用户名: 密码: 验证码:
微波吸收剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料由于能够吸收衰减入射的电磁波,减少电磁波辐射,在军事和民用方面的应用日益重要。本论文以制备性能优良的微波吸收材料为研究方向,系统地研究了金属微粉Fe屑、M型钡铁氧体、改性空心微球和掺杂ZnO等粉体的制备、结构和性能,讨论了产生电磁损耗和微波吸收的机理。
     采用热分解法对机械加工废料Fe屑进行除油,得到厚度约0.5μm的不规则片状Fe粉。微波电磁性能测试结果表明:在2-18GHz,Fe屑具有一定的磁损耗性能,其磁导率实部μ′、虚部μ″和磁损耗因子tanδM分别为0.770-1.283、0.029-0.471和0.031-0.517。反射率测试结果表明:随样品中Fe屑含量和样品厚度的增加,样品对电磁波的衰减逐渐增大,并且产生最大衰减的频率向低频方向移动。Fe屑含量为33.3%时,有最大衰减-14.371dB,小于-10dB的频宽达2.56GHz。当样品厚度为5.4mm时,最大衰减为-15.719dB,小于-10dB的频宽约为1GHz。
     分别采用共沉淀-熔盐法和化学沉淀-局部规整法制备了六角晶系BaFe12O19前驱体和胶状BaCO3包覆在铁黄粒子表面的前驱体。将这两种前驱体分别在850℃和1000℃进行煅烧,得到一维纳米片状和针状BaFe12O19粉体。磁损耗性能表明:在2-18GHz,片状与针状BaFe12O19的μ'、μ"和tanδM具有相近的数值,整体上片状BaFe12O19磁损耗稍大,其μ′、μ″和tanδM分别为0.847-1.110、0.031-0.224和0.028-0.231。反射率结果表明:在2-18GHz,片状和针状BaFe12O19的反射率均在-5dB以下,最小反射率分别为-18.197dB和-18.282dB,小于-10dB的频宽达到10.24GHz。
     采用Sn-Pd胶体溶液作为活化剂,在空心微球表面分别活化-化学镀金属Co、Ni、Ni-Fe和Co-Fe镀层,得到了致密均匀且由纳米颗粒组成的镀层。磁损耗性能表明:化学镀后空心微球μ'、μ"和tanδM在2.6-12GHz的低频范围增加不显著,而在12-18GHz的高频范围则显著增加。反射率结果表明:镀Co和Co-Fe微球对电磁波的衰减明显优于镀Ni和Ni-Fe的空心微球。其中,镀Co微球在6.48GHz产生最大衰减-24dB,低于-10dB的频宽最宽,为8.88GHz。
     采用固相合成法制备ZnO前驱体,研究了煅烧温度、保温时间和煅烧气氛对ZnO粉体微波介电性能的影响。结果表明,前驱体分别在400-800℃不同温度下保温1.5h煅烧、在600℃不同保温时间煅烧以及在800℃空气、H2气和N2气气氛下进行煅烧,均得到纤锌矿结构的ZnO粉体。介电性能测试结果表明:在8.2-12.4GHz,随煅烧温度升高,样品的介电常数实部ε′与虚部ε″先增大后减小,在700℃达到最大,平均值分别为2.80和0.52。介电损耗因子tanδE在800℃达到最大,平均值为0.19。不同保温时间下所得ZnO粉体的ε′与ε″,随保温时间的增加略有增加,其ε′在2.52-2.62、ε″在0.4-0.49,tanδE的变化不明显。在H2气气氛下煅烧所得ZnO粉体的ε′、ε″和tanδE比在空气和N2气下煅烧所得ZnO粉体的明显增大,分别约为7.5、2.5和0.3。
     采用第一性原理赝势法,计算了Al掺杂前后ZnO的能带结构、态密度和复介电函数。计算结果表明:掺杂后ZnO的晶胞体积基本不变,费米能级移动进入导带。在能量较低时,Al3+掺杂ZnO的ε′和ε″均比未掺杂时增大。
     采用固相反应法制备不同Al掺杂的ZnO前驱体,将Al掺杂量为10at%的前驱体分别在400-800℃保温1.5h进行煅烧,将不同Al掺杂量的前驱体在600℃保温1.5h进行煅烧,均得到纤锌矿结构的ZnO粉体。XPS结果表明,在样品中Al是以Al3+的形式存在,形成了替位式掺杂。介电性能测试结果表明:在8.2-12.4GHz,不同煅烧温度下所得Al掺杂ZnO粉体,随温度升高,ε'、ε"和tanδE都是先增加后减小,在600℃达到最大,分别约为4.32、2.34和0.56。随Al掺杂量的增加,ε'、ε"和tanδE明显增加。ε'和ε"在Al掺杂量为20at%时达到最大,分别约为4.73和2.51,tanδE在Al掺杂量为10at%时达到最大,约为0.56。实验结果与第一性原理计算结果相比,都表现出Al3+掺杂后ZnO的介电函数ε′和ε″均比未掺杂时增大的趋势。
     采用固相反应法制备不同Co掺杂的ZnO前驱体,将Co掺杂量为5at%的前驱体分别在400-800℃保温1.5h进行煅烧,将不同Co掺杂量的前驱体在600℃保温1.5h进行煅烧,以及将Co掺杂量为5at%的前驱体在800℃不同气氛条件下煅烧,均得到纤锌矿结构的ZnO粉体。XPS结果表明,600℃煅烧所得Co掺杂ZnO粉体中,Co是以Co2+或Co2+和Co3+的形式替代Zn2+,形成替位式掺杂;800℃煅烧所得Co掺杂ZnO粉体中,Co仅以Co2+的形式存在。但在H2气气氛中煅烧时,Co是以Co2+和Co3+的形式存在。
     Co掺杂ZnO粉体电磁性能结果表明:在8.2-12.4GHz,不同煅烧温度下所得Co掺杂ZnO粉体,随温度升高,μ'、μ"以及tanδM是先增大后减小,600℃达到最大,分别约为0.98、0.46和0.52。随Co掺杂量的增加,μ'和μ"逐渐增大,在15at%时达到最大,分别约为1.03和0.54,而tanδM则是先增大后减小,在Co掺杂量为10at%时达到最大,为0.54。在H2气下煅烧所得ZnO粉体的ε′、ε″和tanδE比在空气和N2气下煅烧所得ZnO粉体的明显增大,分别约为5.27、1.21和0.239。同样,在H2气下煅烧所得Co掺杂ZnO粉体的μ′、μ″和tanδM比在空气和N2气下煅烧所得ZnO粉体的明显增大,分别约为9.68、6.37和0.94。
The microwave absorbing materials play an important role in the military and civil fields by which the incidence electromagnetic wave can be absorbed and electromagnetic radiation is attenuated. The aim of this paper is to prepare the high quality microwave absorbers. The preparation, structures and properties of metallic Fe chips, M-type barium ferrite, modified cenospheres and ZnO doped by Al and Co were investigated systematically. Electromagnetic loss and microwave absorbing mechanism of these materials in microwave range were discussed.
