用户名: 密码: 验证码:
8mm功率合成电路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源与电子科学院下达的十五项目:毫米波固态功率合成技术研究。
    毫米波固态系统的应用与发展很大程度上决定于系统的功率大小。在单个器件输出受限的情况下要提高系统的输出功率,采用功率合成技术是一种有效解决问题的方法。
    以3-dB电桥为基础的多级二进制功率合成技术得以迅速发展,其原因除了毫米波器件技术的发展以及毫米波单片集成电路(MIMIC)成熟而降低了电路制作的难度与成本外,设计出低损耗的3-dB电桥是提高合成效率的关键。我们设计出了不同于一般常用的Wilkinson电桥的、可用作功率合成与分配网络的低损耗3-dB三端口网络,在32GHz~37GHz频率范围内,插损约为0.2dB。其特点除了损耗低外,无需阻性材料,制作工艺简单,可以在常用的软基片上做出高性能的功率分配、合成网络,值得推荐。
    在波导作为常用传输线的毫米波系统中,波导-微带转换结构是必不可少的部件,其关键性能指标是低损耗以及结构实现的容易性。本文描述的波导-脊波导-微带过渡结构,在频率为32GHz~37GHz范围内损耗小于0.2dB,加工制作容易,输入输出在同一直线上,机械性能良好。
    最后,采用我们设计的3-dB三端口网络作为功率分配、合成网络,以常用的微带E-面探针作为微带-波导过渡结构,采用Agilent公司HMMC 5040作为放大单元,制作出了波导接口的两路合成电路,在频率为33~35GHz实测饱和功率达170mW,合成效率高于70%。结果表明,我们的合成方案完全可行,若进一步提高电路制作工艺,合成效率有望提高到80%以上。高效率的两路合成的实现为多级合成提高更大的输出功率打下了坚实的基础。
The successful application and development of millimeter-wave solid-state system are greatly determined by the system output power. The approach of power combing is an effective solution for greater output power, when restricted by the output of single device.
    The multilevel binary power combing technique based on 3-dB hybrid have experienced heavily development, because of the development of technique the millimeter-wave devices have endured, because of the mature of millimeter-wave monolithic integrated circuits which make the circuits fabricated more easily and cost effectively, and because of the design of low loss 3-dB hybrid which is key to improve the combing efficiency. Under the presently conditions, we have designed a low loss 3-dB three port network available in power combing or dividing. Since without resistive material, it is different from conventional 3-dB Wilkinson hybrid and can fabricated on soft substrate, so simplify technology of circuit fabrication. In 32GHz~37GHz, the insert loss is about 0.2dB.
    In the millimeter-wave system which chiefly using waveguide as transmission line, the transition between waveguide and microstrip is absolutely necessarily. It's most important performance is low insertion loss and facility of realization. Utilizing ridge waveguide we have designed a waveguide-microstrip transition, in 32GHz~37GHz frequency range, which have a loss less than 0.2dB. Furthermore, it deserves more attention for easily fabrication process, very good firmness, and the input and the output lying in a line to meet the particular requirement.
    Finally, using the low loss 3-dB three port network as power dividing and combing network and using HMMC 5040s fabricated by Agilent co. as single-way amplifiers, with the help of E-plane waveguide to microstrip transition, we have designed a two-way power combing circuit with waveguide as interface ports. In 33GHz~35GHz,the measured saturated output power is about 170mW, and the combing efficiency estimated is greater 70%. The results indicate that our scheme is practical and feasible and it will obtain efficiency greater than 80% with the improvement of fabricating technology. The realization of highly efficient two-way power combing is the firm basement of multilevel combing for greater output power.
引文
[1] 薛良金 《毫米波工程基础》,国防工业出版社,1998;
    [2] Kai Chang,and Cheng Sun,“ Millimeter-Wave Power-Combining Techniques,”IEEE Trans.Microwave Theory and Tech.,vol.MTT-31,pp.91-107,Feb.1983;
    [3] J.G.JOSENHANS,“Diamond as an insulating heat sink for a series combination of IMPATT diodes,”Proc.IEEE,vol.56,pp.762-763,Apr.1983;
    [4] C.T.Ruker et al.,“Symmetry experiments with four-mesa IMPATT diodes," IEEE Trans.Microwave Theory and Tech.,vol.MTT-25,pp.75-76,Jan.1977;
    [5] C.T.Ruker et al.,“Series-connected GaAs and Si diode chips:some new results," Electron.lett.,vol.13,no.11,pp.331-332,May 26,1977;
    [6] C.T.Ruker et al.,“Multichip IMAPTT power combining,a summary with new analytical and experimental results,”IEEE Trans.Microwave Theory and Tech.,vol.MTT-27,pp.951-957,Dec.1979;
    [7] C.T.Ruker,J.W.Amoss,and G.N.Hill“Chip level IMPATT combining 40 GHz," in 1981 IEEE MTT-S int.Microwave Symp.Dig ,June 1981,pp.347-348;
    [8] Y.C.Ngan,“Two-diode power combining near 140 GHz,”Electron.Lett.,vol.15 , no.13 ,pp.376-377,June 21,1979;
    [9] K.Chang,W.F.Thrower,and G.M.Hayashibara,“Millimeter-wave silicon IMPATT sources and combiners for 110-260 GHz range,”IEEE Trans.Microwave Theory and Tech.,vol.MTT-29,pp.1278-1284,Dec.1981;
    [10] Y.C.Chen et al.,“A 95-GHz InPHENT amplifier with 427-mW power output,”IEEE Microwave Guided Wave Lett.,vol.8,pp399-409,Nov.1998;
    [11] Y.C.Chen et al.,“A single chip 1-W HEMT V-bnad module,”in IEEE MTT-S Int.Microwave Symp.Dig.,Anaheim,CA,1999,pp.149-152;
    [12] Michael P.DeLisio,and Robert A.York,“Quasi-Optical and Spatial Power Combining," IEEE Trans. Microwave Theory and Tech.,vol. MTT-50,pp.929-936,March 2002;
    
