用户名: 密码: 验证码:
Fe-Ni软磁合金吸波材料的设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究目的是为研制新型吸波材料用吸波剂提供理论依据和实际应用。
    针对铁氧体、碳化硅粉作吸波剂的传统型吸波材料存在吸波频带窄、材料厚度大、
    吸波效能差等弱点,利用“机械合金化+氧化+再结晶热处理”法制备出新型吸
    波剂材料——FeNi3、γ-(Fe,Ni)和 Fe3O4相的复合粉体。首次提出“壳核”结
    构理论模型,并借助 XRD、MFM、FEG-SEM、EDS 等现代材料测试技术对“壳
    核”结构复合粉体的微观结构做了深入分析。研究表明:新型吸波剂粉体平均晶
    粒尺寸越大、磁畴宽度越小磁畴壁厚度越小均有利于增大复磁导率;Fe3O4 相的
    壳层能有效降低复介电常数。将粒度小于 10μm 的片形“壳核”结构复合粉体制
    备成两种不同基体的单层和双层平板型吸波材料。
     在深入分析材料吸波机理的基础上,提出了“匹配引入层+电磁损耗层”双
    层吸波物理模型,通过双层吸波效能公式的推导和材料的计算机辅助设计进行了
    平板型复合材料的吸波效能理论计算。材料的吸波效能理论计算值与实验测试值
    结果相吻合,证明了本论文对电磁吸收机理研究与材料仿真的正确性。通过材料
    仿真,总结了各层电磁参数、厚度与吸波效能的关系,实现了双层吸波材料的优
    化设计,并制备了在 1MHz~1GHz、L、S、C、X 和 Ku 频段范围内,具有降低
    最小吸波效能值、展宽有效吸波频带、减小材料厚度的新型吸波材料。“单一梯
    度变化”、“底层电磁损耗”和“双层磁损耗+底层电损耗”是材料的吸波机理。
     另外,本论文首次提出了统一样品制备与材料仿真相结合的新观点,实现了
    对吸波材料传统研究方法的改进。改进后的方法不仅能在一块样品上同时测试吸
    波效能、电磁参数和材料厚度,而且能为双层吸波结构计算模型提供基础数据。
    为了解决测试电导率的问题,首次提出了变频电导率的概念,并将它应用在电磁
    吸收机理研究与材料优化设计中。根据现有的实验条件,建立了磁环样品的“单
    圈电感器”物理模型,配合相关公式的推导,完善了复相对磁导率的测试系统。
The aim of this dissertation is to provide theoretical evidence and practical
    applications for researching and developing new type electromagnetic wave absorbers.
    This investigation will show several disadvantages in the traditional types of applied
    electromagnetic wave absorbing materials whose wave absorbers are ferrite or SiC
    powders: narrowing the absorbing frequency bands, enlarging their thickness, and
    weakening the effectiveness of their absorption. In order to make substitutions for
    traditional types of electromagnetic wave absorbers, for the first time a “shell-core”
    structure theoretical model will be outlined and discussed. After considering material
    applications and the relationships of microstructure versus electromagnetic
    characteristics, “shell-core” structure composite powders, the new type wave
    absorbers which possess FeNi3, γ-(Fe, Ni) and Fe3O4 phases and were prepared by
    using the method of “mechanical alloying + oxidation + re-crystallizing heat
    treatment” will be described. The microstructure of the “shell-core” structure
    composite powders was studied by means of modern material analyzing techniques,
    including XRD, MFM, FEG-SEM, EDS, and so on. It was proved that the complex
    magnetic permeability benefits from the increasing average crystal grain size, the
    decreasing magnetic domain width and wall thickness of the new type wave absorbers;
    the “shell layer” which possesses Fe3O4 phase can be effective to reduce complex
    electric permittivity. Two kinds of single-layer and double-layer flat type composites
    contained within the “shell-core” structure composite powders whose grain
    granularity was under 10μm were manufactured.
    These new types of electromagnetic absorbing materials, as well as the absorbing
    mechanism will be deeply analyzed. The double-layer absorbing physical model
    “match leading layer + electromagnetic dissipation layer” will be discussed and
    evaluated by theoretical calculations of absorbing effectiveness (AE) on flat type
    composites as they were carried out via deduced double-layer absorbing formulae and
    computer-aided design of materials. AE theoretical calculation values conformed to
    AE testing values of absorbing materials with laminated structures. This study
     - II -
    
    
    北京工业大学工学博士学位论文
    confirms the validity of our hypothesis about electromagnetic absorbing mechanisms
    and material simulation. Combined theoretical calculation results, the relationship of
    electromagnetic parameters, and the thickness of materials, versus AE was
    summarized via material simulations. The optimization of absorbing materials was
    realized. In the frequency bands of 1MHz~1GHz, L, S, C, X and Ku, the new types
    wave absorbing materials possessed of smaller minimum AE, wider wave absorbing
    frequency bands and thinner material thickness were prepared. “Single gradient
    conversion”, “bottom-layer electromagnetic dissipation” and “double-layer magnetic
    permeability dissipation + bottom-layer electric permittivity dissipation” are the
    absorbing mechanisms of laminated composites.
