用户名: 密码: 验证码:
电去离子过程的数学模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电去离子(EDI)技术是一种将电渗析和离子交换法相结合的去离子新工艺,正逐渐成为超纯水的制备和低浓度重金属离子废水处理的主流技术。但是,一些EDI核心问题,诸如EDI过程浓度极化对水解离的影响和水解离对EDI过程的分离率与电流效率的影响等方面至今仍无深入的研究,未建立起完善、合理的EDI基础理论体系。
     我们对EDI过程进行建模,通过对理论模型的求解获得EDI中各物理参数的分布,对EDI中离子传递过程、离子交换过程和水解离过程等进行系统的描述,进而阐述EDI阴阳膜水解离的差异性、膜面水解离对分离率和电流效率的影响以及水解离产物对盐离子迁移的增强作用。水解离对盐离子的分离起着极其重要的作用。目前研究者对水解离的认识仅仅停留在“水解离使得树脂再生,高树脂转化率是深度去离子的必要条件”上,但对这个必要性的讨论很少。我们经过计算和分析发现水解离虽然使得电流效率降低,但是它能增强盐离子的迁移,从而增大盐离子的分离率。阴膜界面水解离产物H+能增强阳盐离子的传递,而阳膜界面水解离产物OH-能增强阴盐离子的传递。
     在淡室中单独填充阳离子交换树脂的EDI(CREDI)一般用于重金属离子的去除。经过计算我们发现CREDI的阴膜水解离电流密度要远高于阳膜,故阴膜水解离对阳盐离子迁移的增强作用要大于阳膜水解离对阴盐离子迁移的增强作用,因此阳离子分离率要远高于阴离子。CREDI目前存在的问题是电流效率低以及膜面沉淀污染严重。我们从水解离对离子迁移的增强角度出发,改进床层树脂填充方式,从淡室的进口到出口,依次填充阳树脂、阴树脂和混床树脂。相比CREDI,在同一目标去除率下,填充分层树脂的EDI的电流效率增大,同时浓室内膜面沉淀量显著降低。
     在淡室中填充混合离子交换树脂的EDI(MixEDI)一般用于生产超纯水。目前研究者仅仅从工艺的角度来提高MixEDI的去除率和电流效率。我们从水解离的角度来分析由水解离造成的阴阳盐离子分离率的差异。经过计算和分析,我们发现MixEDI的阴阳膜水解离电流密度的差距要小于CREDI的,但是阴膜水解离电流密度仍然高于阳膜,因此阳盐离子的分离效率要高于阴盐离子的。我们假设阳膜上也存在一定浓度的催化基团,通过调整阳膜上催化基团的浓度来调整阴阳离子分离率的差异,从而使得在较低的电流密度和较高的电流效率下达到目标阴阳离子去除率。我们研究了阳膜上含有不同催化基团浓度的MixEDI过程,经过计算我们发现在阳膜上接枝催化基团的浓度为阴膜上催化基团浓度的1/2的时候,阴阳盐离子去除率的差异显著减小,MixEDI能在较高电流效率下同时获得较高的阴阳盐离子去除率。
Electrodeionization (EDI) is a novel hybrid separation process combining electrodialysis (ED) and ion exchange (IX). EDI is becoming the major technology for producing high purity water and deep removal of heavy metal ions from waste water. However, there were few investigations about the influence of the concentration polarization on the water dissociation and the influence of the water dissociation on the removal and current efficiency of EDI process. The investigation on the elementary theory of the EDI process was not adequate.
     A numerical steady state model was established to simulate the process of EDI with the consideration of water dissociation. The full picture of the ionic transportation, ion exchange and the water dissociation process of the EDI were obtained. The influence of the difference of water dissociation of cation and anion membrane (CM and AM) on the EDI process, the influence of water dissociation at membrane surface on the removal and current efficiency and the water dissociation exaltation effect on the migration of salt ions were discussed. The water dissociation takes a very important role in EDI process. The investigator’s opinion about the role of water dissociation in EDI process was that the regenerated resin (generated by water dissociation) was necessary for the deep removal of salt ions. However, there were few discussions about the necessity. We find that although the water dissociation makes the current efficiency decreased, it can enhance the migration of salt ions and the result is that the salt ion removal efficiency is improved. The product of water dissociation at the surface of AM could improve the migration of salt cations and the one of CM can improve the migration of salt anions.
     The EDI with dilute compartment fixed with cation resin bed only (CREDI) is usually adapted to remove heavy metal ions from waste water. We find that water dissociation current density at the surface of AM is much larger than the one of CM, and the result is that the exaltation effect of the water dissociation on cations is larger than the one on anions; therefore the removal efficiency of cations is much larger than the one of anions. The existing problem for the CREDI is the low current efficiency and the precipitation of metal hydroxides. According to the mechanism of exaltation effect of the water dissociation, we designed a layered bed stack configuration (cation resin, anion resin and mixed resin bed in turn (from the inlet to the outlet)), which was named as LayeredEDI. It is found that compared with the CREDI, LayeredEDI has larger current efficiency and less precipitation at the same cation removal efficiency.
