用户名: 密码: 验证码:
基于磁力耦合法建筑钢材料应力检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断进步和社会经济实力的提高,每年建筑用钢材需求都在数千万吨。钢材作为结构最主要的构件,往往都担负着巨大的载荷。对建筑结构钢材料实际受力状态的直接测试方法成为当代结构健康诊断领域一个重要的研究课题,其研究成果极具工程应用价值,同时势必将推动对结构安全性评价的整体分析水平。
     本文在综述了国内外常用的磁学铁磁材料检测方法的基础上,着重研究了基于磁力耦合法的建筑钢材料应力检测技术。并依此为研究背景,通过理论分析、实验和先进的仿真技术手段,全面地研究了该检测技术的基本理论和实用技术,主要研究工作如下:
     (1)根据建筑钢材料的构成成分,结合铁磁学理论研究了应力及杂质对其磁畴和磁畴壁的影响机理。分析得到应力的施加使得晶体的应力能增大和磁化方向随应力方向发生变化的结论;杂质使得磁畴的结构变得十分复杂,需要通过大量的实验来验证对应力检测方法的影响范围。阐述了利用技术磁化进行钢材料应力检测的一般规律,为建立磁力耦合关系理论模型提供了必要的理论支持。
     (2)利用Joule效应的逆效应证明了应力—伸缩—磁场的变化规律。讨论了在外磁场和应力作用下铁磁晶体内其总自由能的主要组成,并根据能量守恒定律和热力学动态平衡原理,建立了应力对磁特性参量影响的数学模型方程,并对数学模型方程进行解析,获得了在不同磁场强度下钢材料应力与其相对磁导率变化的计算结果。
     (3)依据理论分析的钢材料应力状态与其磁导率的关系,提出了对材料进行技术磁化并通过电磁感应原理进行应力检测的实用方法。设计了采用脉冲和正弦信号两种方式作为激磁信号的激磁电路;根据被测材料形状和使用状态设计了管筒式和U型磁路式两种结构磁探头,对其磁回路进行了磁路分析;并利用电磁场有限元仿真软件对探头进行了优化设计。
     (4)开发了相应的应力检测系统样机,对主要参数进行了试验分析。根据不同的探头结构和激磁方式设计了相应的试验方案,利用标定法在万能材料试验机上对检测系统样机进行主要技术参数的校准。对于该数据在进行处理后与材料应力关系进行了四阶曲线拟合,其相关系数都在0.98以上。并对同一材料其杂质对检测值的影响进行了分析。从试验结果看,一般厂家生产的工程材料这种误差影响最大值小于3%。
     (5)利用FLUX电磁场仿真软件对系统整体进行电磁场分析,了解材料内磁场大小、分布等信息,通过软件计算出应力与材料磁导率的对应关系,并且得到与理论相一致的结论。最后,提出了试验与数值模拟相结合的方法对某种材料应力值进行标定,代替传统的试验标定法并取得了良好的仿真结果,其中U型探头测量钢筋应力的仿真效果最好,其误差最大值小于1%。
     最后,总结了全文的主要研究工作,指出了论文的不足之处以及后续的研究重点。
It is demanded for millions and millions tons of construction steel material eachyear with continuous improvement of technology and social economic power. As themain structural steel components, they are often responsible for a huge load. Therefore,the direct detection method of the actual building steel stress state has become animportant research topic in the contemporary field of structural health diagnosis. Theresearch achievement has great value in engineering and is bound to promote the overallanalysis level of the structural safety evaluation.
     In this paper, the domestic and foreign common detection methods based onferromagnetic materials are summarized, and focused on the stress detection technologyof structural steel material based on the magnetic coupling. And as the background forthe study, the basic theory and application methods is researched systematically throughtheoretical analysis, experimental and model simulation techniques, the main researchwork are as follows:
     (1) According to the composition of construction steel materials, the basic principleof stress and impurity impacting on magnetic domain and domain wall are researchedcombined with the theory of ferromagnetic. The analysis shows that the stress makes thecrystal stress energy increasing and the magnetization direction changing with the stressdirection. The impact of impurities on the magnetic domain is very complex so weshould verify the influencing range to the through a large number of tests. The generalrules of detecting steel stress is elaborated by technical magnetization, and whichprovides the necessary theoretical supports for establishing the theoretical model ofmagnetic coupling.
