用户名: 密码: 验证码:
不同离子交换膜体系3-甲基吡啶电氧化合成烟酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Electrooxidation of 3-picoline to Nicotinic Acid in the Electrolytic System with Different Ion Exchanging Membranes
  • 作者:姬长征
  • 论文级别:硕士
  • 学科专业名称:物理化学
  • 学位年度:2004
  • 导师:张恒彬
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-06-01
摘要
烟酸又名尼古丁酸,或吡啶-3-甲酸,是人体和动物体必不可少的物
    质。它被广泛应用于农药、医药和食品等精细化工行业,是重要的药物合
    成中间体及食品、饮料和饲料的添加剂。
     目前,烟酸的合成方法主要有化学氧化法、氨氧化法、空气氧化法、
    电解氧化法和喹啉氧化法等。其中,电解氧化法与其它几种方法比较具有
    工艺简单、流程短、反应条件温和、产品质量好、污染低等优点,是一种
    很有开发前景的烟酸合成方法。
     3-甲基吡啶是一种廉价易得的石油产品,被认为是电解法生产烟酸
    的最佳原料。但是,以3-甲基吡啶为原料电氧化制取烟酸的工业报导十
    分有限,且产率都较低。这主要是因为电解法技术含量高,电解体系的选
    择及产物的分离问题目前还没有很好地解决。很多文献报导及前人工作都
    表明,对于该电氧化反应,Pb02电极为最佳阳极材料,硫酸为最佳阳极
    液介质。隔膜是电解槽的重要组成部分,作为隔膜的离子交换膜对电解条
    件和电解效果影响很大,没有隔膜的3-甲基吡啶电氧化制烟酸的电解效
    果很差,而在隔膜的选择方面,前人没有进行过系统地研究。本论文对四
    种不同离子交换膜作隔膜的电解体系进行了研究。
    1. 国产CM一00l(聚乙烯磺酸型)质子交换膜作为隔膜的电解体系。用正
    交 试 验 设 计 方 法 对 阳 极 液 中 硫 酸 浓 度 ( 质 量 比 为 1 5 % 和 2 0 % ) 和 3 - 甲
    基吡啶浓度(0.5mol/L和0.7m01/L)及阳极电位(1.8V和1.85V)进行
    3因素2水平的恒电位电解实验。经过优化筛选,得到最佳阳极氧化条件
    是阳极液的硫酸浓度20%,3-甲基吡啶浓度0.7mol/L,阳极电位1.85V
    (vs SCE)。在上述实验基础上,进行了扩大规模的耗竭性电解实验,对
     75
    
    
    阳 极 液 中 硫 酸 的 浓 度 ( 1 0 % , 1 5 % , 1 8 % , 2 7 % ) 和 3 一 甲 基 吡 啶 的 浓 度
    (0.5mol/L,O.6mol/L,0.8mol/L)两个因素做了规律性考察。发现18%
    的硫酸和0.6mol/L的3-甲基吡啶组成的阳极液具有最佳的电流效率和
    选择性,电流效率最高达到68.16%,选择性最高达到80.65%。同时进
    行了向阳极液中补充3一甲基吡啶来恒定阳极液中反应物浓度的持续电解
    实验,电流效率能够维持在65%以上,最高达到73.03%;选择性能够维
    持在80%以上,最高达到98.76%。上述实验中阴极液组成均为lO% NaOH
    水溶液。对比阴极液为10%硫酸水溶液的情况,电流效率最高为63.63
    %,选择性最高为97.40%。阴极液为硫酸水溶液时,槽压明显降低,从
    而降低了能耗,每生产1克烟酸消耗电能对于NaOH阴极液体系为7.34J,
    而硫酸阴极液体系为6.47J。通过对阴极液中3-甲基吡啶的定量分析,
    发现此离子交换膜存在一定的3-甲基吡啶透过现象,透过率在7.5%左
    右 。
    2. 选用美国Du Pont公司的Nafion902(全氟磺酸型)Na+离子交换膜作
    为隔膜进行研究。电流效率最高达到80.52%,选择性最高达到95.02%。
    体系槽压较高(6.0v),电流密度较低(7.5mA/cm2),每生产l克烟酸消耗
    电能13.64J,能耗较上述体系高。而且Nafion902膜的3-甲基吡啶透过
    很严重,透过率为33.3%。
    3.在阳离子交换膜体系中,还对我院高分子实验室合成制备的聚醚醚酮
    磺化质子交换膜进行了考察。采用恒电位电解方法,电流效率为56.66%,
    选择性为89.11%。该膜的膜电阻较大,槽压较高(5.77V),电流密度为
    40mA/cm2,能耗较高,每生产1克烟酸消耗电能13.58J。膜对3-甲基吡
    啶透过率为13.9%。
    4 . 选 择 E D I ( 苯 乙 烯 季 胺 型 ) 阴 离 子 交 换 膜 作 隔 膜 进 行 3 - 甲 基 吡 啶 电
     76
    