     The EDI with the dilute compartment fixed with mixed resin bed only is adopted to produce ultrapure water. We investigated the influence of the water dissociation on the removal efficiency difference of salt cation and salt anion. The water dissociation current density at the surface of AM is also larger than the one at the surface of CM; therefore the removal efficiency of salt cation is larger than that of salt anions. In order to adjust the difference of the water dissociation current density between CM and AM, we assume that there is some catalytic group at the surface of CM. When the concentration of the catalytic group of the cation membrane is half of the one of the anion membrane, the difference between the removal efficiency of cation and anion is decreased obviously. The higher removal efficiency of both cation and anion is obtained at a much higher current efficiency.
引文
[1]颜京松,水资源保护和合理利用生态工程战略,水资源保护, 2003, 19(05): 12-16
    [2] Ganzi G C, Jha A D, DiMascio F, Wood J H, Theory and Practice of Continuous Electrodeionization, Ultrapure Water, 1997, 14(6): 64-68
    [3] Yang C M, Choi W H, Na B K, Cho B W, Cho W L, Capacitive deionization of NaCl solution with carbon aerogelsilica gel composite electrodes, Desalination 2005 (174): 125-133
    [4] Demircioglu M, Kabay N, Ersz E, et al., Cost comparison and efficiency modeling in the electrodialysis of brine. Desalination 2001(136): 317-323
    [5] Tanaka Y, Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater, Journal of Membrane Science, 2003(215): 265–279
    [6] Nikonenko V V, Pismenskaya N D, Istoshin A G, et al., Description of mass transfer characteristic of ED and EDI apparatuses by using the similarity theory and compartmentation method. Chemical Engineering and proessing 2008(47): 1118-1127
    [7] Yohanes E, Wenten I G, Study on the influence of applied voltage and feed concentration on the performance of electrodeionization, Songklanakarin J. Sci. Technol, 2002(24): 955-963
    [8] Konrngold E, ELectrodialysis process using ion-exchange resins between membranes. Desalination. 1975(16): 225-233
    [9] Basta K, Lounis A, Sandeaux R, et al., Electroextraction of Pb2+ ions from diluted solutions by a process combining ion-exchange textiles and membranes. Desalination 1998(120): 175-184
    [10]王建友,电去离子过程的传质机理及其集成膜过程研究,天津大学博士学位论文,2002
    [11] Edmonds C, Salem E, An economic comparison between EDI and mixed-bed ion exchange. Ultrapure water, 1998(15)9: 43-49
    [12] Kunin R, Myers R J, Ion exchange resins. John Wiley & Sons, New York, 1950, 109
    [13] Walters. W R, Wiser D W, Marek L J, Concentration of radioactive aqueous waters. Industrial Engineering Chemistry, 1955(47)1: 61-67
    [14] Sammon. D. C, Watts R E, An experimentl study of electrodeionization and its application to the treatment of radioactive wastes. Rep. U.K. Atom. Energy Auth., AERE-R3173, Chemistry Division, U.K.A.E.A. Research Group, Atomic Energy Research Establishment, Haewell (June, 1960)
    [15] Gittens G J, Watts R E, Some experimental studies of electrodeionizatinthrough resin packed beds. Rep. U.K. Atom. Energy Auth., AERE-R4517, Chemistry Division, U.K.A.E.A. Research Group, Atomic Energy Research Establishment, Haewell (June, 1964)
    [16] US Patent 3, 515, 664
    [17] SPOOR P B, Koene L, W.R. Terveen W R, et al., Electrodeionization 2: The migration of nickel ions absorbed in a flexible ion-exchange resin. Journal of Applied Electrochemistry 2002(31): 1071-1077
    [18] Spiegel E F, Thompson P M, Helden D J, et al., Investigation of an electrodeionization system for the removal of low concentrations of ammonium ions. Desalination 1999(123): 85-92
    [19] Mahmoud A, Muher L, Grevillot G, Valentin G, et al., Ohmic drops in the ion-exchange bed of cationic electrodeionisation cellsJournal of Applied Electrochemistry 2006(36): 277–285
    [20] Yeon K H, Song J H, Kim J B, Moon S H, Preparation and characterization of UV-grafted ion-exchange textiles in continuous electrodeionization, J Chem Technol Biotechnol 2004(79):1395–1404
    [21] Lysenko. L, Karplyuk A I, Electric ion exchange apparatus for the preparation of high purity water, Voper. Khim. Teknol., 1981, 314-319.