     (2) Through Joule inverse effect the effect of the stress stretching the magneticfield is demonstrated. The main component of the total free energy of ferromagneticcrystals is discussed under the external magnetic field and stress, and in accordance withlaw of conservation of energy and thermodynamic principles of dynamic equilibrium themathematical model equation of stress affecting the magnetic properties is established,and the mathematical model equations is parsed, and the calculation result between stressof steel material and their relative permeability is obtained in the different magnetic fieldstrength.
     (3) A practical method for stress detecting is proposed that is achieved by technicalmagnetization and electromagnetic induction principle based on the relationship oftheoretical analysis between the stress state of steel and its magnetic permeability. Thecorresponding circuit is designed by using the two ways of pulse and sinusoidal signal asthe excitation signal; based on the measured shape and using state of material two kindsof magnetic probes of the U-model and cylinder is designed. Its magnetic circuit analysisis carried out, and the probe has been optimized by finite element simulation software.
     (4) The prototype of corresponding stress detection system is developed, and themain parameters are analyzed by experiments. According to the different probe structureand excitation the test scheme are designed. By use of calibration method the maintechnical parameters of the detection system prototype is calibrated in the universaldetecting machine to obtain the corresponding test data. The relations of the processeddata and material stress are in a fourthorder curve fitting, and the correlation coefficientsare0.98or more. The impact of the detection value on same materials with the impurityis analyzed. From the test results, this maximum impact of the materials by different manufacturers is less than3%.
     (5) By use of FLUX electromagnetic field simulation software the electromagneticfield of whole system is analyzed including the size of the magnetic field and thedistribution inside the material, and through the software the correspondence betweenstress and material permeability is calculated and that is consistent with the theoreticalconclusions. Finally, it is proposed that the value of material stress is calibrated by thecombining method of test and numerical simulation to replace the traditional calibrationmethod and obtain good simulation results,which the U-model measurement has the bestsimulation results and the maximum error is less than1%.
     At last, this dissertation reviews the whole research work and sums up shortcomingsin it,some important issues are expected to be perfected in the near future.
引文
[1]北京科技大学编著.金属材料物理性能(修订版)[M].北京:冶金工业出版社,1993:206208.
    [2]柴昶.我国建筑钢结构用钢材的现状与展望[J].钢结构,2001,(01):111.
    [3]迟煜頔.复合掺杂对高磁导率锰锌铁氧体磁性能的影响[D].西安建筑科技大学,2007,(03):5258.
    [4]曹淑瑛,王博文,闫荣格等.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003,23(11):145149.
    [5]丁辉,张寒,李晓红,文习山.磁记忆检测裂纹类缺陷的理论模型[J].无损检测,2002,24(4):7880.
    [6]戴光,王文江,李伟.不同构件的磁记忆检测及分析方法研究[J].无损检测,2002,24(6):262266.
    [7]丁忠平,康宜华.无损检测中的漏磁法原理与实践[J].电测与仪表,1995,(6):1518.
    [8]都有为,罗河烈.磁记录材料[M].北京:电子工业出版社,1992.12:46.
    [9]郑世林.磁导率间接测量方法的研究[J].咸宁学院学报,2003,(03):8792.
    [10]戴道生,钱昆明.铁磁学(上册)[M].北京:科学出版社,2000.
    [11]戴逸民等.基于DSP的现代电子系统设计,第1版[M].北京:电子工业出版社.2002.
    [12]冯雪,铁磁材料本构关系的理论和实验研究[D].清华大学博士学位论文.2002.
    [13]丰田政男,陈博时.21世纪的土木建筑结构物和超级钢材料—钢结构物的高强度化和钢铁材料的有效利用[J].上海钢研,1999,(03):516.
    [14]冯慈璋.极化与磁化[M].北京:高等教育出版社,1986,1:169171.
    [15]冯端.金属物理学[M].北京:科学出版社,1998,2152.
    [16]冯端等著.金属物理学,第四卷超导电性和磁性[M].北京:科学出版社,1998
    [17]冯慈璋.极化与磁化[M].北京:高等教育出版社,1986,1:118122.