    
    氧化研究,采用恒电位电解法对不同阳极电位(1.55V、1.65V和1.70V)
    进行比较,发现阳极电位为1.70V时电解效果较好,电流效率为52.39%,
    选择性为56.70%。对于阴膜体系,阴极液中导电阴离子的种类是影响电
    解效果的重要因素。通过扩大规模的耗竭性电解实验,比较了NaOI-I水溶
    液作为阴极液和硫酸水溶液作为阴极液两个体系的情况。NaOH水溶液作
    为阴极液时电流效率最高达到57.55%,选择性最高达到88.91%,但随
    着电解的进行电流效率和选择性都明显下降。硫酸水溶液作为阴极液时电
    流效率最高为42.99%,选择性最高为70.66%,随电解进行电流效率及
    选择性变化不大。能耗方面,每生成l克烟酸,NaOl-I阴极液体系消耗电
    能12.68J,硫酸阴极液体系为9.79J。EDI阴膜的3-甲基吡啶膜透过率
    很小,通常只有0.5%,最高1.1%。
     除上述电解实验外,还研究了烟酸和3-甲基吡啶的高效液相色谱定
    量分析及产物醇洗提纯等电解液后处理分离提纯方法。经过优化,高效液
    相色谱对产物及反应物的分析结果重现性高,准确可信;醇洗法分离提纯
    出的烟酸产品纯度较高,可以达到工业产品要求。
Nicotinic acid, also called vitamin 83, or 3-pyridinecarboxylic acid, is a
    sort of necessary nutritive matter in human and animal bodies. It is used
    widely in many industries of fine chemistry, such as pesticide, medicine and
    food etc., and is an important medium of medical synthesis and additives of
    food, drink and feed.
     Presently, nicotinic acid is synthesized mainly by chemical oxidation,
    ammonia oxidation, air oxidation, electrolysis oxidation, and quinolinium
    oxidation methods. Among them, electrolysis oxidation method is the most
    prospective one because of its simple operation, short processing, mild
    reaction conditions, fine and pure products, and low pollution.
     3—picoline, which is cheap and frequent, is a kind of petroleum products,
    and is considered to be the best feedstock of synthesizing nicotinic acid by
    electrolysis oxidation. However, there are few successful industry reports
    about using 3-picoline to produce nicotinic acid by electrolysis oxidation with
    high yield. The main reason is that it is a high-tech system, and there are still
    many problems concerning the electrolytic system and the separation method.
    Based on literatures and former researchers' work, PbOi electrode is the most
    proper anode, and tbSC^ aqueous solution is the best anodolyte. Diaphragm is
    very important for an electrolysis device, and in the electrolytic oxidation
    system of 3-picoline to nicotinic acid, Ion Exchanging Membrane (IBM),
    which always serves as a Diaphragm, can affect the electrolytic conditions and
    effectiveness greatly, and the results are poor for the electrolysis of no
    diaphragm. But few researchers have systematically investigated the effect of
     78
    
    
    various IEM in this system before. Four kinds of IEM electrolysis systems
    were studied in this dissertation.
    1. CM-001 (Sulfonated Polythene) H+ IEM was used as the diaphragm of
    this electrolytic system. Experiments were arranged through orthogonal
    layout, two levels of three factors, H2SO4 (15%, 20%),
    3-picoline (0.5mol/L, 0.7mol/L) and anode potential (1.8V, 1.85V vs SCE),
    were studied. The better conditions were H2SO4 20%, 3-picoline 0.7mol/L, and
    anode potential 1.85V. Furthermore, the exhaustive electrolysis
    experiment of larger scale was applied to study the change trends of the
    concentration of H2SO4 (10%, 15%, 18%, 27%) and 3-picoline (0.5mol/L,
    0.6mol/L, 0.8mol/L) in anodolyte. As a result, it was found that the
    optimal anodolyte, with HiSC^ 18% and 3-picoline 0.6mol/L, had
    the highest current efficiency (68.16%) and selectivity (80.65%).
    Under the above conditions, 3-picoline was added to the anodolyte during the
    electrolysis to keep its concentration stable at the optimal value. In this
    experiment, current efficiency could be kept higher than 65%, and the
    highest was 73.03%; selectivity could maintain at 80%, and the highest
    was 98.76%. In all above experiments, the aqueous solution of 10% NaOH
    was served as the catholyte. Compared with the system of the catholyte with
    10% H2SO4, whose highest current efficiency was 63.63% and selectivity was
    97.40%. Sulphuric acid catholyte could bring much lower cell voltage, and
    could save electrical energy. For the electrolytic system with the catholyte of
    NaOH, the electric energy cost 7.34J to synthesize per gram nicotinic acid,
    while it cost only 6.47J with the catholyte of HaSC^. It was found by analyzing
    the catholyte that in this IEM system 3-picoline could penetrate from the
    anodic cell to the cathodic cell, but this phenomenon was not expected. The
     79
    