    [22] Spoor P B, Koene L, Terveen W R, et al., Electrodeionisation 3: The removal of nickel ions from dilute solutions. Journal of Applied Electrochemistry 2002 (32): 1–10
    [23] Ganzi G C, Electrodeionization for high purity water production. AICHE Symp. Ser., 1998(84)261: 73-83
    [24] Yabe K, Motomura Y, Ishikawa H, et al, Responding to the future quality demands of ultrapure water. Microcontamination, 1989 (7) 68: 37-46
    [25] Ganzi G C, Ionpure CDI electrodeionization systems. New product and process development for high purity water production. Proceedings of the International Conference on Ion Exchange, ICIE'91, Oct 2-4, 1991 317.
    [26] Bouhidel K E, Lakehal A, Influence of voltage and flow rate on electrodeionization (EDI) process efficiency. Desalination 2006 (193): 411–421
    [27] Ganzi G C, Electrodeionization for high purity water production. AICHE Sump Ser., 1991, May, 73-83
    [28] Semmens M J, Dillon C D, Riley C, An Evaluation of Continuous Electrodeionization as an In-Line Process for Plating Rinsewater Recovery. Environmental Progress 2001 (20) 4 December 251-256
    [29] Monzie E, Muhr, L, Lapicque F, et al.,, Mass transfer investigations in electrodeionization processes using the microcolumn technique, Chemical Engineering Science 2005 (60): 1389-1399
    [30] Wang J Y, S Wang S C, Jin M R, A study of the electrodeionization process high-purity water production with a RO/EDI system. Desalination, 2000 (132): 349-352
    [31] Semmens M J, Dillon C D, Riley C, An evaluation of continuous electrodeionization as aninline process for plating rinsewater recovery, Environmental Progress, 2001 (20) 4: 251-260
    [32] Meyer N, Paker W J, Van Geel P J, Adiga M, Development of an electrodeionization process for removal of nitrate from drinking water Part 1: Single-species testing, Desalination (2005 (175): 153-165
    [33] Meyer N, Parker W J, Van Geel P J, Adiga M, Development of an electrodeionization process for removal of nitrate from drinking water Part 2: Multi-species testing Desalination 2005 175: 167-177
    [34] Kabay N, Yuksel M, Samatya S, Arar O et al., Removal of nitrate from ground water by a hybrid process combining electrodialysis and ionexchangeprocesses. Separation Science and Technology, 2007 42: 2615–2627
    [35] Grabowski A, Zhang G Q, Strathmann H, Eigenberger G, The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity. Journal of Membrane Science 2006 281: 297-306
    [36]王建友,王世昌,傅学起. UF_EDI集成膜过程制备初级纯水.水处理技术,2006 (32) 9: 48-51
    [37]王建友,王世昌,电去离子(EDI)过程的水解离动力学分析,膜科学与技术, 2006 (26) 2: 9-12
    [38]王建友,电去离子过程的研究,天津大学硕士学位论文,1998
    [39] Song J H, Yeon K H, Moon S H, Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI) Journal of Membrane Science 2007 (291): 165–171
    [40] Dejean E, Laktionov E, Sandeaux J, et al., Electrodeionization with ion-exchange textile for the production of high resistivity water: Influence of the nature of the textile. Desalination 1997 (114): 165-173
    [41] Iurash C A, Nikonenko V V, Pismenskaya N D, et al., Dependence of salt and water ion fluxes through ion-exchange membranes under electrodialysis on the ion-exchange bed composition. Desalination 1999 (124) :105-113
    [42] Lee J W, Yeon K H, Song J H, Moon S H, Characterization of electroregeneration and determination of optimal current density in continuous electrodeionization. Desalination 2007 207: 276–285
    [43] Spoor P B, Ter Veen W R, Janssen L J J, Electrodeionization 1: Migration of Nickel ions absorbed in a rigid, Macroporous Cation-exchange Resin. J. App. Electrochem. 2001 5: 523-530
    [44] Dzyazko Y S, Purification of a diluted solution containing nickel using electrodeionization Desalination 2006 198: 47–55
    [45] Yeon K H, Seong J H, Rengaraj S ,et al., Electrochemical Characterization of Ion-Exchange Resin Beds and Removal of Cobalt by Electrodeionization for High Purity Water Production. Separation Science and Technology 2003 (38) 2:443–462
    [46] Yeon K H, Song J H, Moon S H, A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant, Water Research 2004 38: 1911–1921