    [18]冯慈璋.电磁场[M].北京:高等教育出版社,1983:123160.
    [19]牟在根.钢结构设计与原理[M].北京:人民交通出版社,2004,04:1115.
    [20]关振铎.无机材料物理性能[M].北京:清华大学出版社.1992,3:387389.
    [21]高联辉.磁路和铁磁器件[M].北京:高等教育出版社,1982,3243.
    [22]黄松龄,李路明,汪来富,刘时风.用金属磁记忆法检测应力分布[J].无损检测,2002,24(5):212214.
    [23]何辅云,耐志荣.漏磁NDT原理的研究[J].合肥工业大学学报,1994,17(3):2832.
    [24]黄政宇.土木工程材料[M].北京:高等教育出版社,2002:143144.
    [25]何红雨.电磁场数值计算法与MATLAB实现[M].武汉:华中科技大学出版社,2003:189195.
    [26]金建华,康宜华,杨叔子.漏磁场法测量油管壁厚的研究[J].仪器仪表学报,2001,22(5):469472.
    [27]姜寿亭,李卫编著.凝聚态磁性物理[M].北京:科学出版社,2003.
    [28]金建铭(美)著.王建国译.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998:8994.
    [29]姜智鹏,庄飚,关涛,母海方.基于FLUX软件的舰船磁场计算[J].船电技术,2010,(12):1720.
    [30]刘宗昌,任慧平,郝少祥.金属材料工程概论[M].北京:冶金工业出版社.2007:210.
    [31]林俊明,林景春,林发炳,萨辉.基于磁记忆效应的一种无损检测新技术[J].无损检测.2000,22(7):297299.
    [32]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2004.2:117181
    [33]刘洪.钢管二维漏磁检测设备监控系统的研究与实现[D].合肥工业大学硕士学位论文,2002.
    [34]刘炼.金属工艺学[M].成都:四川科学技术出版社,1985,6:127129.
    [35]林兆荣.金属超塑性成形原理及应用[M].北京:航空工业出版社,1990,11:3739.
    [36]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987,11:67.
    [37]连法增.材料物理性能[M].沈阳:东北大学出版社,2005,9:4547.
    [38]刘克哲.物理学(上)[M].北京:高等教育出版社,1987,9:349350.
    [39]廖乾初,蓝芬兰.电子通道分析技术和应用[M].北京:冶金工业出版社,1983,(9):165168.
    [40]林其壬.磁路设计原理[M].北京:机械工业出版社.1987.103107.
    [41]廖绍彬.铁磁学(下册)[M].北京:科学出版社,2000:104105.
    [42]刘涛.电阻器[M].北京:电子工业出版社,1990:515.
    [43]李霞,杨烜,邬春明.模拟电子技术基础[M].武汉:华中科技大学出版社,2009,1:3841.
    [44]李东生.信号与电子系统原理及EDA仿真[M].合肥:中国科学技术大学出版社,2000,(6):176178.
    [45]龙驭球,龙志飞,岑松.新型有限元论(精)[M].北京:清华大学出版社,2004,8:13.
    [46]刘素贞,杨庆新,陈海燕等.无单元法在电磁场数值计算中的应用研究[J].电工技术学报,2001,16(2):3033.
    [47]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].东南大学博士学位论文,2002:3337.
    [48]穆向荣.巴克豪森效应在无损检测中的应用[J]无损检测,1989,11(8):229232.
    [49]马咸尧,孙大千,邱保文,甘翠化.利用磁声发射测量钢铁材料表面应力[J].华中理工大学学报,1996,24(7):4042.
    [50]孟昭敦主编,电磁场理论[M].北京:中国电力出版社,2004,1013.
    [51]聂毓琴,孟广伟主编.材料力学[M].北京:机械工业出版社,2004,3040.
    [52]牛中奇.电磁场理论基础[M].西安:电子科技大学,2004,1:8485.
    [53]倪光正.工程电磁场原理[M].北京:高等教育出版社,2002,6:190192.
    [54]宁昕.基于磁弹效应检测钢缆索索力方法及系统的初步研究[D].重庆:重庆大学,2005:1012.