    
    penetration efficiency was around 7.5%.
    2. Nafion902 Na+ IBM was applied as the diaphragm, the current efficiency
    could reach as high as 80.52%, and the selectivity could be 95.02%. The cell
    voltage was a little high at 6.0V, while the current density was low at only
    7.5mA/cm2. It cost 13.64J electric energy to produce per gram nicotinic acid in
    th
引文
[1]《CRC》2nd,P3972
    [2]《CRC》2nd,P3974
    [3] 李奋明,烟酸的生产及市场状况分析[J],精细化工,1996,13:30-32
    [4] 焦德康,当前医药中间体的市场与开发前景[J],化工生产与技术,1996,3:10-13
    [5] 王之德,烟酸与烟酰胺的现状与前景[J],天然气化工,1994,19:33-37
    [6] Suvorov B.V., Bakirova S. B., Serazetdinova V. A., et al. Preparation method for
     obtaining nicotinic acid and its amide from 2-methyl-5-ethylpyridine [J]. Khim-Farm
     Zh,1992,26 (11-12): 81-83.
    [7] Titova T S, Usmavshtskov B F, Farberov M I, et al. Industrial synthesis of
     2,5-Pyridine dicarboxylic acids and oxidation of alkylpyridine to nicotinic
     acid with dilute nitric acid [J]. Zh prikl Khim, 1969, 42 (4): 910-920.
    [8] Sidorov O F, Kosareva M A. Catalytic oxidation of sulfo derivatives of
     quinoline by sulfuric acid [J]. Zh Prikl Khim, 1983,56 (1): 227-228.
    [9] Yin Hong, Process for preparing nicotinic acid [P]. CN 1141288, 1997-
     06-20.
    [10] Brzaszcs M, Kloc K, Maposah M, et al. Selenium (IV) oxide catalyzed
     oxidation of aldehydes to carboxylic acids with hydrogen peroxide [J].
     Synth Commun 2000, 30(24): 4425-4434.
    [11] Shin Chae-Ho,Chang Tae-Sun, Cho Deug-Hee, et al. Ammoxidation of
     3-picoline over metal phosphate catalysts[J]. Hwahak Konghak, 1997,35(2):
     270-275.
    [12] Andersson A. Activities of V-Ti-O catalysts in the ammoxidation of
     3-picoline[J]. J Catal, 1982,76:144-156.
     -70-
    
    
    吉 林 大 学 硕 士 学 位 论 文
    [13] Kirk R E, Othmer D F, Grason M, et al. Kirk-Othmer encyclopedia of
     chemical technology [M]. 3rd Ed. New York: John Wiley & Sons, Inc. 1984,
     24: 59-93.
    [14] Suvorov B V, Stepanova L A, Belova N A, et al. Oxidative ammonolysis of
     alkylpyridines and a highly selective catalyst with its use [P]. Jpn Kokai
     Tokkyo Koho JP 07313865.1995-11-30.
    [15] 李光兴,3-甲基吡啶空气氧化制备烟酸的研究[J],医药工业,1984,1:
     1-4
    [16] Smivnova I. E., Natural microbial associations of cellulolytic bacteria [J].
     Dokl Nats Akad Nauk Resp Kaz, 2000, (2): 60-63.
    [17] Almatawah Q A,Cowan D A., Thermostable nitrilase catalyzed production
     of nicotinic acid from 3-cyanopyridine[J].Enzyme Microb Technol, 1999,
     25 (8-9): 718-724.
    [18] Kiener A., Enzymatic oxidation of methyl groups on aromatic and
     heteroaromatic carboxylic acids [J]. Angew Chem Int Eng 1992, 31 (6):
     774-775.
    [19] Fox M. A., Ogawa H., Selective organic photoelectrochemistry: The
     photooxidativedegaradation of isomeric picolines [J]. J Inf Rec Mater,
     1989, 17(5-6): 351-361.
    [20] Fasani E., Mella M., Monti S., et al. The photochemistry of
     metyrapone[J]. J Chem Soc, Perkin Trans,2 1996,(9): 1889-1893.
    [21] S. S. Kruglikov and V. G. Khomyakov, Tr.Mosk, Khim. Tekhnol. Inst., 1961,
     32:194
    [22] V. G. Khomyakov, et al., Tr. Mosk. Tekhnol. Inst. In, D. I., Mendeleva,
     1967,25:178
     -71-
    
