用户名: 密码: 验证码:
再结晶碳化硅烧结机理及其材料性能改进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再结晶碳化硅(RSiC)因其高纯度、优异的高温力学性能、耐腐蚀性、热稳定性等而广泛应用于高温窑具、冶金及尾气过滤、热交换及电热材料等苛刻领域中。但由于RSiC自身在烧成过程中不产生收缩的特征使得其致密度不高,且气孔基本为开口连通结构,导致其力学性能和抗氧化能力有限,难以满足日益发展的应用需求;并且高性能RSiC的关键制备技术仍掌握在国外少数企业中,致使价格高昂。综合近年国内外研究发现,对RSiC的烧成机制及杂质对其烧成性能的影响等相关研究较少,这些又是与RSiC显微结构极为相关的因素,进而影响到材料的相关性能,然而其极高的制备温度(普通RSiC的制备温度在2200-2450℃)导致对其细致系统研究较为困难。本文在这一大背景下,从RSiC的烧成机制及显微结构的变化等基本问题出发,逐步深入到原料杂质的影响机制,进而根据RSiC在应用中的不足开展其相关性能改善方面的研究。
     研究了不同粒径及粒径组合的SiC压制体在不同温度下的再结晶过程,将其显微结构与其烧结机制、原料粒径组成、温度相互关联起来,分析了其再结晶机制并提出如何调控显微结构而优化材料性能的方法。研究表明RSiC在低温下(2350。C以下)以表面扩散、高温下(2350℃以上)以蒸发-凝聚为主要传质机制实现其再结晶;原料的粒径组成和烧成温度对RSiC的显微结构和晶体长大影响很大,单一粒径组成时晶体长大受温度影响较小,混合粒径时颗粒兼并显著,且随温度的升高颗粒兼并能力大幅提高,并造成晶体长大;调整原料粒径组成、烧成温度可实现RSiC的气孔率及孔径、性能等调控。
     研究了SiC原料中最常见的杂质Si02在不同含量及不同温度下对RSiC在烧成过程中失重、显微形貌及副产物形貌的影响。在再结晶条件下,Si02以液相的形式包覆在SiC颗粒表面,并在Si02/SiC的固液界面上与SiC反应产生气相SiO(g)和CO(g)产物,SiO(g)在界面进一步促进SiC的分解反应,造成比纯SiC再结晶更大的失重;这一过程使SiC在高温下的主要气相组成从纯SiC的SiC2(g)、Si2C(g)、Si(g)转变成高SiO(g)和CO(g)分压的组成,抑制了SiC的有效再结晶氛围,延长了RSiC正常的烧成时间;分析副产物的生长环境、形貌及生长速率,从侧面证明了失重及形貌分析关于Si02杂质对SiC再结晶过程影响的合理性。
     针对目前RSiC致密度和强度不高的现状,研究了以聚碳硅烷(PCS)为前驱体、聚合物浸渍-裂解法(PIP)和高温再结晶相结合的循环处理方法增加具有不同气孔率的RSiC的致密度。通过预氧化与高温处理相结合的方法可获得纯度较高的、对RSiC性能无害的SiC产物。用PCS/二甲苯(Xylene)溶液浸渍增密RSiC裂解后可得到结构均匀的材料,但效率较低;以SiC/PCS/Xylene浆料浸渍可大幅提高增密效率,但易形成表面致密、内部疏松的结构;单纯的PIP法因裂解产物堵塞导致增密最终致密度有限,而再结晶处理使裂解SiCf经蒸发-凝聚过程沉积在初始RSiC上,打开堵塞的孔隙,突破了这一限制,有助于后续PIP的再开始;最后在商用最好的RSiC基础上通过3次PIP+再结晶处理成功制备出高密度、高强度的高性能RSiC材料。
     针对RSiC因开口连通气孔结构而抗氧化能力不足的缺陷,利用直接熔渗法使MoSi2与SiC复合形成致密材料进行改善。熔渗温度下MoSi2熔体比较稳定,与SiC具有较好的润湿性和相容性,但仍部分分解,并与SiC反应形成Mo4.8Si3C0.6相;SiC与MoSi2之间的热膨胀系数差异较大致使冷却后材料内部产生裂纹,影响了其力学性能的提高;制备的RSiC-MoSi2复合材料兼具优异的抗氧化性、较低的热膨胀系数和电阻率,既可作为结构材料使用,还可用于高温发热元件,实现结构功能一体化。
Due to its high purity, excellent high-temperature mechanical properties, corrosion resistance, thermal stability etc, recrystallized SiC (RSiC) has been widely used in the fields with severe environment, such as high-temperature kilns, metallurgy filters, exhaust filters, heat exchanger, electric heating element. However, the inherent sintering mechanism of RSiC without shrinkage during firing leads to its limited mechanical properties and oxidation resistance, which is insufficient to meet the growing demands for application. The key manufacturing technology of RSiC still depends on only a few foreign companies, resulting in its high price. Although many efforts have been conducted in recent years, few studies focused on the sintering mechanism and effects of impurities in raw materials on the sintering characteristic of RSiC, which are closely related to the microstructure of RSiC, thereby affecting its relative properties. Moreover, the high temperature for preparing RSiC (2200-2450℃) results it extremely difficult to investigate the process in detail. Based on these status, this work started with the investigation of sintering mechanism and microstructure evolution of RSiC, next stepped into impact of impurities in raw material on the sintering mechanism of RSiC, and then focused on the property improvement of RSiC which was inadequate according to the applications.