     Flaky Fe powders with thickness about 0.5μm were obtained by pyrolyzing the existing oil on the surface of the industrial waste Fe chips. The results of microwave electromagnetic tests show that Fe powders possess magnetic loss performance in the frequency range of 2-18 GHz. The real partμ′and the imaginary partμ″of permeability and magnetic loss factor tanδM of the samples are 0.770-1.283、0.029-0.471 and 0.031-0.517, respectively. The results of reflection show that attenuation of electromagnetic wave in the sample increases with the increasing content of Fe powders in the rubber, and the frequency of maximum attenuation shifts to lower frequency. When the Fe powder content is 33.3%, there is the maximum attenuation of -14.371dB. The frequency width of the attenuation less than -10dB is 2.56GHz. The attenuation of electromagnetic wave of the sample increases as the thickness of sample increases, and the frequency of maximum attenuation also shifts to lower frequency. When the thickness of sample is 5.4mm, there is the maximum attenuation of -15.719dB. The frequency width of the attenuation less than -10dB is 1GHz.
     The precursors of hexagonal barium ferrite and ferrite yellow coated by colloid BaCO3 were prepared via co-precipitation molten-salt and precipitation-topotactic reaction methods, respectively. The flaky and needle-like hexagonal barium ferrite powders were obtained by calcining the precursors at 850℃and 1000℃, respectively. The magnetic loss properties show the values ofμ',μ" and tanδM for the flaky and needle-like samples are similar in the frequency range of 2-18 GHz. The magnetic loss of the flaky sample is greater than that of needle-like one on the whole. The values ofμ',μ" and tanδM for the flaky sample are 0.847-1.110、0.031-0.224 and 0.028-0.231, respectively. The results of reflection test show that both the reflection of the flaky and needle-like samples are less than -5dB in the frequency range of 2-18 GHz. The minimum reflections are -18.197dB and -18.282dB, respectively. The frequency width less than -10dB is up to 10.24GHz.
     The surfaces of cenosphere particles were activated by colloid solution of Sn-Pd, and the metallic Co, Ni, Co-Fe and Ni-Fe thin films were plated on these surfaces by electroless method, respectively. The continuous and uniform coatings deposited on the cenospheres are composed of nano-particles. The properties of magnetic loss show that the values ofμ',μ" and tanδM for the modified cenospheres have no obvious increases in the frequency range of 2.6-12GHz, but they increase obviously in the frequency range of 12-18GHz. The results of reflection show the attenuation of electromagnetic wave in the cenospheres deposited by Co and Co-Fe thin films are obviously greater than that of the cenospheres deposited by Ni and Ni-Fe thin films, where the maximum attenuation of the cenosphere with Co film reaches to -24dB at 6.48GHz and the frequency width less than -10dB is maximal, with the value of 8.88GHz.
     The precursor of ZnO was prepared by the solid state reaction. The effect of the calcined temperature, holding time and synthesis atmosphere on the microwave dielectric properties of ZnO powders were investigated. Results show that the wurtzite structure ZnO powders were produced by calcining the precursors at 400-800℃with holding time of 1.5h, at 600℃with different holding times and at 800℃in air, hydrogen and nitrogen atmospheres. The results of dielectric properties show that both the real partε′and the imaginary partε″of permittivity of the samples increase first and then decrease as the calcined temperature increases in the frequency range of 8.2-12.4 GHz, reaching a maximum values at 700℃, which are 2.80 and 0.52 in average, respectively. The maximum value of dielectric loss factor tanδE is about 0.19 at 800℃. The valuesε′andε″of the ZnO powders prepared with different holding times increase slightly with the increasing time, which are 2.52-2.62 and 0.4-0.49, respectively. The value of tanδE has no obvious change with increasing time. The ZnO powder prepared in hydrogen atmosphere has the greatest values inε′、ε″and tanδE than the samples obtained in air and nitrogen atmospheres, which are about 7.5, 2.5 and 0.3, respectively.