    [55]倪光正,杨仕友,钱秀英,邱捷.工程电磁场数值计算,第一版[M].北京:机械工业版社,2004:59.
    [56]彭小芹主编.土木工程材料[M].重庆:重庆大学出版社,2002,2:149151.
    [57]平学伟.电磁场中的快速有限元分析[D].南京理工大学博士学位论文,2007:811.
    [58]任吉林等编著.金属磁记忆检测技术[M].北京:中国电力出版社,2000:2028.
    [59]任吉林等.金属磁记忆检测[J].无损检测,2001,23(4):154156.
    [60]师昌绪.材料科学与工程手册(下卷)[M].北京:化学工业出版社,2004,1:9597.
    [61]孙慷,张福学.压电学(上册)[M].北京:国防工业出版社,1994,5:444446.
    [62]孙志远,杨学山,石文勇.基于磁弹效应的索力传感器研究[J].地震工程与工程振动,2008,(1):182186.
    [63]盛新庆.计算电磁学要论,第一版[M].北京:科学出版社,2004:4447.
    [64]孙志远,杨学山.钢材料电磁应力传感器技术研究[J].传感器与微系统.2011,(8):3739.
    [65]唐德东.基于磁弹效应的钢缆索索力在线监测关键技术探索[D].重庆大学博士学位论文.2007.423.
    [66]唐德东,黄尚廉,陈伟民.基于磁弹效应的斜拉桥索力传感器研究[J].传感器与微系统,2006,25(10):2830.
    [67]唐德东.新型在线索力传感器研制[J].仪表技术与传感器,2006,812.
    [68]谈兵,杜润生,康宜华,杨叔子.大直径钢丝绳轴向励磁磁路的研究[J].华中理工大学学报,1994,22(7):3639.
    [69]唐德东,黄尚廉,陈伟民.基于磁弹效应的斜拉桥索力传感器研究[J].传感器与微系统.2006,25(10):2830.
    [70]王仲生,万小朋.无损检测诊断现场实用技术[M].北京:机械工业出版社,2002:1518.
    [71]吴百诗.大学物理学[M].北京:高等教育出版社.1985,12:208209.
    [72]王博文.磁致伸缩材料与器件[M].北京:冶金工业出版社,2008,5:110.
    [73]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003,8:510.
    [74]宛德福编著.磁性理论及其应用[M].武汉:华中理工大学出版社,1996.
    [75]王以真.实用磁路设计[M].北京:国防工业出版社,1992,11:4446.
    [76]王生春.电路分析及磁路[M].重庆:重庆大学出版社,1998:254284.
    [77]吴镇扬.数字信号处理的原理与实现(修订版)[M].南京:东南大学出版社,2002,1:7982.
    [78]王念旭.DSP基础与应用系统设计,第1版[M].北京:北京航空航天大学出版社.2001.
    [79]王超.永磁无刷直流电机转矩脉动抑制的仿真研究[D].西北工业大学.2007.
    [80]王元汉,李丽娟.有限元法基础与程序设计[M].广州:华南理工大学出版社.2001,5:211214.
    [81]徐约黄,杜凤牡,沈功田.无损检测内应力的新方法一磁声发射[J].无损检测,1989,11:136139.
    [82]许建平,王创社,乐开端,谭玉山.磁吸收Boost变换器特性分析[J].电力电子技术,1999,33(2).
    [83]杨烈宇.材料表面薄膜技术[M].北京:人民交通出版社,1991,5:345349.
    [84]严济慈.电磁学[M].北京:高等教育出版社,1989,10:289290.
    [85]杨乐平,李海涛等.Labview高级程序设计[M].北京:清华大学出版社,2003,36.
    [86]姚天任,江太辉.数字信号处理第三版[M].武汉:华中科技大学出版社,2007,8:420421.
    [87]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:机械工业出版社2005:5557.
    [88]岳广照,邓兆祥,来飞.基于FLUX的直线电机建模及仿真分析[J].防爆电机.2010.3:3134.
    [89]周松盛,周露,陆震,周菁.最新建筑技术手册[M].安徽:安徽科学技术出版社.2006.6:2330
    [90]庄又青.利用巴克豪森效应综合评价材料表面质量[J]无损检测,1994,16,(2):4143.