    [47] Song J H, Yeon K H, Moon S H, Transport Characteristics of Co2+ Through an Ion Exchange Textile in a Continuous Electrodeionization (CEDI) System Under Electro-Regeneration Separation Science and Technology, 2004 (39) 15: 3601–3619
    [48] Mahmoud A, Muhr L, Grevillot G, Lapicque G, Experiment tests and modelling of an electrodeionization cell for the treatment of dilute copper solutions, The Canadian Journal of Chemical Enigeering 2007 (85) April
    [49] Vasilyuk S L, Maltseva T V, Belyakov V N, Influence of water hardness on removal of copper ions by ion-exchange-assisted electrodialysis. Desalination 2004 162: 249-254
    [50] Mahmoud A, Muhr L, Vasiluk S, Aleynikoff, et al., Investigation of transport phenomena in a hybrid ion exchange-electrodialysis system for the removal of copper ionsq Journal of Applied Electrochemistry 2003 33: 875–884
    [51] Elleuch M B C, Amor M B, Pourcelly G, Phosphoric acid purification by a membrane process: Electrodeionization on ion-exchange textiles. Separation and Purification Technology 2006 51: 285-290
    [52] Feng X, Wu Z C, Chen X F, Removal of metal ions from electroplating effluent by EDI process and recycle of purified water. Separation and Purification Technology 2007 57: 257-263
    [53] Dzyazko Y S, Purification of a diluted solution containing nickel using electrodeionization. Desalination 2006 198: 47-55
    [54]王建友,傅学起,卢会霞等,电去离子技术处理低浓度重金属废水研究进展,化工进展,2006 (25) 11: 1270-1275
    [55]卢会霞,王建友,傅学起,卜绍峰,特种分离EDI过程处理模拟电镀镍漂洗水的研究.西安石油大学学报(自然科学版), 2007 (22) 3: 96-99
    [56] Lu H X, Yan B, Wang J Y, Fu X Q, Recovery of nickel ions f rom dilute solutions by elect rodeionization process, Journal of Chemical Industry and Engineering (China), 2007 (58) 5: 1259-1261
    [57] Park J S, Song J H, Yeon K H, et al., Removal of hardness ions from tap water using electromembrane processes. Desalination 2007 202:1-8
    [58] Spoor P B, Grabovska L, Koene L, Janssen L J J, Terveen W R, Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system, Chemical Engineering Journal 2002 89: 193-202
    [59] Vasilyuk S L, Maltseva T, Belyakov V, et al., Ion-exchange assisted electrodialysis for non-ferrous metal removal with zirconium phosphate usage, 53 ra Meeting of the ISE and GDChFachgr. Angew. Electrochemie, Dusseldorf,Germany, 2002.
    [60] Dzyazko Y S, Rozhdestvenskaya L M, Belyakov, J. Water Chem. Technol., 2003 26: 514-523
    [61] Rozhdestvenska L M, Dzyazko Y S, Belyakov V N, Electrodeionization of a Ni2+ solution using highly hydrated zirconium hydrophosphate. Desalination 2006 198: 247-255
    [62] Mohammadi T, Moheb A, Sadrzadeh M, Modeling of metal ion removal from wastewater by electrodialysis. Separation and Purification Technology 2005 41: 73–82
    [63] Kraaijeveld G, Sumberova V, Kuindersma S, et al., Modelling electrodialysis using the Maxwell-Stefan description. The Chemical Engineering Journal 1995 57: 163-176
    [64] Hogendoorn J A, Vanderveen A J, Vanderstegen J H G, et al., Application of the Maxwell-Stefan theory to the membrane electrolysis process model development and simulations, Computers and Chemical Engineering 2001 25: 1251-1265
    [65] Sadrzadeh M, Kaviani A, Mohammadi T, Mathematical modeling of desalination by electrodialysis. Desalination 2007 206: 538-546
    [66] Koter S, Warszawski A. A new model for characterization of bipolar membrane electrodialysis of brine. Desalination 2006 198: 111-123
    [67] Nikonenko V V, Zabolotsky V, Larchet C, et al., Mathematical description of ion transport in membrane systems. Desalination 2002 147: 369-374
    [68] Nikonenko V V, Istoshln A G, Urtenov M K, et al., Analysis of electrodialysis water desalination costs by convective-diffusion model, Desalination 1999 126: 207-211
    [69] Ling L P, Leow H F, Sarmidi M R, Citric acid concentration by electrodialysis: ion and water transport modelling, Journal of Membrane Science 2002 199: 59-67
    [70] Senik Y, Andreeva I, Pismenskaya N, et al., Competitive ion transfer during electrodialysis of multicomponent solutions modeling natural waters, Desalination 2006 200: 429-431
    [71] Lee E G, Moon S H, Chang Y K, Yoo I K, et al., Lactic acid recovery using two-stage electrodialysis and its modelling, Journal of Membrane Science 1998 145: 53-66