     The band structure, state density and complex permittivity of the pure ZnO and the Al-doped ZnO were studied by using the first-principle ultrasoft pseudopotential approach of the plane wave based on the density function theory. Results show that the volume of super cell has no obvious change and Fermi energy level introduces into conduction band through introducing Al ions. The values ofε′andε″for the ZnO with doping Al ions increase at low energy.
     The precursors of ZnO with doping different Al content were prepared by the solid state reaction. The wurtzite structure ZnO powders were prepared by calcining the 10at% Al-doped precursors under 400-800℃for 1.5h and the precursors with different Al content at 800℃for 1.5h, respectively. The results of XPS (X-ray photoelectric spectrum) show that the partial Zn2+ ions are substituted by Al3+ ions in the Al-doped ZnO. The results of dielectric properties for Al-doped ZnO powders show that all theε',ε" and tanδE of the 10at% Al-doped ZnO powder prepared at different calcined temperatures increase firstly and then decrease with the increasing temperatures in the frequency range of 8.2-12.4 GHz, reaching maximum values at 600℃which are about 4.32, 2.34 and 0.56, respectively. The value ofε',ε" and tanδE increases obviously as Al-doped content increases. Bothε' andε" reveal the greatest values when the Al-doped content is 20at% which are about 4.73 and 2.51, respectively. The value of tanδE reaches maximum value of 0.56 at 10at% content. The experimental results show that bothε′andε" of the samples are improved by Al doping, in agreement with the result calculated by first-principle.
     The precursors of ZnO with doping different Co content were also prepared by the solid state reaction. The wurtzite structure ZnO powders were prepared by calcining the 5at% Co-doped precursors at 400-800℃for 1.5h , the precursors with different Co content at 600℃for 1.5h and the 5at% Co-doped precursor at 800℃in different atmospheres, respectively. The results of XPS show that the partial Zn2+ ions are substituted by Co2+ or Co2+ and Co3+ ions in the Co-doped ZnO prepared at 600oC, and that the partial Zn2+ ions are substituted by Co2+ ions in the Co-doped ZnO prepared at 800oC in air and nitrogen atmospheres. But the partial Zn2+ ions are substituted by Co2+ and Co3+ ions in the Co-doped ZnO prepared at 800oC in hydrogen atmosphere.
     The results of electromagnetic loss for Co-doped ZnO powders show that all theμ',μ" and tanδM of the 5at% Co-doped ZnO powder prepared at different calcined temperature increase firstly and then decrease with the increasing temperature in the frequency range of 8.2-12.4 GHz, reaching maximum values at 600℃, which are about 0.98, 0.46 and 0.52, respectively. The values ofμ' andμ" of the samples increase gradually with the increasing Co content, reaching maximum values of 1.03 and 0.54 at 15at% content, respectively. But the value of tanδM increases firstly and then decrease, reaching maximum values of 0.54 at 10at% content. The sample prepared in hydrogen atmosphere has the greater values inμ′、μ″and tanδM than the samples prepared in air and nitrogen atmospheres, which are 9.68, 6.37 and 0.94, respectively. The sample prepared in hydrogen atmosphere has also the greater values inε′、ε″and tanδE than the samples prepared in air and nitrogen atmospheres, which are 5.27, 1.21 and 0.239, respectively.
引文
[1]孟建华,杨桂琴,严乐美,等.吸波材料研究进展.磁性材料及器件,2004,(8): 11-14.
    [2]谢建军.隐身技术的未来.国防科技,2002, (2): 27-29.
    [3]李国强,武文军,辛欣.当代隐身技术的现状和发展.国防科技,2005, (4): 22-25.
    [4] Lee S W, Reeves D D, Sullivan D P, et al. XPATCH: A high-frequency electromagnetic scattering prediction code and environment for complex three dimensional objects. IEEE Antennas and Propagation Magazine, 1994, 36(1): 65-69.
    [5]张卫东,冯小云,孟秀兰.国外隐身材料研究进展.宇航材料工艺, 2000, (3): 1-2.
    [6]汪天汉,华宝家.从二次世界大战到海湾战争的隐身技术.国外隐身技术动态, 1993, (18):1.
    [7]张克立,从长杰,郭光辉,等.纳米吸波材料的研究现状和展望.武汉大学学报, 2003, 49(6): 680-684.
    [8]李萍,陈绍杰,朱珊,等.隐身复合材料的研究和发展.飞机设计, 1994, 21(1): 2-9.
    [9]薛晓春,王雪华.隐身与反隐身技术的发展研究.现代防御技术, 2004, 32(2): 60-65.
    [10]杜尚丰.导电氧化锌粉体的制备和性能研究.中国科学院过程工程研究所博士论文,2005, 1-70.
    [11]陶东香,吴华,程嗣仪.现代飞机的雷达隐身技术.航天电子对抗, 2003, (5): 36-39.
    [12] Rius J M, Terrando M , Jofre L. High-frequency RCS of complex radar target in real target in real time. IEEE Transactions on Antennas and Propagation, 1993, 41(9): 1308-1319.
    [13]耿方志,吕丹,张永新.外形隐身目标雷达散射截面高频散射特性的研究.光电技术应用,2005, 20(4): 26-28.
    [14]赵卫华,邓发升.飞航导弹雷达截面(RCS)计算.电子对抗技术, 2001, 16(4): 39-42.