     The recrystallization of SiC compactions with different raw material particle sizes and size distributions was investigated, besides the relations among microstructure evolution, sintering mechanism, raw material particle size&distribution, and sintering temperature, which was employed to the analysis of recrystallization mechanism and the suggestion how to get optimal properties by microstructure design. The results showed that SiC achieved its recrystallization by surface diffusion at low temperatures and evaporation-condensation at high temperatures. The raw material particle size&distribution and sintering temperature had a great influence on the microstructure and grain growth of RSiC. The grain growth has not been affected by sintering temperature for the single particle size, while for multi-particle size, the merging between particles was notable, and as the temperature increased, the merging ability increased, which resulting in the grain growth. As a result, the porosity&pore size and properties of RSiC could be controlled by adjusting the raw material particle-size composition and sintering temperature.
     The effect of SiO2, as one of the most common impurities in the SiC raw powders, on the weight loss, microstructure evolution and morphology of by-products of RSiC during sintering with different SiO2contents in raw materials under different temperatures, has been investigated. Under the sintering temperatures, SiO2, in the form of liquid state coated the fine SiC, reacted with SiC at the solid/liquid interface of SiC/SiO2, producing the gas products of SiO(g) and CO(g). The produced SiO(g) further promoted the dissociative evaporation reaction of SiC at the interface, resulting in greater weight loss than that of pure SiC during recrystallization. The recrystallization atmosphere altered from SiC2(g), Si2C(g), and Si(g) for the pure SiC to the composition containing high contents of SiO(g) and CO(g) for that with SiO2, which inhibited the effective recrystallization of SiC, extending the normal sintering time. The analysis of growth environment, morphology and growth rates of by-products of RSiC, proved the results from the presumption of weight loss and microstructure evolution reasonable.
     Based on the status of RSiC with relative low density and low flexural strength, one employed polycarbosilane (PCS) as precursor, and a cyclic process combining polymer impregnation-pyrolysis (PIP) and high-temperature recrystallization to increase the density of RSiC with different porosities. Despite the pure PCS is cabon-surplus for SiC, relative pure SiC product has been obtained successfully by combining a prior oxidative cross-linking treatment and recrystallization. When densified with PCS/Xylene solution, RSiC with homogeneous structure can be obtained but with a relatively low densification efficiency. However, that with SiC/PCS/Xylene slurry can notably improve the efficiency but with a structure of dense area in exterior and loose area in interior of RSiC. The PIP treatment improved the density of RSiC to a certain degree, but it was not effective by a single way of PIP cycles owing to the blocked pores. The recrystallization treatment at2400℃reopened the plugged pores and made the pores intercommunicated by the evaporation-condensation of SiC particles, which resulted in a continued PIP density increasing process. A high performance RSiC with high density and high flexural strength was obtained finally after three PIP-recrystallization cycles on the basis of commercial RSiC.
     Melt infiltration was employed to prepare dense RSiC-MoSi2composites to improve the oxidation resistance of RSiC which weakened by the interconnected open pores of RSiC. The MoSi2melt was relatively stable under infiltration temperatures, was wettable and compatible with SiC. However, still part of the MoSi2decomposed, forming melt rich in Mo, which reacted with SiC forming Mo4.8Si3C0.6.The difference of the thermal expansion coefficients between SiC and MoSi2resulted in cracks created, which had influence on the improvement of mechanical property. The prepared RSiC-MoSi2composites with excellent oxidation resistance, low coefficient of thermal expansion and resistivity can be used as structural material, as well as heating elements to achieve the integration of structure and function.
引文
[1]Acheson E G. On Carborundum. Chem. News,1893,68:179
    [2]Goela J S, Burns L E, Taylor R L. Transparent chemical vapor deposited β-SiC Appl. Phys. Lett.,1994,64:131-133