    [72] Gong Y, Wang X L, Yu L X, Process simulation of desalination by electrodialysis of an aqueous solution containing a neutral solute, Desalination 2005 172: 157-172
    [73] Glueckauf, E, Electro-deionisation through a packed bed, Br. Chem. Eng. 1959 4: 646-651
    [74] Rubinstein, Isaak, Electrodialysis in a dispersed system, J. Chem. Soc., Faraday Trans. II 1977 73: 528-544
    [75] Verbeek H M, First L, Neumeister H, Digital simulation of an electrodeionization process Computers. Chem. Engng 1998 22: 913-916
    [76] Soulier S, Sistat P, Dejean E, et al., Electrical conductance of ion-exchange textiles equilibrated with sodium chloride solutions. Journal of Membrane Science, 1998 141: 111-120
    [77] Laktionov E, Dejean E, Sandeaux R S J, et al., Production of High Resistivity Water by Electrodialysis. Influence of Ion-Exchange Textiles as Conducting Spacers. Separation Science and Technology, 1999 (34) 1: 69-84
    [78] Danielsson C O, Velin A, Behm M,et al., Nitrate removal by continuous electropermutation using ion-exchange textile II. Experimental Investigation. Journal of The Electrochemical Society, 2006 (153)4: 62-67
    [79] MaféS, Ramirez P, Alcaraz A, Aguilella V, Ion transport and water splitting in bipolar membranes: theoretical background, in: A.J.B. Kemperman (Ed.), Handbook on Bipolar Membrane Technology, Twente University Press, Enschede, The Netherlands, 2000, Chapter 3: 47-78
    [80] Frilette, Preparation and characterization of bilayered ion-exchange membranes. J. Phys. Chem. 1956 60: 435-441
    [81] Tye, Kressman T R E, The effect of current density on the transport of ions through ion-selective membranes, Discuss. Faraday Soc., 1956, 21: 185-192
    [82] Rosenberg N W, Tirrell C E, Limiting currents in membrane cells.Ind Eng Chem,1957 (49) 4:780-784
    [83] Nikonenko V V, Pismenskaya N D, Volodina E I, Rate of Generation of Ions H+ and OH- at the Ion-Exchange Membrane/Dilute Solution Interface as a Function of the Current Density. Russian Journal of Electrochemistry, 2005 41 (11): 1205–1210, Translated from Elektrokhimiya, 2005 (41) 11: 1351-1357
    [84] Mishchuk, The role of water dissociation in concentration polarisation of disperse particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999 159: 467-475
    [85] Belova E, Lopatkova G, Pismenskaya N, et al., Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 2006 199: 59-61
    [86] Tanaka, Yoshinobu, Water dissociation in ion-exchange membrane electrodialysis. Journal of Membrane Science, 2002 203: 227-224
    [87] Hurwitz H D, Dibiani R, Moussaoui R E L, et al., Water dissociation in bipolar membranes studied by impedance spectroscopy, in: Proceeding of Euromembrane 95, Bath, UK, 1995 89–94
    [88]刘红斌,龚承元,马军,苏建勇,朱孟府.电去离子过程水解离的基本特征.膜科学与技术,2003 (23) 4: 30-33
    [89] Block M, Kitchener J A, Polarization phenomena in commercial ion-exchange membranes, J. Electrochem. Soc, 1996 113: 947-954
    [90] Simons R, Strong electric field effects on proton transfer betweenmembrane-bound amines and water, Nature 280: 824-826
    [91] Oda Y, Yawataya T, Neutrality-disturbance phenomenon of membrane-solution systems, Desalination 1968 5: 129-138
    [92] Bassignana I C, Reiss H, Ion transport and water dissociation in bipolar ion-exchange membranes, J. Membr. Sci, 1983 (15): 27-41
    [93] Timashev S F, Kirganova E V. Mechanism of the electrolytic decomposition of water molecules in bipolar membranes, Sov. Electrochem, 1982 (17): 366-372
    [94] Ramires P, Aguilella V M, Manzanares J A, et al., Effects of temperature and ion transport on water splitting in bipolar membranes, J. Membr. Sci, 1992(73): 191-201
    [95] Greben V P, Pivovarov N Y, Kovarskii N Y, Investigation of the kinetics of the dissociation of water in bipolar ion-exchange membranes by measuring their impedance, Russ. J. Phys. Chem, 1981 (55): 214-219
    [96] Alcaraz A, Ramirez P, MaféS, et al., Ionic selectivity and water dissociation rate of bipolar membranes from membrane potential and current voltage measurements, Polymer 2000 41: 6627-6634
    [97] Xu T W, Fu R Q, A simple model to determine the trends of electric-field-enhanced water dissociation in a bipolar membrane. II. Consideration of water electrotransport and monolayer asymmetry, Desalination, 2006 190: 125–136