    [15]杨晓蓉,杨立明,戴国宪.从F-117A看雷达截面外形隐身技术.光电技术应用,2004, (1): 32-35.
    [16]孙晶晶,李建保,张波,等.陶瓷吸波材料的研究现状.材料工程,2003, (2):43-47.
    [17]彭军,鞠智芹.反雷达隐身技术的研究.光电技术应用,2003, (5): 18-21.
    [18]李黎明,徐政.吸波材料的微波损耗机理及结构设计.现代技术陶瓷,2004, (2): 31-34.
    [19]崔东辉,朱绪宝.雷达吸波材料发展趋势.飞航导弹,2000, 11: 54-57.
    [20] Thomas K D, Playa D R, Noman H H, et al. Broadband absorbers of electromagnetic radiation based on aerogel materials and method of making the same. US patent 5381149, 1995.
    [21]何雄新,高东华.舰艇雷达隐身技术的研究和应用.舰船电子对抗,2001, (5): 23-26.
    [22]吕述平,刘顺华,赵彦波.新型填充式吸波材料的研究.功能材料与器件学报,2005, 11(4): 498-506.
    [23]周敏,杨觉明,周建军.吸波材料研究进展.西安工业学院学报, 2000, 20(4): 296-302.
    [24]李黎明,徐征.微波损耗材料的机理及结构设计.现代技术陶瓷, 2004, (2): 31-34.
    [25]庄钊文,袁乃昌编著.雷达散射截面测量:紧凑场理论与技术.长沙:国防科技大学出版社,2000, 7.
    [26]吴晓光,车晔秋译.国外微波吸收材料.长沙:国防科技大学出版社,1992, 1-4.
    [27]邵蔚,赵乃勤,师春生,等.吸波材料用吸收剂的研究及应用现状.兵器材料科学与工程, 2003, 26(4): 65-68.
    [28]方亮,龚荣州,官建国.雷达吸波材料的现状与展望.武汉工业大学学报, 1999, 21(6): 21-24.
    [29]李高峰,吴茜.各种减小雷达截面的方法与机理.电讯工程,1999, (1): 1-4.
    [30]李智敏. B、N、Al掺杂SiC吸收剂的制备及性能研究.西北工业大学博士论文,2008, 1-22.
    [31]华南工学院,南京化工学院,清华大学.陶瓷材料物理性能.北京:中国建筑工业出版社, 1980, 134-160.
    [32]张立德,牟季美.纳米材料学.沈阳:辽宁科学出版社,1994, 8-9, 196-208.
    [33]黄静.钙钛矿结构微波陶瓷介电机理的研究.华中科技大学博士论文,2004, 28-30.
    [34]李荫远,李国栋.铁氧体物理学(修订本).第一版.北京:科学出版社,1978, 311-332.
    [35]田民波.磁性材料.第一版.北京:清华大学出版社,2001, 61-63.
    [36]廖绍彬.铁磁学(下册).第一版.北京:科学出版社,1988, 40-51.
    [37]宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994, 421-436.
    [38]姜寿亭,李卫编著.凝聚态磁性物理.北京:科学出版社,2003, 378-416.
    [39]步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨.材料导报,2001, 15(5): 14-17.
    [40]赵九蓬,李垚,吴佩莲.新型吸波材料研究动态.材料科学与工艺,2002, 10(2): 119-223.
    [41] Truong V T, Riddell S Z, Muscat R F. Polyrrole based microwave absorbers. J. Mater. Sci., 1998, 33: 4971-4976.
    [42] Kim D Y, Chung Y C, Kang T W. Dependence of microwave absorbing property on ferrite volume in MnZn ferrite-rubber composites. IEEE Transaction on Magnetics, 1996, 32(2): 555-558.
    [43]王会宗等编著.磁性材料及其应用.北京:国防工业出版社,1989, 252-256.
    [44]赵振声,吴明忠,何华辉.雷达吸波材料对斜入射电磁波的反射.华中理工大学学报,1998, 26(4): 36-38.
    [45] Musal H M, Hahn H T. Thin-layer electromagnetic absorber design. IEEE Transactions on Magnetics. 1989, 25(5): 3851-3853.
    [46]林为干,符果行,邬琳若.电磁场理论.北京:人民邮电出版社,1984. 287-297.
    [47]黄志洵,王晓金.微波传输线理论与实用技术.第一版.北京:科学出版社,1996, 60-67.
    [48] Perini J, Cohen L S. Design of broad-band radar-absorbing materials for large angels of incidence. IEEE Transactions on Electromagnetic Compatibility. 1993, 35(2): 223-230.
    [49]吴明忠,刘怀忠.雷达吸波材料的吸波性能预测.上海航天,1998, (1): 21-24.
    [50]康青编著,新型微波吸收材料.北京:科学出版社,2006, 1-15, 291-292.
    [51]阳开新.铁氧体吸波材料及其应用.磁性材料及器件,1996, 27(3): 19-23.
    [52] Converse William E, Dawson Maynard H, O′neal John R, et al. Anti-radar means and techniques. US patent 4173018, 1979.
    [53] Pinho M S, Grerori M L, Nunes R C R, et al. Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polymer Degradation and Stability, 2001, 73(1): 1-5.
    [54]谭延江,韩喜江,王晓红,等.改性羰基铁粉-氯丁橡胶复合薄膜吸波特性研究.功能材料,2008, 39(12): 2098-2010.
    [55]卿玉长,周万城,罗发,等.羰基铁/环氧有机硅树脂涂层的吸波性能和力学性能研究.材料导报,2009, 23(3): 1-4.