    [3]Xu S J, Zhou J G, Yang B, Zhang B Z. Effect of deposition temperature on the properties of pyrolytic SiC. J. Nucl. Mater.,1995,224:12-16
    [4]Yajima S, Hayashi J, Omori M, et al. Development of a SiC fiber with high tensile strength. Nature,1976,261:683-685
    [5]Ishikawa T, Kohtoku Y, Kumagawa K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2200℃. Nature,1998,391:773-775
    [6]Briggs A, Davidge R W, Padgett C, et al. Crushing behaviour of high temperature reactor coated fuel particles. J. Nucl. Mater.,1976,61:233-242
    [7]Yavuz B O, Tressler R E. Threshold Stress Intensity for Crack Growth in Silicon Carbide Ceramics. J. Am. Ceram. Soc.,1993,76:1017-1024
    [8]Cockeram B V. Fracture Strength of Plate and Tubular Forms of Monolithic Silicon Carbide Produced by Chemical Vapor Deposition. J. Am. Ceram. Soc.,2002,85: 603-610
    [9]Yavuz B O, Tressler R E. High temperature mechanical behavior of a chemically vapor deposited beta silicon carbide. Ceram. Int.,1992,18:19-26
    [10]Ohji T, Yamauchi Y, Kanematsu W, et al. Tensile Rupture Strength and Fracture Defects of Sintered Silicon Carbide. J. Am. Ceram. Soc.,1989,72:688-690
    [11]Cheong D I, Kim J, Kang S L. Effects of isothermal annealing on the microstructure and mechanical properties of SiC ceramics hot-pressed with Y2O3 and Al2O3 additions. J. Eur. Ceram. Soc.,2002,22:1321-1327
    [12]Sciti D, Guicciardi S, Bellosi A. Effect of annealing treatments on microstructure and mechanical properties of liquid-phase-sintered silicon carbide. J. Eur. Ceram. Soc.,2001,21(5):621-632
    [13]Rixecker G, Wiedmann I, Rosinus A, et al. High-temperature effects in the fracture mechanical behaviour of silicon carbide liquid-phase sintered with AIN-Y2O3 additives, J. Eur. Ceramic Soc.,2001,21:1013-1019
    [14]Sigl L S. Thermal conductivity of liquid phase sintered silicon carbide. J. Eur. Ceram. Soc.,2003,23:1115-1122
    [15]Niihara K. Mechanical properties of chemically vapor deposited nonoxide ceramics. Am. Ceram. Soc. Bull.,1984,63:1160-1164
    [16]Schilchting J. Powder Metall. Int.,1980,12:141
    [17]Kovalcikova A, Dusza J, Sajgalik P. Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics. J. Eur. Ceram. Soc.,2009, 29:2387-2394
    [18]Borrero-Lopez O, Ortiz A L, Guiberteau F, et al. Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC:An overview, J. Eur. Ceram. Soc.,2007,27:3351-3357
    [19]Ortiz A L, Munoz-Bernabe A, Borrero-Lopez O, et al. Effect of sintering atmosphere on the mechanical properties of liquid-phase-sintered SiC. J. Eur. Ceram. Soc.,2004,24:3245-3249
    [20]Magnani G, Antolini F, Beaulardi L, et al. Sintering, high temperature strength and oxidation resistance of liquid-phase-pressureless-sintered SiC-AIN ceramics with addition of rare-earth oxides. J. Eur. Ceram. Soc.,2009,29:2411-2417
    [21]Carter Jr C H, Davis R F, Bentley J. Kinetics and Mechanisms of High-Temperature Creep in Silicon Carbide:Ⅱ, Chemically Vapor Deposited. J. Am. Ceram. Soc.,1984,67:732-740
    [22]Lane J E, Carter Jr C H, Davis R F. Kinetics and mechanisms of high-temperature creep in silicon carbide:Ⅲ, sintered-silicon carbide. J. Am. Ceram. Soc.,1988, 71(4):281-295
    [23]Biswas K, Rixecker G, Aldinger F. Improved high temperature properties of SiC-ceramics sintered with Lu2O3-containing additives. J. Eur. Ceram. Soc.,2003, 23:1099-1104
    [24]Biswas K, Schneider, Rixecker G, et al. Comparative bending creep behaviour of silicon carbide sintered with oxynitride additives. Scripta Mater.,2005,53: 591-596
    [25]Carter Jr C H, Davis R F, Bentley J. Kinetics and mechanisms of high-temperature creep in silicon carbide:Ⅰ, reaction-bonded. J. Am. Ceram. Soc.,1984,67(6): 409-417
    [26]http://www.cvdmaterials.com/sicprop2.htm
    [27]Volz E, Roosen A, Hartung W, et al. Electrical and thermal conductivity of liquid phase sintered SiC, J. Eur. Ceram. Soc.,2001,21:2089-2093
    [28]Munro R G. Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data, 1997,26:1195-1203
    [29]Watkins T R, Green D J. Fracture behavior of chemically-vapor-deposited SiC-coated graphite:I, experimental results. J. Am. Ceram. Soc.,1993,76: 3066-3072
    [30]肖汉宁,高朋召.高性能结构陶瓷及其应用.北京:化学工业出版社,2006,163-168
    [31]Eck J, Balat-Pichelin M, Charpentier L, et al. Behavior of SiC at high temperature under helium with low oxygen partial pressure. J. Eur. Ceram. Soc.,2008,28: 2995-3004
    [32]Jennings V J. The etching of silicon carbide. Mater. Res. Bull.,1969,4: S199-S210.