    [98] Xu T W, Effect of asymmetry in a bipolar membrane on water dissociation-a mathematical analysis, Desalination, 2002 150: 65-74
    [99] Fu R Q, Cheng R R, Xu T W, et al., Fundamental studies on the intermediate layer of a bipolar membrane. Part VI. Effect of the coordinated complex between starburst dendrimer Pamam and chromium (III) on water dissociation at the interface of a bipolar membrane, Desalination 2006 196: 260-265
    [100] Nagasubramanian K, Chlanda FP, Liu K J, Use of bipolar membranes for generation of acid and base—an engineering and economic analysis, J. Membr. Sci, 1977 2: 109-124
    [101] Simons R, Sajkewycz N. A-c electrical properties of bipolar membranes: Experiments and a model, Journal of Membrane Biology, 1997 (34) 263-276
    [102] Chang Y, Bipolar Membrane Water Splitting, doctor thesis, Columbia University, 1979
    [103] Perry R H,佩里化学工程师手册,科学出版社, 2001. 2
    [104] Simons, R. Strong electric field effects on proton transfer between membrane bound amines and water, Nature 1979 (280) 824-826
    [105] Simons R, Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes. . Elctrochimica Acta, 1984 (29) 2:151-158
    [106] Onsager L, Deviations from Ohm's Law in weak electrolytes, J. Chem. Phys. 1934 2: 599-615
    [107] Strathmann H, Krol J J, Rapp H J, Eigenberger G, Limiting current density and water dissociation in bipolar membranes. Journal of Membrane Science,1997 125: 123-142
    [108] MaféS, Ramirez P, Alcaraz A, Electric field-assisted proton transfer and water dissociation at the junction of a bipolar fixed charge membrane, Chem. Phys. Lett. 1998 294: 406-412
    [109] Hurwitz H D, Dibiani R, Investigation of electrical properties of bipolar membranes at steady state and with transient methods. Electrochimica Acta, 2001 47: 759-773
    [110] Hurwitz H D, Dibiani R, Experimental and theoretical investigations of steady and transient states in systems of ion exchange bipolar membranes Journal of Membrane Science, 2004 228: 17-43
    [111] Prigogine I, Introduction to Thermodynamics of Irreversible Processes. C.C. Thomas Publishers, Springfield, IL, 1955
    [112] Ohshima H, Ohki S, Donnan potential and surface potential of a charged membrane. Biophysical Journal, 1985 47: 673-678
    [113] Dahnert K, Huster D, Comparison of the Poisson–Boltzmann Model and the Donnan Equilibrium of a Polyelectrolyte in Salt Solution Journal of Colloid and Interface Science, 1999 215: 131-139
    [114] Schmickler, Electronic effects in the electric double layer, Chem. Rev. 1996 96: 3177-3200
    [115] Mauro A, Space charge regions in fixed charge membranes and the associated property of capacitance, Biophys. J, 1962 2: 179-198
    [116] Smith J R, Simons R, Weidenhaum J, The low frequency conductance of bipolar membranes demonstrates the presence of a depletion layer, J. Membr. Sci, 1998 (140): 155-159
    [117] Ohki S, Ohshima H, Donnan Potential and surface potential of a charged membrane and effect of ion binding on the potential profile, in: M. Blank (Ed.), Electrical Double Layers in Biology, Plenum Press, New York, NY, 1986, pp: 1–16.
    [118] Qu W L, Li D Q, A model for overlapped eDL fields, Journal of Colloid and Interface Science, 2000 224: 397-407
    [119] Zabolotskii V I, Nikonenko V V, Korzhenko N M, et al., Mass transfer of salt ions in an electromembrane system with violated electroneutrality in the diffusion layer: the effect of a heterolytic dissociation of water, Russian Journal of Electrochemistry, 2002 38(8): 810-818, Translated from Elektrokhimiya, 2002 38(8): 911-920
    [120] Danielsson C O, Dahlkild A, Velin A, et al., Modeling Continuous Electropermutation with Effects of Water Dissociation Included, 2006, to be submitted
    [121] Danielsson C O, Dahlkild A, Velin A, et al., A Model for the Enhanced WaterDissociation On Monopolar Membranes, 2006, to be submitted
    [122] Danielsson C O, Dahlkild A, Velin A, et al., Nitrate Removal by Continuous Electropermutation Using Ion-Exchange Textile I. Modeling. Journal of The Electrochemical Society, 2006 (153) 4: 51-61
    [123]王建友,王世昌,电去离子(EDI)过程水解离机理的研究(Ⅰ)特征曲线,膜科学与技术,2005 (25) 4: 1-7