    [56]冯永宝,丘泰,李晓云,等.羰基铁/三元乙丙橡胶复合材料的吸波性能.材料科学与工艺,2008, 16(4): 589-592.
    [57]冯永宝,丘泰,张军.羰基铁粉对橡胶吸波贴片力学与电磁性能的影响.宇航材料工艺,2005, (4): 37-41.
    [58]王璟,张虹,白书欣,等.铁氧体/羰基铁粉复合吸波材料研究.兵器材料科学与工程,2007, 30(1): 39-41.
    [59]刘建华,周新楣,李松梅.羰基铁/导电聚苯胺微管复合材料的电磁性能.复合材料学报,2005, 22(3): 70-74.
    [60]毛卫民,方鲲,吴其晔,等.导电聚苯胺/羰基铁粉复合吸波材料.复合材料学报, 2005, 22 (1): 11 - 14.
    [61]童国秀,官建国,张五一,等.纳米铁纤维与羰基铁粉共混制备轻质宽带吸波涂层材料.金属学报,2008, 44(8): 1001-1005.
    [62] Zhang H J, Zhang H T, Wu X W, et al. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating. J. Alloys Compd. 2006, 419(1-2): 220-226.
    [63]邓联文,江建军,赵振声,等.片状纳米晶微粉的制备及微波吸收特性.功能材料与器件学报,2002, 8(3): 272-276.
    [64]谢建良,陆传林,邓龙江,等.偶联剂包覆片状金属磁粉电磁特性研究.电子科技大学学报,2008, 37(2): 293-296.
    [65]邹艳红,刘洪波,杨丽,等.还原温度对纳米石墨复合材料结构及微波吸收性能的影响.材料导报,2007, 21(11): 144-148.
    [66]陈利民,亓家钟,朱雪琴,等.纳米γ-(Fe, Ni)合金颗粒的微观结构及其微波吸收特性.兵器材料科学与工程,1999, 22(4) :3-6.
    [67]王磊,毛昌辉,杨志民,等.机械合金化FeCo微波吸收材料的研究.稀有金属,2007, 31(5): 622-626.
    [68] Nie Y, He H H, Gong R Z, et al. The electromagnetic characteristics and design of mechanically alloyed Fe-Co particles for electromagnetic-wave absorber. J.Magn. Magn. Mater., 2007, 310: 13-16.
    [69] Zhang B S, Lu G, Feng Y, et al. Electromagnetic and microwave absorption properties of Alnico powder composites. J. Magn. Magn. Mater., 2006, 299: 205-210.
    [70]何璞祯,王自东,林国标,等.钴基玻璃包覆微丝的电磁性能.磁性材料与器件,2008, 39(1): 24-27.
    [71]曹琦,龚荣洲,冯则坤,等. Fe-Si-Al系合金粉微波吸收特性.中国有色金属学报,2006, 16(3): 524-529.
    [72] Jin F Y, Tong H H, Chu P K, et al. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. Surface and Coatings Technology, 2006, 201(1- 2): 292 - 295.
    [73] Psilopoulos J, Grubert J. On the potential of gradedchiral Dallenbach absorbers. Microwave Optical Technology Letters, 2001, 30(4): 254-257.
    [74] Sugimotos, Kondos, Okayyamak, et al. M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz rang. IEEE Transactions on Magnetics, 1999, 35(5): 3154-3156.
    [75] Haddar H, Joly P. Effective boundary conditions for thin ferromagnetic layers: The one-dimensional model. SIAM Journal on Applied Mathematics, 2001, 61(4): 1368-1417.
    [76] Kimm S S, Cheong D M, Yoon B I, Ferrite-epoxy absorber on carbon fiber composite substrate. Journal De Physique, 1997, 7(1): 425-426.
    [77]周利珊.吸波材料电磁参数测量电性能优化设计结果的影响.材料工程, 1995, (11): 17-21.
    [78]尚高智,华家宝,杨建生.薄壁型结构吸波材料电结构设计研究.宇航材料工艺, 1992, (3): 29-33.
    [79] Morihiko Masumoto,Yoshimori Miyata. A gigahertz-range electromagnetic wave with wide bandwidth made of hexagonal ferrite. J. Appl. Phys., 1996, 79(8): 5486-5488.
    [80] Shin J Y, Oh J H. The microwave absorbing phenomena of ferrite microwave absorbers. IEEE Transactions on Magnetics, 1993, 29(6): 3437-3439.
    [81]张永祥,丁荣林,李韬,等.六角型铁氧体吸波材料的研究.硅酸盐学报,1998, 26(3): 275-280.
    [82] Ota H, Kimura M, Sato R, et al. Broadband Microwave Absorber Using M-Type Hexagonal Ferrite. IEEE International Symposium on Electromagnetic Compatibility. 1999, (2): 590-593.
    [83] Zhang H, Zhichao L, Xi Y. Complex permittivitty, permeability and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol-gel process. Mater. Sci. Eng. B, 2002, 96: 289-295.
    [84] Dishovske N, Petkov A, Nedkov I. Hexaferrite contribution to microwave absorbers characteristics. IEEE Transactions on Magnetics, 1994, 30(2): 969-971.
    [85] Ruan S, Xu B, Suo H, et al. Microwave absorptive behavior of ZnCo-substituted W-type Bahexaferrite nanocrystalline composite material. J. Magn. Magn.Mater. 2000, 212: 175-177.