    [33]Faust Jr J W. Silicon carbide, Pergamon Press, New York,1960, p.403
    [34]Ellis R C. Silicon carbide, Pergamon Press, New York,1960, p.420
    [35]Harris J M, Gatos H C, Witt A F. Identification of the (0001) and the (0001) Surfaces of Silicon Carbide. J. Electrochem. Soc.,1969,116:672-673
    [36]Zhuang D, Edgar J H. Wet etching of GaN, AlN, and SiC:a review. Mater. Sci. Eng. R,2005,48:1-46
    [37]Moene R, Makkee M, Moulijn J A. High surface area silicon carbide as catalyst support characterization and stability. Appl. Catal. A,1998,167:321-330
    [38]Ortiz A L, Borrero-Lopez O, Quadir M Z, et al. A route for the pressureless liquid-phase sintering of SiC with low additive content for improved sliding-wear resistance. J. Eur. Ceramic Soc.,2012,32:965-973
    [39]Chakrabarti O P, Ghosh S, Mukerji J. Influence of grain size, free silicon content and temperature on the strength and toughness of reaction-bonded silicon carbide. Ceram. Int.,1994,20:283-286
    [40]肖俊明,刘铭,李志强,等.碳化硅窑具的发展及应用.金刚石与磨料磨具工程,1998,104(2):43-45
    [41]郭玉广‘.重结晶碳化硅陶瓷窑具的特性及生产技术.陶瓷,1998,135(5):37-38
    [42]Nadeau J S. Very high pressure hot pressing of silicon carbide. Am. Ceram. Soc. Bull.,1973,52:170-174
    [43]Lin B W, Imai M, Yano T, et al. Hot-pressing of β-SiC powder with Al-B-C additives. J. Am. Ceram. Soc.,1986,69:C67-C68
    [44]Cao J J, MoberlyChan W J, De Jonghe L C, et al. In situ toughened silicon carbide with Al-B-C additions. J. Am. Ceram. Soc.,1996,79:461-469
    [45]Prochazka S, Scanlan R M. Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc.,1975,58:72
    [46]Zhou Y, Tanaka H, Otani S, et al. Low-temperature pressureless sintering of α-SiC with Al4C3-B4C-C additions. J. Am. Ceram. Soc.,1999,82:1959-1964
    [47]Mulla M A, Krstic V D. Pressureless sintering of β-SiC with Al2O3 additions. J. Mater. Sci.,1994,29:34-38
    [48]Mulla M A, Krstic V D. Low-temperature pressureless sintering of β-silicon carbide with aluminum oxide and yttrium oxide additions. Am.Ceram. Soc. Bull., 1991,70:439-443
    [49]Padture N P. In Situ-Toughened Silicon Carbide. J. Am. Ceram. Soc.,1994,77: 519-523
    [50]Weidenmann K A, Rixecker G, Aldinger F. Liquid phase sintered silicon carbide (LPS-SiC) ceramics having remarkably high oxidation resistance in wet air. J. Eur. Ceram. Soc.,2006,26:2453-2457
    [51]Hotta M, Hojo J. Inhibition of grain growth in liquid-phase sintered SiC ceramics by AlN additive and spark plasma sintering. J. Eur. Ceram. Soc.,2010,30: 2117-2122
    [52]Rodriguez-Rojas F, Ortiz A L, Guiberteau F, et al. Oxidation behaviour of pressureless liquid-phase-sintered-SiC with additions of 5Al2O3+3RE2O3 (RE= La, Nd, Y, Er, Tm, or Yb). J. Eur. Ceram. Soc.,2010,30:3209-3217
    [53]Yu J, Yang J, Huang Y. The transformation mechanism from suspension to green body and the development of colloidal forming. Ceram. Int.,2011,37:1435-1451
    [54]Matsunaga N, Nakashima Y, Hirata Y, et al. Rheology and pressure filtration of aqueous SiC suspensions of nanometer-sized bimodal particles. Ceram. Int.,2010, 36:1581-1588
    [55]司文捷,Graule T J, Baader F H,等.直接凝固注模成型SiC陶瓷—浆料凝固过程的研究.无机材料学报,1996,]1(1):171-174
    [56]Ferreira J M, Diz H M M. Influence of pH on the pressure slip casting of silicon carbide bodies. J. Eur. Ceram. Soc.,1997,17:259-266
    [57]Ferreira J M, Diz H M M. Effect of slurry structure on the slip casting of silicon carbide powders. J. Eur. Ceram. Soc.,1992,10:59-64
    [58]Hirata Y, Yamada S, Fukushige Y. Colloidal processing of silicon carbide. Mater. Lett.,1993,16:295-299
    [59]Si W, Graule T J, Baader F H, et al. Direct coagulation casting of silicon carbide components. J. Am. Ceram. Soc.,1999,82:1129-1136
    [60]张兆泉.碳化硅材料的胶态成型研究[博士学位论文].上海:中国科学院上海硅酸盐研究所,2000,1-102
    [61]易中周,谢志鹏,黄勇,等.重结晶碳化硅凝胶注模成型及其性能研究.硅酸盐通报,2002,(4):3-7
    [62]Zhou L, Huang Y, Xie Z. Gelcasting of concentrated aqueous silicon carbide suspension. J. Eur. Ceram. Soc.,2000,20:85-90
    [63]Janney M A, Omatete O O, Walls C A, et al. Development of low-toxincity gelcasting systems. J. Am. Ceram. Soc,1998,81:581-591
    [64]Sigmund W M, Bell N S, Bergstrom L. Novel powder-processing methods for advanced ceramics. J. Am. Ceram. Soc.,2000,83:1557-1574
    [65]Aizawa M, Nosaka Y, Miyama H. Behavior of titanate coupling agent on TiO2 particles. J. Colloid Int. Sci.,1990,139:324-329