    In addition, a new viewpoint, which combined preparation of unifying composite
    samples and material simulation, was put forward and the improvement of traditional
    research methods on wave absorbing materials was realized. This improved research
    method not only has the ability to simultaneous test AE, electromagnetic parameters
    and thickness on the same sample, but supplies basic data to double-layer wave
    absorbing structure calculation model. In order to solve the problem on testing
    electrical conductivity, the concept of electrical conductivity with frequency
    conversion is applied to the study of electromagnetic wave absorbing mechanism and
    the material optimizing design. According to experimental conditions, a “one circle
    inductance” physical model on magnetic ring samples was established. Along with the
    formulae, a testing system was developed for complex relative magnetic permeability.
引文
1. Wen Yinghong, Wang Fenglan, Zhang Linchang. Electric Field Strength
     Distribution around Man Model Exposed to the Radiation of Cellular Phones.
     IEEE International Symposium Proceedings on Electromagnetic Compatibility,
     1997: 450 ~453
    2. Gao Yougang, Yu Lifang. Determination of Dangerous Region of the
     Electromagnetic Pollution Caused by the Electric Fields around Power Line.
     International Conference Proceedings on Communication Technology. 1998, (1):
     22~24
    3. 松尾和彦. 手机比吸收率(SAR)评价装置. 安全与电磁兼容. 2003, (2): 11~14
    4. W.E.Gibbons. Information Security in Integrated Avionic Systems. IEEE
     Aerospace and Electronics Conference Proceedings, 1989, 2: 576~579
    5. A.Hiles. Surviving a Computer Disaster. Computing & Control Engineering
     Journal. 1992, 3(3): 133 ~135
    6. E.van der Merwe Jacobus, S.Rooney, L.Leslie, S.Crosby. The Tempest: a
     Practical Framework for Network Programmability. IEEE Network. 1998, 12(3):
     20~28
    7. S.Rooney, E.van der Merwe Jacobus, S.A Crosby, I.M.Leslie, The Tempest: a
     Framework for Safe, Resource Assured, Programmable. IEEE Communications
     Magazine. 1998, 36(10): 42~53
    8. 湖北省电磁兼容学会编. 电磁兼容性原理及应用. 国防工业出版社, 1996:
     1~8
    9. J.S.Scott, C.van.Zyl. Introduction to EMC. Oxford, Boston,: Newnes. 1997:
     10~18
    10. D. White. The EMC, Telecom and Computer Encyclopedia. Gainesville, Virginia:
     Emf-Emi Control Inc., 1999: 115~119
    11. 高攸纲, 张苏慧. 电磁辐射的生物效应. 安全与电磁兼容. 2002, (6): 49~52
    12. Wang Qun, Zhang Xiaoning, Mao Qianjin, Ge Kaiyong, Zhou Meiling.
     Preparation of Modified Textiles Possessed of Absorbing and Shielding
     Characterizations. 3rd International Symposium on Electromagnetic
     Compatibility, Beijing, 2002. Beijing, Peoples Posts & Telecommunications
     Publishing House, 2002: 589~594
    13. J.Y.Shin and J.H.Oh. The Microwave Absorbing Phenomena of Ferrite
     Microwave Absorber. IEEE Transactions on Magnetics. 1993, 29(6)November:
     3437~3439
     110
    
    
    参考文献
    14. D.H.Jim, M.Takahashi, H.Anzai and S.Y.Jun. Electromagnetic Wave Absorber
     with Wide-Band Frequency Characteristics Using Exponentially Tapered Ferrite.