    [91] A. Niechajowicz, A. Tobota. Warm Deformation of Carbon Steel.Journal ofMaterials Processing Technology,2000,106,106:123130.
    [92] A.Jarosevic. Magnetoelastic Method of Stress Measurement in Steel. SmartStructures, Kluwer Academic Publishers, NATO Science Series,1998,65(3):107114.
    [93] A.Taflove and S. Hagness, Computational Electrodynamics: The FiniteDifferenceTimeDomain Method2nd ed., Boston, MA: Artech House,2000.
    [94] Chen, Z., Wang, M.L., Okamoto, T., and Sumitro, S.: A new magnetoelasticstress/corrosion sensor for cables in cablestayed bridges using measurement ofanhysteretic curve,2nd Workshop on ATUEDM, Kyoto, July1113,2000.
    [95] Digital Signal Processing Selection Guide.Texas Instruments.1996.
    [96] F.Liorzou,D.L.Atherton. Effects of compressive stress on a steel cube using tensormagnetization and magnetostriction analysis,Journal of Magnetism and MagneticMateria1s195(1999):174181.
    [97] Freeman,D.B.(英)著,侯钓达,吴哲译.磷化与金属预处理[M].北京:国防工业出版社,1989.10:143144.
    [98] FLUX v9.3《用户手册》,2006.
    [99] GOODARK Electronics.FAST RECOVERY RECTIFIER [DB/OL].[20010206].http://www.datasheet5.com/product_FR201_1250e5666dbe03a8.html.
    [100] Grimberg R, Udpa L, Savin A.2D Eddy Current Sensor Array [J]. NDT&ETnternational.2006,39:264271.
    [101] H. H. Saliah,D A Lowther. A Neural Network Model of the Magnetic Hysteresisfor Computation Magnetic.IEEE trans. Magn.,Vol.33,No.5,pp.4146—4148,1997.
    [102] Ian McDonagh著.实用机械学[M].北京:兵器工业出版社,1990:104107.
    [103] Interfacing the ADS8361to the TMS320F2812DSP.Texas Instruments,2003.
    [104] J.M.Makar,B.KTanner. The in situ measurement of the effect of plasticdeformationon the magnetic properties of steel Part II Permeability curves [J],Journal ofmagnetism and Magnetic materials,187(1998):353365.
    [105] J.M.Makar. The effect of plastic deformation and residual stress on thepermeability and magnetostriction of steels[J],Journal of Magnetism and MagneticMatials,222(2000):291304.
    [106] J.M.Makar. The Magnetic field techniques for the inspection of steel underconcrete cover[J], NDT&E Intemational,34(2001):445456.
    [107] Jiles D.C. Theory of the magnetomechanical effect.J.PhysD:Appl,Phys,1995,(28):15371547.
    [108] J.M. Jin, The Finite Element Method in Electromagnetics,2nd ed., New York:John Wiley&Sons,Inc.,2002:471474.
    [109] Jorge J.erdomo,Robinson J.edina,Rishbased analysis suggests expandingmaintenance interval, Pipe&Gas Industry March2000.
    [110] Kvarnsj L., Engdahl G. A setup for dynamicmagnetic and mechanical behavior ofmagnetostrictive materials[J].IEEE Trans. Magn.1989,25(5):41954197.
    [111] Kumar,K.S.,Van,Swygenhoven,H.,Suresh,S. Mechanical behavior of nanocrystalline metals and alloys.Acta Materialia,2003,51,51:5743~5774.
    [112] Kvarnsj L., Engdahl Cz A setup for dynamic magnetic and mechanical behavior ofmagnetostrictive materials [J]. IEEE Trans. Magn.1989,25(5):41954197.
    [113] Langman R. Measurement of the mechanical stress in mild steel by means ofrotation of magnetic field strengthPart3:Practical applications[J].NDT&Elntanational,1983,15(2):5965.
    [114] Laoua D A, Lartigue S, Larere A, Priester L. Precipitation and surface segregationin low carbon steels.Mater Sci Engng,1994,A189,A189:155.