    [66]Rao R R, Roopa H N, Kannan T S. Effect of pH on the dispersability of silicon carbide powders in aqueous media. Ceram. Int.,1999,25:223-230
    [67]Briscoe B J, Khan A U, Luckham P F. Stabilising zirconia aqueous suspensions using commercial polyvalent electrolyte solutions. J. Eur. Ceram. Soc.,1998,18: 2169-2173
    [68]Yoshioka K, Askai E, Daimon M. Role of steric hindrance in the performance of superplasticizers for concrete. J. Am. Ceram. Soc.,1997,80:2667-2671
    [69]Liu D M. Dispersion characteristic of nano-sized ceramic powder in an aqueous medium. J. Mater. Sci. Lett.,1998,17:207-210
    [70]邓明进,武七德,华春松,等.颗粒的整形工艺对注浆成型碳化硅素坯密度的影响.硅酸盐学报,2009,37:1224-1228
    [71]Armor J N, Fanelli A J. Nonaqueous spray-drying as a route to ultrafine ceramic powders. J. Am. Ceram. Soc.,1988,71:938-942
    [72]Maskare A, Smith D M. Agglomeration during the drying of fine silica powders, Part II:The Role of Particle Solubility. J. Am. Ceram. Soc.,1997,80: 1715-1722
    [73]Brinker C J, Scherer G W. Sol-Gel Science:The Physical and Chemistry of Sol-Gel Processing. Academic Press, Inc.1990, p.620-628
    [74]Li W, Zhang Q, Gu M, et al. Effect of temperature on rheological behavior of silicon carbide aqueous suspension. Ceram. Int.,2006,32:761-765
    [75]宁叔帆,李鸿岩,陈维,等.表面氧化物含量对碳化硅浆料黏度影响的研究.西安交通大学学报,2005,39:641-645
    [76]赵雪菲,郭露村.水基SiC悬浮液的流变特性.中国陶瓷,2008,44:15-19
    [77]孙静,高濂,郭景坤.SiC表面性质及浆料流变性质研究.无机材料学报,2000,15:426-430
    [78]王浩.超细SiC粉表面改性技术的研究及其高固相含量陶瓷料浆的制备[硕士学位论文].武汉:武汉理工大学,2001,1-52
    [79]张广军.高固相含量SiC陶瓷悬浮液的制备与机理研究[硕士学位论文].武汉:武汉理工大学,2002,1-58
    [80]郝慧.水基高固相含量SiC浆料的制备及其流变性研究[硕士学位论文].武汉:武汉理工大学,2006,1-68
    [81]Liden E, Bergstrom L, Persson M, et al. Surface modification and dispersion of silicon nitride and silicon carbide powders. J. Eur. Ceram. Soc.,1991,7:361-368
    [82]Prabhakaranl K, James J, Pavithran C. Surface modification of SiC powders by hydrolysed aluminium coating. J. Eur. Ceram. Soc.,2003,23:379-385
    [83]李欢欢,张志立,李建保.注浆成型碳化硅浆体的流变性能研究.人工晶体学报,2009,38(增刊):168-171
    [84]Huang Q, Chen P, Gu M, et al. Effect of surface modification on the rheological behavior of concentrated, aqueous SiC suspensions. Mater. Lett.,2002,56: 546-553
    [85]Huang Q, Li W, Gu M, et al. Effect of blend ratio on rheological properties of aqueous SiC suspensions. J. Eur. Ceram. Soc.,2004,24:2157-2161
    [86]武七德,郝惠,吉晓莉,等.分散剂对改性SiC料浆流变性能的影响.稀有金属材料与工程,2005,34:511-514
    [87]Zhang Y, Binner J. Effect of dispersants on the rheology of aqueous silicon carbide suspensions. Ceram. Int.2008,34:1381-1386
    [88]Novak S, Kovac J, Drazic G, et al. Surface characterisation and modification of submicron and nanosized silicon carbide powders. J. Eur. Ceram. Soc.,2007,27: 3545-3550
    [89]Wang X H, Hirata Y. Influence of polyacrylic acid on rheology of SiC suspension and mechanical properties of densified SiC. Ceram. Int.,2005,31:677-681
    [90]Sun J, Gao L. Dispersing SiC powder and improving its rheological behaviour. J. Eur. Ceram. Soc.,2001,21:2447-2451
    [91]Baklouti S, Pagnoux C. Chartier T, et al. Processing of aqueous α-Al2O3, α-SiO2 and a-SiC suspensions with polyelectrolytes. J. Eur. Ceram. Soc.,1997,17: 1387-1392
    [92]Zhang J X, Jiang D L, Tan S H, et al. Aqueous processing of SiC green sheets 1: dispersant. J. Mater. Res..2002,17:2012-2018
    [93]Li W, Chen P. Gu M, et al. Effect of TMAH on rheological behavior of SiC aqueous suspension. J. Eur. Ceram. Soc.,2004,24:3679-3684
    [94]Xiao C, Gao L, Lu M, et al. Synergistic effect of copolymer and poly(vinylpyrrolidone) mixtures on rheology of aqueous SiC suspensions. Colloids Surf. A,2010,355:104-108
    [95]梅心涛.挤出成型制备重结晶碳化硅热端材料的研究[硕士学位论文].武汉:武汉理工大学材料学院,2007,1-48
    [96]魏磊.碳化硅电热材料的制备及其结构与性能的研究[硕士学位论文].武汉:武汉理工大学材料学院,2008,1-43
    [97]陈海亚.碳化硅粉体的整形及其挤出成型[硕士学位论文].武汉:武汉理工大学材料学院,2010,1-43
    [98]雷海波.再结晶碳化硅陶瓷抗氧化及抗热震性能研究[硕士学位论文].长沙:湖南大学材料科学与工程学院,2010,1-57
    [99]Fredriksson J I. Process of making recrystallized silicon carbide articles, U.S. Patent. No.2964823,1960-12-20
    [100]http://www.haldenwanger.de/
    [101]http://www.ssaccchina.com/english/dispequ.asp?recno=533
    [102]Chiang S. An application of Lotka-Volterra model to Taiwan's transition from 200 mm to 300 mm silicon wafers. Technol. Forecast. Soc. Change,2012,79: 383-392
    [103]Lu Z, Kimbel S. Growth of 450 mm diameter semiconductor grade silicon crystals. J. Cryst. Growth,2011,318:193-195