    
    [13] Nai-Shuo Cheng et al.,“40-W CW Broad-Band Spatial Power Combiner Using Dense Finline Arrays,” IEEE Trans.Microwave Theory and Tech.,vol.MTT-47,pp.1070-1076,July 1999;
    [14] J.J.Sowers,D.J.Pritchard et al.,“A full-wave sysytem simulation of a folded-slot spatial power combining amplifier array," in IEEE MTT-S Int.Microwave Symp.Dig.,Anaheim, CA ,1999,pp.559-562;
    [15] Nai-Shuo Cheng et al.,“A 120-W X-band Spatially combined solid-state amplifier,”IEEE Trans.Microwave Theory and Tech.,vol.MTT-47,pp.2557-2561,Dec.1999。
    [16] J.R.Nevarez and G.J.Herokowitz,“Output power and loss analysis of injection-locked oscillators combined through an ideal and symmetric hybrid combiner,”IEEE Trans.Microwave Theory and Tech.,vol.MTT-17,pp.2-10,Jan.1969。
    [17] Stephen A. Maas,“Nolinear microwave circuits” Artech House,1988。
    [18] 清华大学《微带电路》编写组,《微带电路》,1975年7月
    [19] 顾茂章、张克潜,《微波技术》,1988年3月
    [20] Daisy L.I,Ian Stones,etc.,“A 6-W Ka-Band Power Moudel Using MMIC Power Amplifier”IEEE Trans.Microwave Theory and Tech.,vol.MTT-45,pp.2424-2430,Dec.1997。
    [21] Agilent “Momentum”
    [22]T.Q.HO and YI-CHI SHIH,“Spectral-Domain Analysis of E-Plane Waveguide to Microstrip Transitions”IEEE Trans.Microwave Theory and Tech.,vol.MTT-37,pp.388-392,Dec.1997。
    [23] L.J.LAVEDAN,“Design of waveguide-to-microstrip transitions specially suited to millimeter-wave applications”ELECTRONICS LETTERS 29th September 1977,Vol.13,No.20。
    [24] J.S.RAO,K.K.JOSHI,and B.N.DA,“Analysis of Small Aperture Coupleing Between Rectangular Waveguide and Microstrip Line” IEEE Trans.Microwave Theory and Tech.,vol.MTT-29,pp.150-154,Feb.1981。
    [25] Sabbir S.Moochalla,Chae An,“Ridge waveguide used in microstrip transition”MICROWAVE&RF,pp.149-152,March 1984。
    [26] Hui-Wen Yao,Amr Abdelmonem,Ji-Fuh,etc.,“Analysis and Design of Microstrip-to-Waveguide Transitoins” IEEE Trans.Microwave Theory and Tech.,vol.MTT-42,pp.2371-2380,Dec.1994。
    [27] Theodore S.Saad. 《MICROWAVE ENGINEERS' HANDBOOK》,VOL.1
    [28] AN #46,“HMMC-5040 20-40GHz Amplifier”。
    [29] AN #999,“GaAs MMIC Assembly and Handling Guidelines”。
    [30] AN #41,“HMMC-5021/22/26 S-Parameter Performance as a Funcation of
    
    Bonding Configuration”。
    [31] 王 玲、刘仁厚、杨 涛等《20-40GHz 功率放大器》1999年全国微波毫米波论文集

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700