    [115] Li D.Q, Pedrycz W, Nicolino J.P Fuzzy Wavelet Packet Based Feature ExtractionMethod and Its Application to Biomedical Signal Classification[J].IEEETransactions on Biomedical Engineering.2005.52(6):11321139.
    [116] LANCASTER P, SALKALiSKAS K. Surface Generated by Moving Least SquareMethods[J].Math Comput,1981,37:141158.
    [117] Olaf Henze,wolfang M.Rucker Marko Jsenik,Vjktor Gori c an,Mladen Trlep,Anton Hamler, and Bojan Stumber Hysteresis. Model and Examples ofFerromagnetic Materials. IEEE Trans Magn,2003,(39):1151.
    [118] Rath C, Sahu K K, Anand S, Date S K, et al. Preparation and Characterization ofNanosize MnZn ferrite.J. Magn. Mater,1999,(202):7784.
    [119] R.S.Chert,D.X.Wang, Edward K.N.Yung,and J.M.Jin,"Applicationof the multifrontal method to the vector FEM for analysis of microwave filters,'’Microwave and Optical Technology Letters,2001,vol.31,(6):465470.
    [120] Sunaryo SUMITRO,Andrej JAROSEVIC,Ming L.WANG.ELASTOMAGNETICSENSOR UTILIZATION ONSTEEL CABLE STRESSMEASUREMENT.Monitoring,Session15,2004:7986.
    [121] Sumitro, S.:Truestress measurement of PC steels by EM sensor, J. of PrestressedConcrete Japan (Japan Prestressed Concrete Engineering Association), Vol.43,No.6, Nov, pp.99103,2001(in Japanese).
    [122] S.Sumitro, A. Jarosevic&M.L. Wang (2002b)“ElastoMagnetic Sensor Utilizationon Steel Cable Stress Measurement.” The First fib Congress, Concrete Structuresin the21th Century, Osaka,1319October2002, Session15, pp.7986.
    [123] Sablik MJ. Rubin SW.A model for hysteretic magnetic properties under theapplication of noncoacial stress and field.J. Appl Phys,1993,74(1):4804.
    [124] Jile D. Introduction to magnetism and magnetic materials[J], London:Chapman&Hall,1991,259260.
    [125] HodgdonM.L.Application of a theory ferromagnetic hysteresis(a)[J]. IEEETrans.Magll.1988,24:218221.
    [126] Seekercher,J. and B.Hoffmann.. New magnetoelastic force sensor usingamorphous alloys. Sensors Actuators, A2123,1990:401405.
    [127] TMS320F28x Serial Communication Interface(SCI)PeripheralReferenceGuide.Texas Instruments,2003.
    [128] TMS320F28x Multichannel Buffered Serial Port(McBSP)Reference Guide.TexasInstruments,2003.
    [129] TMS320F28x External Interface(XINTF)Peripheral Reference Guide. TexasInstruments,2003.
    [130] TMS320C28x DSP CPU and Instruct ion Set Reference Guide.Texas Instruments,2003.
    [131] Texas Instruments Incorporated OPA1632Datasheet2006.
    [132] T.A. Davis."Algorithm832: UNIFPACK, an unsymmetricpattern method,"ACMTrans. multifrontal Mathematical Software,2003,vo1.30, no.2:196199.
    [133] Willam L.RollwitZ.Magabsorptlon NDE. in Metals HandbooK,9th Edition.Vol.17,i. NDE and Quality Contro1,American Society for Metals,1989.
    [134] Wang, M.L., and Chen, Z.: Magnetoelastic permeability measurement for stressmonitoring in0steel tendons and cables. Proc. of the SPIE7th Annual Symposiumon Smart Structures and Materials, Health Monitoring of the HighwayTransportation Infrastructure, Vol.3995, pp.492500,2000.
    [135] Y. Shindo,T. Komatsu,F. Narita,K. Horiguchi. Magnetic stress intensity factor foran edge crack in a soft ferromagnetic elastic halfplane under tension[J] ActaMechanica,2006,182,(34).
    [136] Zheng, G., Ko,J.M. and Ni,Y.Q. MultimodeBased Evaluation of Cable TensionForce in CableSupported Bridges. Smart Structures and Materials2001,SmartSystems for Bridges, Structures, and Highways,2001,Vol.4330:511522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700