    [104]Narendar Y, Buckley R F. High purity silicon carbide wafer boats. U.S.Patent No.7,501,370,2009-3-10
    [105]Buckley R F. Slip resistant horizontal semiconductor wafer boat. U.S. Patent No.7,055,702 B1,2006-6-6
    [106]Asmus T. A manufacturer's perspective on IC engine technology at century's end. In:The 1999 ICE Fall Technical Conference. Detroit,1999,1-7
    [107]Mogensen G. Diesel particulate filter. U. S. Patent:No.7,625,538 B2,2009-12-1
    [108]刘云卿.壁流式柴油机微粒捕集器捕集及微波再生机理研究[湖南大学博士学位论文].长沙:湖南大学机械与汽车工程学院,2009,11-18
    [109]Miwa S, Abe F, Hamannaka T, et al. Diesel particulate filters made of newly developed SiC. SAE 2001 World Congress,2001-01-0192,1-6
    [110]Ohno K, Komori T, Hasegawa A, et al. Carrier for catalyst and method for preparing the same. U. S. Patent:No.6,939,825 B1,2005-9-6
    [111]Ohno K, Shimato K, Taoka N, et al. Characterization of SiC-DPF for Passenger Car. SAE 2000 World Congress,2000-01-0185,1-14
    [112]Way P S, Vlach T J, Bulley M J. High temperature ceramic filter. U.S. Pat.No.6,214,078,2001-4-10
    [113]Agraiotis C C, Mavroidis I, Konstandopoulos A G, et al. Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Sol. Energy Mater. Sol. Cells,2007,91:474-488
    [114]Fredriksson J I, Coes S H. Silicon carbide resistance igniter. U. S. Patent, No.3,875,477,1975-4-1
    [115]Fredriksson J I. Protective silicon nitride or silicon oxynitride coating for porous refractories. U.S. Pat. No.4,187,344,1980-2-5
    [116]Willkens C A, Arsenault N P, Olson J, et al. Aging resistant porous silicon carbide ceramic igniter. U. S. Pat. No.6,297,183 B1,2001-10-2
    [117]Haerle A G, Perry E A. High resistivity silicon carbide. U. S. Pat. No.7,727,919 B2,2010-6-1
    [118]Schmitt T N. Metal matrix composite (MMC) body. U.S. Pat. No.6,186,768 B1, 2001-2-13
    [119]Lee J, Ahn Y, Nishimura T, et al. Effect of Al4SiC4 additive on the densification of β-silicon carbide under vacuum. J. Eur. Ceram. Soc.,2012,21:619-925
    [120]Nagano T, Kaneko K, Zhan G, et al. Effect of atmosphere on weight loss in sintered silicon carbide during heat treatment. J. Am. Ceram. Soc.,2000,83: 2781-2787
    [121]Kim Y, Kim J, Rhee S, et al. Effect of initial particle size on microstructure of liquid-phase sintered a-silicon carbide. J. Eur. Ceram. Soc.,2000,20:945-949
    [122]Rober V, Detlev S. Processing and properties of nanograin silicon carbide. J. Am. Ceram. Soc.,1999,82:2585-2593
    [123]Vaben R, Kaiser A, Fzster J, et al. Densification of ultrafine SiC powders. J. Mater. Sci.,1996,31:3623-3637
    [124]Kingery W D, Berg M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-Diffusion. J. Appl. Phys.,1955,26: 1205-1212
    [125]Lilov S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation. Mater. Sci. Eng. B,1993,21:65-69
    [126]果世驹.粉末烧结理论.北京:冶金工业出版社,1998,38-40
    [127]Lenel F V. Powder metallrugy principle and application. Metel powder industries federation, Princeton, New Jersey,1980:245
    [128]Lange F F, Kellett B J. Thermodynamics of densification:Ⅱ, grain growth in porous compacts and relation to densification. J. Am. Ceram. Soc,1989,72: 735-741
    [129]陈宇红,韩凤兰,吴澜尔.液相烧结碳化硅陶瓷.矿物综合利用,2003,(2):33-36
    [130]Greskvich C, Rosolowski J H. Sintering of covalent solids. J. Am. Ceram. Soc., 1976,59:336-343
    [131]Clegg W J. Role of carbon in the sintering of boron-doped Silicon carbide. J. Am. Ceram. Soc.,2000,83:1039-1043
    [132]杨修春,韩高荣,李福燊,等.SiC纳米粉表面研究.无机材料学报,1998,13:99-104
    [133]Kriegesmann J. Microstructure control during consolidation of fine grained recrystallized silicon carbide. Key Eng. Mater.,2004,264-268:2199-2202
    [134]Drowart J, De-Marja G, Inghram M G. Thermodynamic study of SiC utilizing a mass spectrometer. J. Chem. Phys.,1958,29:1015-1021
    [135]Honstein G, Chatillon C, Baillet F. High temperature mass spectrometric study of the vaporization behavior of SiC-SiO2 system. J. Alloys Compd.,2008,452: 85-88
    [136]Grande T, Sommerset H, Hagen E, et al. Effect of weight loss on liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc.,1997,80:1047-1052
    [137]Rijswijk W V, Shanefield D J. Effects of carbon as a sintering aid in silicon carbide. J. Am. Ceram. Soc.,1990,73:148-149
    [138]Drowart J, De Maria G. Thermodynamic study of the binary system carbon-silicon using mass spectrometer. Silicon Carbide, Proc. Conf. Boston, 1959. Pergamon Press, Oxford,1960,16-23
