Junwei Han. Stability of position-loop based hydraulicControl Loading System[C].Mechanic Automation and Control Engineering(MACE),2010International Conference on,2010:3363-3366.
    [136]齐潘国,王慧,韩俊伟.基于结构化奇异值设计方法的液压操纵负荷系统鲁棒控制[J].吉林大学学报(工学版),2011,41(4):1004-1009.
    [137]石旭东,张发,荆涛.飞行模拟机电动操纵负荷系统控制与仿真[J].电机与控制学报,2010,14(5):73-78.
    [138]张戟. Fokker Ecol800电动操纵负荷系统[J].科技资讯,2007, No.1:227-229.
    [139]李洪人.液压控制系统[M].北京:国防工业出版社,1988:55-77.
    [140]王辉,闰祥安,王立文.飞行模拟器操纵负荷系统的数学建模及仿真研究[J].中国机械工程,2006,17:258-261.
    [141]Chu Dongsheng, Zhao Lin, Mei Ning. Consistent estimation for CAR modelswith unknown order and delay[J]. JOURNAL OF OCEAN UNIVERSITY OFQINGDAO,1995,25(4):453-460.
    [142]Qing-Guo Wang, Zhiping Zhang and Karl Johan Astrom. Guaranteed dominantpole placement with PID controllers[J]. Journal of Process Control,2009,19(2):349-352.
    [143]Yuwu Liao, Dongqing Wang and Feng Ding. Data filtering based recursiveleast squares parameter estimation for ARMAX models[C].2009InternationalConference on Communications and Mobile Computing,2009:331-335.
    [144]Vito Cerone, Mario Milanese, and Diego Regruto. Yaw Stability ControlDesign Through a Mixed-Sensitivity Approach[J]. IEEE Transactions onControl Systems Technology,2009,17(5):1096-1104.
    [145]周克敏, J.C.Doyle, K.Glover.鲁棒与最优控制[M].北京:国防工业出版社,2006:464-534.
    [146]王广雄,何朕.应用H∞控制[M].哈尔滨:哈尔滨工业大学出版社,2009:31-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700