    [124]王建友,王世昌,电去离子(EDI)过程水解离机理的研究(Ⅱ)特征曲线的形成机理.膜科学与技术,2005 (25) 5: 1-4
    [125]王建友,王世昌,电去离子过程水解离机理的研究(Ⅲ)阴膜和阴树脂的降解对水解离的影响.膜科学与技术,2005 (25)6: 24-38
    [126] Zabolotskii V I, Gnusin N P, Sheldeshov N V, Pismenskaya N D, Investigation of the catalytic activity of secondary and tertiary amino groups in the dissociation of water on a bipolar MB-2 membrane, Sov. Electrochem, 1988 21: 993-998
    [127] Zabolotskii V I, Sheldeshov N V, Gnusin N P, Influence of the ionogenic groups on the issociation constants of water in bipolar ion-exchange membranes, Soviet Electrochem,1987 22: 1573-1579
    [128] Simons R, Water splitting in ion-exchange membranes. Electrochimica Acta, 1985 (30) 3: 275-282
    [129] Simons R, Khanarian G, Water dissociation in bipolar membranes: Experiments and theory. J. Membrane Biol, 1978 38: 11-30
    [130] Mayer K U, A numerical model for multicomponent reactive transport in variably saturated porous media, doctor thesis, University of Waterloo, 1999
    [131] Romkes S J P, Dautzenberg F M, VandenBleek C M, et al., CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio, Chemical Engineering Journal, 2003 96: 3-13
    [132] Matthew E, Theroy and simulation of diffusion processes in porous meida, doctor thesis, University of California, 1999
    [133] Roos M, Batawi E, Harnisch U, Hocker T, Efficient simulation of fuel cell stacks with the volume averaging method, Journal of Power Sources, 2003 118: 86–95
    [134] Liou M F, A numerical study of transport phenomena in porous media, doctor thesis, Case Western Reserve University, 2005
    [135] Xu T F, Samper J, Ayora C, et al., Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems, Journal of Hydrology, 1999 214: 144-164
    [136] Younes A, On modelling the multidimensional coupled fluid flow and heat or mass transport in porous media. International Journal of Heat and Mass Transfer, 2003 46: 367-379
    [137] Golfier F, Quintard M, Cherblanc F, et al., Comparison of theory andexperiment for solute transport in highly heterogeneous porous medium, Advances in Water Resources, 2007 30: 2235-2261
    [138] Mohammad I, Baik O D, Carey J, Modeling of the packed bed drying of paddy rice using the local volume averaging (LVA) approach, Food Research International, 2006 39: 712-720
    [139] Prigogine I. Introduction to Thermodynamics of Irreversible Processes, C.C. Thomas Publishers, Springfield, IL, 1955
    [140] Zabolotsky V I, Nikonenko V V, Pismenskaya N D,. On the role of gravitational convection in the transfer enhancement of salt ions in the course of dilute solution electrodialysis. Journal of Membrane Science, 1996 119: 171-181
    [141] Nikonenko V V, Zabolotsky V I, Effect of structural membrane inhomogeneity on transport properties. Jouranl of Membrane Science, 1993 79: 181-198
    [142] Buck R P, Kinetics of bulk and interfacial ionic motion microscopic bases and limits of the Nernst-Planck equation applied to membrane systems. J. Membrane Science, 1984 (17) 1:72-78
    [143] Vanderstegen J H G, Vanderveen A J, Weerdenburg H, et al., Application of the Maxwell}Stefan theory to the transport in ion-selective membranes used in the chloralkali electrolysis process. Chemical Engineering Science, 1999 54: 2501-2511
    [144] Auclair, Schaetzel P, Bernard, The generalized multicomponent Nernst-Planck diffusion equation-diffusion and self diffusion coefficients. Electrochimica Acta, 1998 43 Nos 21-22: 3375-3377
    [145] Ulson de Souza, Whitaker S, The modelling of a textile dyeing process utilizing the method of volume averaging, Brazilian Journal of Chemical Engineering, 2003 (20) 04: 445 - 453
    [146] Spiegler K S, Yoest R L, Wyllie M R J, Electrical potentials across porous plugs and membranes, ion exchange resin-solution system. Discussions Faraday Soc, 1956 21: 174–183
    [147] Rubinstein I, Oren Y, Zaltzman B, Multi-phase model of a sparse ion-exchange spacer. Journal of Membrane Science, 2004 239: 3–8
    [148] Schaetzel P, Favre E, Auclair B, et al., Mass-transfer through ion exchange membranes: comparison between the diffusion and the diffusion-convection Stefan-Maxwell equations, Electrochimica Acta, 1997 (42)16: 2475-2483.