    [139]Chase Jr M W. NIST-JANAF Thermochemical Tables Fourth edition. J. Phys. Chem. Ref. Data, Monograph 9,1998
    [140]Stobierski L, Gubernat A. Sintering of silicon carbide I. effect of carbon. Ceram. Int.,2003,29:287-292
    [141]贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社,2000,18-23
    [142]Kingery W D, Bowen H K, Uhlmamn D R.陶瓷导论.清华大学新型陶瓷与精细工艺国家重点实验室译,北京:高等教育出版社,2000:184-186
    [143]Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview. Comp. Sci. Tech,2004, 64:155-170
    [144]Sarma K H, Fourcade J, Lee S-G, et al. New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels. J. Nucl. Mater.,2006,352:324-333
    [145]Abhishek K S, Suraj C Z, Raman P S. Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis. J. Nucl. Mater.,2008, 378:238-243
    [146]Locs J, Berzina-Cimdina L, Zhurinsh A, et al. Optimized vacuum/pressure sol impregnation processing of wood for the synthesis of porous, biomorphic SiC ceramics. J. Eur. Ceram. Soc.,2009,29:1519-1519
    [147]www.starfiresystems.com
    [148]Kotani M, Inoue T, Kohyama A, et al. Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater. Sci. Eng. A,2003,357:376-385
    [149]Narisawa M, Kado H, Mori R, et al. Microstructure of silicon carbide nano powder-polycarbosilane-solvent mixed slurries and observed shear rate dependence in slurry viscosity. Mater. Sci. Eng. B,2008,148:187-191
    [150]Greil P. Active-filler-controlled pyrolysis of preceramic polymers. J Am. Ceram. Soc.,1995,78:835-848
    [151]Zhu Y, Huang Z, Dong S, et al. The fabrication of 2D Cf/SiC composite by a modified PIP process using active Al powders as active filler. Mater. Charact., 2008,59:975-978
    [152]Kotani M, Kohyama A, Katoh Y. Development of SiC/SiC composites by PIP in combination with RS. J. Nucl. Mater.,2001,289:37-41
    [153]Li H Q, Taylor R, Day R J. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part I. Characterisation of PCS and curing products. J. Mater. Sci.,2001, 36:4037-4043
    [154]Choi S, Youn D, Jo S M, et al. Micelle-mediated synthesis of single-crystalline p(3C)-SiC fibers via emulsion electrospinning. ACS Appl. Mater. Interfaces,2011, 3:1385-1389
    [155]Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors. Fusion Eng. Des.,2002,61/62:13-25
    [156]Zheng G, Sano H, Suzuki K, et al. A TEM study of microstructure of carbon fiber/polycarbosilane-derived SiC composites. Carbon,1999,37:2057-2062
    [157]Zhe Y, Huang Z, Dong S, et al. Fabricating 2.5D SiCf/SiC Composite Using Polycarbosilane/SiC/Al Mixture for Matrix Derivation. J. Am. Ceram. Soc.,2007, 90:969-972
    [158]Jian K, Chen Z H, Ma Q S, et al. Effects of pyrolysis temperatures on the microstructure and mechanical properties of 2D-Cf/SiC composites using polycarbosilane. Ceram. Int.,2007,33:73-76
    [159]Interrante L V, Liu Q, Rushkin I, et al. Poly (silylenemethylenes)—a novel class of organosilicon polymers. J. Organomet. Chem.,1996,521:1-10
    [160]Interrante L V, Moraes K, Liu Q, et al. Silicon based ceramics from polymer precursors. Pure Appl. Chem.,2002,74:2111-2117
    [161]Liu Q, Wu H-J, Lewis R, et al. Investigation of the pyrolytic conversion of poly(silylenemethylene) to silicon carbide. Chem. Mater.,1999,11:2038-2048
    [162]Ly H Q, Taylor R, Day R J, et al. Conversion of polycarbosilane (PCS) to SiC-based ceramic Part Ⅱ. Pyrolysis and characterisation. J. Mater. Sci.,2001,36: 4045-4057
    [163]Bouillon E, Langlais F, Pailler R, et al. Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material. J. Mater. Sci.,1991, 16:1333-1345
    [164]Hasegawa Y, Okamura K. Synthesis of continuous silicon carbide fibre. J. Mater. Sci.,1983,18(12):3633-3648
    [165]张玉娣,张长瑞.CVI-PIP工艺制备C/SiC复合材料及其显微结构研究.材料科学与工程学报,2004,22:657-659
    [166]Guo W, Zhou X, Zhang G, et al. Effect of Si and Zr additions on oxidation resistance of hot-pressed ZrB2-SiC composites with polycarbosilane as a precursor at 1500℃. J. Alloys Compd.,2009,471:153-156
    [167]Guo W, Zhou X, Zhang G, et al. Effect of Si addition on hot-pressed ZrB2-SiC composite with polycarbosilane as a precursor. Mater. Lett.,2008,62:3724-3726
    [168]Zheng C, Li X, Wang H, et al. Thermal stability and curing kinetics of polycarbosilane fibers. Trans. Nonferrous. Met. Soc. China,2006,16:44-48
    [169]王浩,李效东,彭平,等.预氧化聚碳硅烷(PCS)纤维的无机化过程.国防科技大学学报,2002,24:34-38