    [86]汪忠柱,毕红,林玲,等.六角晶系BaZnCoTi-W型铁氧体的吸波性能研究.安徽大学学报(自然科学版),2006, 30(2): 64-66.
    [87]周克省,刘利强,邓联文,等. W型Ba1?xLaxCo2Fe16O27的微波吸收性能.中南大学学报(自然科学版),2008, 39(6): 1170-1174.
    [88]周克省,刘利强,邓联文,等. W型Ba0.8La0.2Co2Fe16O27微波吸收材料的制备与表征.功能材料,2008, 39(8): 1276-1279.
    [89] Wang J, Zhang H, Bai S X, et al. Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite. J.Magn. Magn. Mater. 2007, 312: 310-313.
    [90] Shen G Z, Xu Z, Li Y. Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites. J. Magn. Magn. Mater., 2006, 301: 325-330.
    [91]阮圣平,王兢,刘永刚,等. BaFe12O19纳米复合材料微波吸收性能的研究.吉林大学学报(理学版),2003, 41(1): 70-72.
    [92]阮圣平,吴凤清,王永为,等.钡铁氧体纳米复合材料的制备及其微波吸收性能.物理化学学报,2003, 19(3): 275-277.
    [93]王毓鹏,李筱濛,曹全喜,等. M型铁氧体BaFeCoTiMnO微波吸收性能研究.电子原件与材料,2007, 26(8): 35-38.
    [94]李筱濛,曹全喜,王青松,等. M型Ba(CoTi)1.2Fe9.5Mn0.15O19的制备及吸波性能研究.压电与声光,2008, 30(3): 346-349.
    [95]孟凡君,茹淼焱,刘爱祥,等.替代M-型钡铁氧体纳米粒子的微波吸收性能.无机化学学报,2002, 18(10): 1067-1070.
    [96] Meshram M R, Agawa N K, Sinha B,et al.Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater., 2004 271: 207-214.
    [97] Ghasemi A, Hossienpour A, Morisako A, et al. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater., 2006, 302: 429-435.
    [98] Kolay P K , Singh D N . Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cement and Concrete Research, 2001, 31: 539-542.
    [99] Vassilev S V, Vassilev C G. Phase-mineral and chemical composition of fractions separated from composite fly ashes at the Soma power station, Turky, International Journal of Coal Geology, 2005, 61: 65-85.
    [100]哈恩华,黄大庆,丁鹤雁.新型轻质雷达吸波材料的应用研究及进展.材料工程, 2006, (3): 55-59.
    [101] Suzuki M. Synthesis of silicon carber-silicon nitride composite ultrafine particlesusing a CO2 laser. Am. Ceram. Soc., 1993, 76(5): 195-199.
    [102] Kim S S, Kim S T, Ahn J M. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. Magn. Mater., 2004, 271: 39-45.
    [103]葛凯勇,王群,毛倩瑾等.空心微珠表面改性及其吸波特性.功能材料与器件学报, 2003, 9(1): 67-70.
    [104]唐耿平,程海峰,赵建峰,等.空心微珠表面改性及其吸波特性.材料工程,2005, (6): 11-13.
    [105]毛倩瑾,于彩霞,王群,等.空心微珠表面金属化及其电磁防护性能研究.北京工业大学学报,2003, 29(2): 108-111.
    [106] Jia Z Y, Wang Q, Zhou M L, et al. Microwave absorbing properties of Ni-Co coating of fly-ash hollow microspheres.功能材料,2006, 37(1): 143-146.
    [107] Wei J, Liu J H, Li S M. Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. J. Magn. Magn. Mater., 2007. 312: 414-417
    [108] Fu W Y, Liu S K, Fan W H, et al. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property., J. Magn. Magn. Mater., 2007, 312: 414-417.
    [109]李明辉,付乌有,李伊荇,等.空心玻璃微珠表面的CoFe2O4包覆及其微波吸收性能研究.现代仪器,2002, (5): 10-12.
    [110]赵海涛,张罡,马瑞廷.空心微珠表面镍铁氧体包覆层的制备及微波吸收性能.沈阳理工大学学报,2008, 27(5): 70-74.
    [111]张晏清,张雄.包覆钡铁氧体的多孔玻璃微珠吸波材料制备与性能.无机材料学报,2006, 21(4): 861-865.
    [112]张建荣,顾达,扬云霞.湿化学法制备纳米ATO导电粉体.功能材料,2002, 33(3): 300-302.
    [113]秦长勇,罗美芳,古宏晨,等.制备工艺对ATO超细粉体导电性能的影响.华东理工大学学报,2001, 27(3): 261-264.
    [114] Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO. Progress in Materials Science, 2005, 50(3): 293-340.
    [115] Katsuhiko Y, Hideo K, Takao H, et al. Method for preparing electrically conductive Zinc Oxide. Europe Patent 0597380A1, 1994.
    [116]杨秀健.纳米ZnO和介孔ZrO的发光特性研究.中国科学技术大学硕士论文,2002.
    [117] Seelig E W. Synthesis and optical properties of strongly csattering Zinc OxidePowdres. MS. Thesis, Northernwestern University, 2003.
    [118] Yamamoto O. Influence of particle size on the antibacterial activity of Zinc Oxide. Int. J. Inorg. Mater., 2001, 3(7): 643-646.
    [119] Hu S C, Zhou Z W, Zhou Z R. In situ synthesis of magnetic particles on the surface of tetra-needle like ZnO whisker. Journal Crystal Growth, 2006, 287: 54-57.