    [149] Chowdiah V N, Foutch G L, Lee G C, Binary liquid-phase mass transport in mixed-ded ion exchange at low solute concentration. Ind. Eng. Chem. Res, 2003 42: 1485-1494
    [150] Bear J, Dynamics of Fluids in Porous Media,American Elsevier,New York,1972
    [151] Wendyvanbeinum J, Meeussen L, Vanriemsdijk W. Modeling transport of protons and calciumions in an alginate gel bead system: the effects of physicalnonequilibrium and nonlinear competitive sorption, Environ. Sci. Technol, 2000 34: 4902-4907
    [152] Klink P R, Ion exchange on a chelating resin: multicomponent equilibrium predictions using binary data, doctor thesis, Drexel University, 2001
    [153] Quenneville E, Buschmann B, A transport model of electrolyte convection through a charged membrane predicts generation of net charge at membrane/electrolyte interfaces. Journal of Membrane Science, 2005 265: 60–73
    [154] Rodríguez M E C R, Kinetics and Mechanism of ion exchange process and resin deactivation during ultra-purification of water, doctor thesis, The University of Arizona
    [155] Nikonenko V V, Lebedev K, Manzanares J A, et al., Modelling the transport of carbonic acid anions through anion-exchange membranes. Electrochimica Acta, 2003 48: 3639-3650
    [156] Pillay G, Mathematical modeling of macrohomogeneous transport phenomena in ion-exchange membranes, doctor thesis, Texas A&M University
    [157] Wesselingh J A, Vok P, Kraaijeveld G, Expolring the Maxwell-Stefan description of ion exchange. The Chemical Engineering Journal, 1995 (57): 75-89
    [158]李大鸣,张红萍,李冰绯,高永祥.多孔介质内部流动模型及其数学模拟,天津大学学报, 2002 (35) 6: 699-704
    [159] Davis R H, Stones H A, Flow through beds of porous particles, Journal of Chemial Engineering Science, 1993 (48) 23: 3993-4005
    [160] Durlofsky L, Brady J F, Analysis of the Brinkman equation as a model for flow in porous media. Phys Fluids, 1987 30: 3329-3341
    [161]蔡睿贤,苟晨华,张娜,.多孔介质中考虑各向异性自然对流Brinkman模型的解析解(II),中国科学G辑物理学力学天文学, 2005 (35) 2: 113-120
    [162]蔡睿贤,张娜.多孔介质中自然对流Brinkman模型的解析解,中国科学(A辑), 2002 (32) 6: 566-574
    [163] Dias R P, Fernandes C S, Mota M, et al., Permeability and effective thermal conductivity of bisized porous media International Journal of Heat and Mass Transfer, 2007 50: 1295-1301
    [164] Seda L, Kosek J, Predictive modeling of ionic permselectivity of porous media, Computers and Chemical Engineering, 2008 32: 125-134
    [165] Yu B M, Zou M Q, Feng Y J,. Permeability of fractal porous media by Monte Carlo simulations, International Journal of Heat and Mass Transfer, 2005 48: 2787–2794
    [166] Martys M, Bentz D P, Garboezi E J, Computer simulation study of the viscosity in Brinkman's equation, Phys Fluid, 1994 (6) 4: 1434-1449
    [167]佘铭钢,刘铮.多孔介质电渗流动计算流体力学模拟与实验研究(1)多孔介质电渗流动的CFD模拟,化工学报,2003 (54) 8: 1037-1043
    [168]陶文铨,数值传热学(第二版),西安:西安交通大学出版社,2001
    [169] Bouzek K, Fila V, A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions. Journal of Applied Electrochemistry, 2003 33: 675-684
    [170] Zabolotskii V I, Manzanares J A, Mafe S, et al., Steady-state ion transport through a three-layered membrane system: a mathematical model allowing for violation of the electroneutrality condition, Russian Journal of Electrochemistry, Vol. 38, No. 8, 2002, pp. 819-827. Translated from Elektrokhimiya, Vol. 38, No. 8, 2002, pp. 921-929
    [171] Tanaka Y, Concentration polarization in ion-exchange membrane electrodialysis—the events arising in a flowing solution in a desalting cell. Journal of Membrane Science, 2003 216: 149-164
    [172] Tanaka Y, Concentration polarization in ion-exchange membrane electrodialysis-The events arising in an unforced flowing solution in a desalting cell. Journal of Membrane Science, 2004 244: 1-16
    [173] Krol J J, Monopolar and bipolar ion exchange membranes mass transport limitations, doctor thesis, Twente University, 1997
    [174] Fievet P, Szymczyk A, Aoubiza B, Evaluation of three methods for the characterisation of the membrane–solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. Journal of Membrane Science, 2000 168: 87-100
    [175]王建友,刘红斌,龚承元,王世昌,电去离子过程水解离影响因素的研究.膜科学与技术,2000 (20) 5: 1-8
    [176] Senik Y, Pismenskaya N, Nikonenko V V, et al., A model for calculating ion equilibria and electrical conductivity of natural water solutions, Desalination 2006 191: 232-235
    [177] Ganzi G C, The ionpureTM continuous deionization process: Effect of electrical current distribution on performance. Proceedings of the 80th Annual AIChE meeting on Nov. 28, 1998
    [178] Ganzi G C, Water purification and recycling using the Ionpure CDI process, AIChE Summer National Meeting, Paper 41c, 1991
    [179] Choi E Y, Choi J H, Moon S H, An electrodialysis model for determination of the optimal current density, Desalination, 2002 153: 399-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700