    [170]Berbon M Z, Dietrich D R, Marshall D B. Transverse thermal conductivity of thin C/SiC composites fabricated by slurry infiltration and pyrolysis. J. Am. Ceram. Soc.,2001,84:2229-2234
    [171]Heuer A H, Fryburg G A, Ogbuji L U, et al. β to a Transformation in polycrystalline SiC:I, microstructural aspects. J. Am. Ceram. Soc.,1978,61: 406-412
    [172]Sonntag A. New R-SiC extends service life in kiln furniture. Am. Ceram. Soc. Bull.,1997,76:51-54
    [173]胡敦忠译.延长窑具使用寿命的新型重结晶SiC陶瓷.国外耐火材料,1998,(12): 44-47
    [174]Lim C B, Yano T, Iseki T. Microstructure and mechanical properties of RB-SiC/MoSi2 composite. J. Mater. Sci.,1989,24:4144-4151
    [175]Kurokawa K, Houzumi H, Saeki I, et al. Low temperature oxidation of fully dense and porous MoSi2. Mater. Sci. and Eng. A,1999,261:292-299
    [176]Ramasesha S K, Shobu K. Oxidation of MoSi2 and MoSi2-based materials. Bull. Mater. Sci.,1999,22:769-773
    [177]Yao Z, Stiglich J, Sudarshan T S. Molybdenum silicide based materials and their properties. J. Mater. Eng. Perform.,1999,8:291-304
    [178]Hvizdos P, Besterci M, Ballokova B, et al. Creep behaviour of MoSi2-SiC and MoSi2-HfO2. Mater. Lett.,2001,51:485-489
    [179]Suryanarayana C. Structure and properties of ultrafine-grained MoSi2+Si3N4 composites synthesized by mechanical alloying. Mater. Sci. Eng. A,2008,479: 23-30
    [180]Newman A, Sampath S, Herman H. Processing and properties of MoSi2-SiC and MoSi2-Al2O3. Mater. Sci. Eng. A,1999,261:252-260
    [181]Guo S, Nishimura T, Mizuguchi T, et al. Mechanical properties of hot-pressed ZrB2-MoSi2-SiC composites. J. Eur. Ceram. Soc.,2008,28:1891-1898
    [182]shobu K, Tani E, Akiyama M, et al. High-temperature strength of melt-infiltrated SiC-Mo(Al, Si)2 composites. J. Am. Ceram. Soc.,1996,79:544-546
    [183]Chakrabarti O, Weisensel L, Sieber H. Reactive melt infiltration processing of biomorphic Si-Mo-C ceramics from wood. J. Am. Ceram. Soc.,2005,88: 1792-1798
    [184]Esfehanian M, Gunster J, Moztarzadeh F, et al. Development of a high temperature Cf/XSi2-SiC(X=Mo, Ti) composite via reactive melt infiltration. J. Eur. Ceram. Soc.,2007,27:1229-1235
    [185]Petrovic J J. Mechanical behavior of MoSi2 and MoSi2 composites. Mater. Sci. Eng. A,1995,192/193:31-37
    [186]Morris D G, Leboeuf M, Morris M A. Hardness and toughness of MoSi2 and MoSi2-SiC composite prepared by reactive sintering of powers. Mater. Sci. Eng. A,1998,251:262-268
    [187]Knittel S, Mathieu S, Vilasi M. The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1400℃. Intermetallics,2011,19:1207-1215
    [188]Ramamurty U, Kim A S, Suresh S, et al. Micromechanisms of creep-fatigue crack growth in a silicide-matrix composite with SiC particles. J. Am. Ceram. Soc.,1993,76:1953-1964
    [189]http://www.kanthal. com/products/
    [190]Hozer L, Lee J, Chiang Y. Reaction-infiltrated, net-shape SiC composites. Mater. Sci. Eng. A,1995,195:131-143
    [191]Esfehanian M, Guenster J, Heinrich J G, et al. High-temperature mechanical behavior of carbon-silicide-carbide composites developed by alloyed melt infiltration. J. Eur. Ceram. Soc.,2008,28:1267-1274
    [192]Zhu Q, Shobu K. High-temperature fracture toughness of SiC-Mo5(Si,Al)3C composites. J. Eur. Ceram. Soc.,2000,20:1385-1389
    [193]Zhu Q, Shobu K. High-Temperature mechanical properties of SiC-Mos(Si,Al)3C composites. J. Am. Ceram. Soc.,2001,84(2):413-419
    [194]Zhu Q, Shobu K, Tani E, et al. High-temperature strength and creep behavior of melt-infiltrated SiC-Mo<5Si3C<1 composites. J. Am. Ceram. Soc.,1999,82: 2276-2278
    [195]Kircher T A, Courtright E L. Engineering limitations of MoSi2 coatings. Mater. Sci. Eng. A,1992,155:67-74
    [196]Costa e Silva A, Kaufman M J. Phase relations in the Mo-Si-C system relevant to the processing of MoSi2-SiC composites. Metall. and Mater. Trans. A,1994,25: 5-15
    [197]Rawers J C, Wrzesinski W R. Melt infiltration of selected intermetallics into SiC. J. Mater. Sci. Lett.,1990,9:503-505
    [198]张小立,吕振林,金志浩.熔渗反应法制备MoSi2-SiC复合材料性能的影响因素.稀有金属材料与工程,2005,34:639-642
    [199]张小立,吕振林,金志浩.无压反应烧结MoSi2-SiC复相材料的制备与性能.稀有金属材料与工程,2003,32:1037-1040
    [200]谭威,林旭平,马景陶,等Si3N4-MoSi2复合陶瓷导电性能研究.稀有金属材料与工程,2011,40(增刊1):196-198
    [201]荆志新MoSi2基复合发热元件制备及其高温性能研究(硕士学位论文).西安:西北工业大学,2003,44-46
    [202]http://www.lyaoda.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700