    
    吉 林 大 学 硕 士 学 位 论 文
    [23] Borkhi and Khomyakov, Khim. Geterotsikl. Soedin, 1967, (1):167
    [24] Borkhi, Khim. Getertsikl Soedin, 1979, (10):1362
    [25] M. Yokoyama, Bull. Chem. Soc. Japan, 1932, 7(69):103
    [26] M. Yokoyama, et al., Bull. Chem. Soc. Japan, 1943, 18:121
    [27] 王光信,有机电化学和工业信息[J],1995,(1):5
    [28] Toomey J.E., Electrochemical Oxidation of Pyrdine Bases [P]. US
     4,482,439,1984
    [29] Gupta P. N., Electrochemical Synthesis of Nicotinic Acid from 3-picoline[J],
     J. Indian Chem. Soc. 1988,45:633-635
    [30] Toomey J. E., Electrochemical synthesis of niacin and other N- heterocyclic
     compounds [P]. US 5002641,1991-03-26.
    [31] Toomey J. E., Electrochemical synthesis and simultaneous purification
     process [P], WO 91/19020.1991-12-12.
    [32] A. M. J. Thomas, V. D. Brink, T. B. J. Franciscus, et al., Process for the
     electrochemical oxidation of organic products [P]. EP 253439, 1988-
     06-20.
    [33] Haber J., Czerwenka M, Szymanska M, et al., Method of obtaining
     mono-and dicarboxylic acids based on derivative of nitrogen containing
     heterocyclic compounds [P]. Pol. PL 167985, 1995-12-30
    [34] Feldman D., Czerwenka M., Stoch L., et al., Anodic oxidation of methyl
     derivatives of nitrogen-containing heterocycles on activated nickel oxide
     electrode [J], Khim Geterotsikl Soedin, 1995, (1): 90-96.
    [35] Iniesta J., Michaud P. A., Panizza M., et al., Electrochemical oxidation of
     3-methylpyridine at a boron-doped diamond electrode: application to
     electeoorganic synthesis and wastewater treatment [J]. Electrochemistry
     -72-
    
    
    吉 林 大 学 硕 士 学 位 论 文
     Communication, 2001, 3: 346-351.
    [36] 詹 豪 强 , 直 接 电 解 合 成 烟 酸 和 L- 半 胱 氨 酸 盐 酸 盐 [J], 广 西 化
     工,1996,2:17-22
    [37] 陆旭,何永克,烟碱电化学合成烟酸的研究[M],全国第七次有机电化
     学和工业学术会议论文集,1996,94
    [38] Robert Kunin, Ion Exchange Resins, 2nd Edition, John Wiley&Sons, Inc.
     1958
    [39] Wyillie, M., J. Phys. Chem. 1954,58,73-84
    [40] 王振堃,电渗析与反渗透[M],上海科技出版社,上海,1981,48
    [41] 张维润,电渗析工程学[M],上海科技出版社,上海,1995,67
    [42] Wisniewski J, Wisniewska G. Application of electrodialysis and cation exchange
     technique to water and acid recovery [J]. Environmental Protection Engineering,
     1997,23(3): 35
    [43] Zabolotsky V. I., Nikonenko V. V., Coupled transport phenomena in overlimiting
     current electrodialysis [J], Separation and Purification Technology, 1998,14(1): 255
    [44] 奚凤翔,各种离子在电渗析过程中的迁移过程[J].工业水处理,1993,13(5):27
    [45] 孟洪,离子交换膜的选择透过性机理[J],北京科技大学学报, 2002,24(6): 656-660
    [46] 陈魁,试验设计与分析[M],清华大学出版社,北京,1996,94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700