    [120]李松梅,陈冬梅,刘建华. T-ZnO晶须化学镀铜复合粉体的制备及其电磁性能的研究.物理化学学报,2004, 20(11): 1389-1393.
    [121]刘建华,孙杰,李松梅.四脚状氧化锌晶须的微波电磁性能.复合材料学报,2003, 20(6): 121-124.
    [122]周祚万,楚珑晟,刘世楷.四针状ZnOw的微波吸收及微波-热转换特性研究.功能材料,2002, 33(1): 55-56, 59.
    [123]楚珑晟,周祚万.氧化锌晶须电磁波吸收性能研究.功能材料,2006, 37(1): 47-50.
    [124] Chu L S, Zhou Z W, Zhao Y. Study on the properties of microwave absorption of Zinc Oxide whisker. Materials Science Forum, 2006, 510-511: 982-5.
    [125] Lin C S, Hwang C C, Lee W H, et al. Preparation of Zinc Oxide(ZnO) powders with different types of morphology by a combustion synthesis method. Mater. Sci. Eng. B, 2007, 140: 31-7.
    [126]张玲,周万城,陈黄鹂,等.热处理温度对纳米ZnO微波介电性能的影响.陕西科技大学学报,2007, 25(3): 36-38.
    [127]张玲,罗发,周万城,等.纳米ZnO的制备及其微波介电性能.稀有金属材料与工程,2007, 36, 2(Suppl.): 117-119.
    [128] Tang X, Hu K A. Preparation and electromagnetic wave absorption properties of Fe-doped Zinc Oxide coated barium ferrite composites. Mater. Sci. Eng. B, 2007, 139: 119-23.
    [129] Minami T, Nanto H, Takata S. High conductive and transparent Aluminum doped Zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. phys. Part 1, 1984, 23: L280.
    [130] Hu J, Gordon R G. Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. phys., 1992, 71(2): 880-890.
    [131] Sato H, Minami T, Takata S, et al. Transparent conducting p-type NiO thin-films prepared by magnetron sputtering. Thin Solid Films, 1993, 236(1-2): 27-31.
    [132] Ohno H. Properties of ferromagnetic III-V semiconductors. J. Magn. Magn. Mater., 1999, 200(1-3): 110-129.
    [133] Zhang H W, Wei Z R, Li Z Q, et al. Room temperature ferromagnetism inFe-doped and Cu-codoped ZnO diluted magnetic semiconductor. Mater. Lett., 2007, 61:3605-3607.
    [134] Yin Z G, Chen N F, Yang F, et al. Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Communications, 2005, 135: 430-433.
    [135] Pei G Q, Xia C T, Cao S X, et al. Synthesis and magnetic properties of Ni-doped Zinc Oxide powders. J. Magn. Magn. Mater., 2006, 302: 340-342.
    [136] Damonte L C, Hernández-Fenollosa M A, Meyer M, et al. Structural and magnetic properties in mechanically alloy Zn1-xCoxO semiconductor powders. Physics B, 2007, 398: 380-384.
    [137] Rubi D, Calleja A, Arbiol J, et al. Structural and magnetic properties of ZnO:TM (TM: Co, Mn) nanopowders. J. Magn. Magn. Mater., 2007, 316: e211-e214.
    [138]周玉,武高辉.材料分析测试技术—材料X射线衍射与电子显微技术.哈尔滨:哈尔滨工业大学出版社,1998, 80-94.
    [139]黄惠忠等编著.纳米材料分析.北京:化学工业出版社,2003, 295-322.
    [140]杜希文.材料分析方法.天津:天津大学出版社,2006, 30-32.
    [141]沈兴编著.差热、热重分析与非等温固相反应动力学.第一版.北京:冶金工业出版社,1995, 22, 68.
    [142]黄永杰,李世堃,兰中文.磁性材料.北京:电子工业出版社,1994, 209-248.
    [143]李景德,雷得铭.电介质材料物理和应用.广东:中山大学出版社,1992, 35-45.
    [144]李翰如.电介质物理导论.成都:成都科技大学出版社,1990, 127-229.
    [145]李荫远,李国栋.铁氧体物理学(修订本).第一版.北京:科学出版社,1978, 19-42.
    [146] Meshram M R, Agrawal N K, Sinha B, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J . Magn. Magn. Mater., 2004 , 271 : 207-214.
    [147] Kagotani T, Fujiwara D, Sugimoto S, et al. Enhancement of GHz electromagnetic wave absorption characteristics in aligned M-type bariumferrite Ba1-xLaxZnxFe12-x-y(Me0. 5Mn0. 5 )yO19(x = 0.0-0.5; y = 1.0-3.0, Me:Zr, Sn) by metal substitution. J .Magn. Magn. Mater., 2004 , 272-276 :1813-1815.
    [148] Ernst Schloemann. Advances in ferrite microwave materials and devices. J . Magn. Magn. Mater., 2000 , 209 : 15-20.
    [149]胡王凯,李锦,娄广辉,等.钡磁铅石型铁氧体材料的研究进展.国外建材科技,2004, 25(5): 19-22.
    [150]刘先松,都有为. M型永磁铁氧体的现状与进展.磁性材料及器件,2001, 32 (1): 27-33.
    [151]周志刚等编著.铁氧体磁性材料.第一版.北京:科学出版社,1981, 27-53.
    [152]王琦,官建国,刘世权,等.离子取代与六角铁氧体RAM的结构及微波吸收性能.硅酸盐通报,2005, (2): 66-71.
    [153]赵振声,张秀成,冯刚坤,等.六角晶系铁氧体吸收剂磁损耗机理研究.功能材料,1995, 26(5): 401-404.
    [154]陈曙,蒋正生,杨炎,等. FeB纳米颗粒的隐身性能研究.航天电子对抗,2000, (4): 57-59.
    [155]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001, 195.
    [156]郭方方,徐劲峰,徐政,等.六角晶系钡铁氧体纳米晶微波吸收剂的晶化特性研究.材料科学与工程学报,2004, 22(6):871-874
    [157] Zhang Q Y, Wu M, Zhao W. Electroless nickel plating on hollow glass microspheres. Surface & Coating Technology, 2005, 192: 312-219.
    [158] Shukla S, Seal S, Akesson J. Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Applied Surface Science, 2001, 181: 35-50.
    [159] Zeng A X, Xiong W H, Xu J. Electroless Ni-Co-P coating of cenospheres using [Ag(NH3)2]+ activator. Materials Letters, 2005, 59: 524-528.
    [160] Zeng A X, Xiong W H, Xu J. Electroless Ni-P coating of cenospheres using silver nitrate activator. Surface & Coating Technology, 2005, 197: 142-147.
    [161]《电镀手册》编写组编.化学镀手册(上册).北京:国防工业出版社,1977, 502-517.
    [162]周克省,黄可龙,孔德明等.纳米无机物-聚合物复合吸波功能材料.高分子材料科学与工程, 2002, 18 (3) : 15- 19
    [163]曹全喜,雷天民,黄云霞,等.固体物理基础.西安:西安电子科技大学出版社,2008, 21.
    [164] Norton D P, Heo Y W, Ivill M P, et al. ZnO: Growth, Doping & Processing. Materialstoday, 2004, 7(6): 34-40.
    [165]石康源,张绪礼,王筱珍,等. ZnO导电陶瓷的微观结构与导电机理.功能材料,1996, 27(1): 61-63.
    [166] Seeger K. Semiconductor Physics: An Introduction, Eighth Edition. Berlin Heidelberg: Spring, 2002. 113-152.
    [167]冯端,师昌绪,刘治国主编.材料科学导论—融贯的论述.北京:化学工业出版社,2002, 224-243.
    [168]曲远方.功能陶瓷及应用.北京:化学工业出版社,2003, 406-410.
    [169]于长凤,朱小平.缺陷化学概论.武汉:武汉理工大学出版社,2005, 32.
    [170]钟维烈.铁电体物理学.北京:科学出版社,2000, 320-325.
    [171]李翰如.电介质物理导论.成都:成都科技大学出版社,1990, 138-229.
    [172] Zeng J N, Low J K, Ren Z M, et al. Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci., 2002, 197: 362-367.
    [173] Ashkenov N, Mbenkum B N, Bundesmann C, et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys., 2003, 93: 126-129.
    [174] Schubert M, Tiwald T E, Herzinger C M. Infrared dielectric anisotropy and phonon modes of sapphire. Phys. Rev. B, 2000, 61: 8187-8201.
    [175] Vargas-Hernández C, Jiménez-García F N, Juradoa J F, et al. Comparison of ZnO thin films deposited by three different SILAR Processes. Microelectronics J., 2008, 39: 1349-1350.
    [176] Youn C J, Jeong T S, Han M S, et al. Optical properties of Zn-terminated ZnO bulk. J. Crystal Growth, 2004, 261: 526-532.
    [177] Nakashima S, Mitani T, Senzaki J, et al. Deep ultraviolet Raman scattering characterization of ion-implanted SiC crystals. J. Appl. Phys., 2005, 97:123507-123508.
    [178] Almond D P, Bowen C R, Rees D A S. Composite dielectrics and conductors: simulation, characterization and design. J. Phys. D: Appl. Phys., 2006, 39: 1295-1304.
    [179] Zhang B, Li J B, Sun J J, et al. Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range. J. Euro. Ceram. Soc., 2002, 22: 93-99.
    [180]刘学超,施尔畏,张华伟,等. ZnO基稀磁半导体薄膜材料研究进展.无机材料学报,2006, 21(3): 513-520.
    [181]刘宜华,张连生.稀释磁性半导体.物理学进展,1994, 14(1): 83-90.
    [182]李东,王耘波,于军.稀磁半导体研究的最新进展.功能材料,2004, 35(增刊): 1110-1115.
    [183] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B, 1964, 136: 864-871.
    [184]周勋,沈益斌,段满益,等. ZnO基稀磁半导体材料研究进展.材料导报,2007, 21(12): 106-109.
    [185] Sorescu M, Diamandescu L, Tarabsanu-Mihaila D, et al. Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing pathways. J. Mater. Sci., 2004, 39(2): 675-677.
    [186] Vispute R D, Talyansky V, Choopun S, et al. Heteroepitaxy of ZnO on GaN andits Implications for Fabrication of Hybrid Optoelectronic Devices. Appl. Phys. Lett., 1998, 73(3): 348-350.
    [186] Kshirsagar S D, Inamdar D, Gopalakrishnan I K, et al. Formation of room-temperature ferromagnetic Zn1-xCoxO nanocrystal. Solid State Communications, 2007, 143(10): 457-460.
    [187]李金华,张吉英,赵东旭,等.不同退火温度下Mn掺杂ZnO纳米晶的结构和磁性.液晶与显示,2007, 22(1): 11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700