     IEEE Transactions on Electromagnetic Compatibility. 1996, 38(2)May: 173~180
    15. J.L.Forveille, L.Olmedo and J.Raby. Organic Materials Filled with Ferrite Powder
     for Electromagnetic Compatibility. Journal de Physique IV. 1997, (7):
     C1-427~C1~428
    16. Y.Naito. Ferrite Electromagnetic Wave Absorbers. Journal de Physique IV. 1997,
     (7): C1-405~C1~408
    17. H.Ota, M.Kimura, R.Sato, K.Okayama, S.Kondo and M.Homma. Broadband
     Microwave Absorber Using M-type Hexagonal Ferrite. IEEE International
     Symposium on Electromagnetic Compatibility. 1999, Seattle: 590~593
    18. Feng Zekun, Huang Aiping and He Huahui. Wide-band Electromagnetic Wave
     Absorber of Rubber-Ferrite. 3rd International Symposium on Electromagnetic
     Compatibility, Beijing, 2002. Peoples Posts & Telecommunications Publishing
     House, 2002, Beijing: 420~423
    19. P.Singh, V.K.Babbar, A.Razdan, S.L.Srivastava and T.C.Goel. Microwave
     Absorption Studies of Ca-NiTi Hexaferrite Composites in X-band. Materials
     Science and Engineering. 2000, B78: 70~74
    20. T.Kondo, T.Aoki, K.Asano, S.Yoshikado. Fabrication of the Composite
     Electromagnetic Wave Absorber. Proceedings of 4th International Symposium on
     Electromagnetic Compatability. 1999, Tokyo: 397~400
    21. S.Sugimoto, S.Kondo, K.Okayama, H.Nakamura and D.Kagotani. M-type Ferrite
     Composite as a Microwave Absorber with Wide Bandwidth in the GHz Range.
     1999 IEEE International Magnetics Conference.1999, Kyongju: 3154~3156
    22. Aiyar, R.P.R.C. Microwave Absorbers Based on Hexaferrite. Microwave and
     Optical Technology Letters. 1999, 23(5): 321~323
    23. V.V.Varadan, R.Ro and V.K.Varadan. Measurement of the Electromagnetic
     Properties of Chiral Composite Materials in the 8~40 GHz Range. Radio Science.
     1994, 29(1): 9~22
    24. Fuding Ge, Jing Zhu and Limin Chen. Quantitative Study of Effective Parameters
     of Chiral Composite Material. International Journal of Inferared and Millimeter
     Waves. 1996, 17(8): 1457~1463
    25. Y.Ma, V.K.Varadan and V.V.Varadan. Wave Propagation Characteristics and
     Effective Properties of Chirl Composites. Journal of Wave-material Interaction.
     1993, 8(1): 29~45
    26. J.C.Liu and D.L.Jaggard. Chiral Layers on Planar Surfaces. Journal of Electronic
     Waves Application. 1992, 6(5): 651~667
    27. A.J.Viitanen, I.V.Lindell and A.H.Sihlova. Generalized WKB Approximation for
     Stratified Isotropic Chiral Media with Obliquely Incident Plane Wave. Journal of
     Electronic Waves Application. 1991, 5(10): 1105~1121
    28. LiMin.Chen, FuDing Ge and Jing Zhu. Reflection Characteristics of Chiral
     Microwave / Absorbing Coatings. International Journal of Inferared and
     Millimeter Waves. 1996, 17(1): 255~268
     111
    
    
    北京工业大学工学博士学位论文
    29. F.D.Ge, J.Zhu and L.M.Chen. Effective Electromagnetic and Chiral Parameters of
     Chiral Composite Material. International Journal of Inferared and Millimeter
     Waves. 1996, 17(2): 449~455
    30. D.L.Jaggard, N.Engheta and J.Liu. Chiroshield: a Salisbury / Dallenbach Shield
     Alternative. Electronics Letters, 1990, 26(17): 1332~1334
    31. 吴明忠, 赵振声, 何华辉. 隐身和反隐身技术的现状和发展. 上海航天. 1996,
     (3): 6~42
    32. L.C.Wu and M.G.Wang. Computing RCS of Flyer’s Wings Covered with Radar
     Absorbing Material. Acta Elect. Sin., 1995, 23(6): 30~33
    33. 彭艳萍. 军用新材料的应用现状及发展趋势(续完). 材料导报. 2000, 14(2):
     14~16
    34. 崔东辉, 朱绪宝. 雷达吸波材料发展趋势. 飞航导弹. 2000, (11): 54~57
    35. S.Shukla, S.Seal, J.Akesson, R.Oder, R.Carter and Z.Rahman. Study of
     Mechanism of Electroless Copper Coating of Fly-ash Cenosphere Particles.
     Applied Surface Science. 2001, 181: 35~50
    36. 甘永学, 易沛镀. 金属石墨粉及其在微波吸收材料中的应用. 材料科学进展.
     1990, 4(6): 538~540
    37. 吸收微波与红外能量的微陶瓷球. 国外科技动态. 2000, (2): 30~31
    38. 程海峰, 陈朝辉, 李永清, 张长瑞, 王德安, 陈朝辉. 短切碳化硅纤维微波电
     磁参数改性研究. 宇航材料工艺. 1999, 29(4): 41~44
    39. 高文, 冯志海, 黎义, 姚承照. 涂层改性碳纤维复合材料的微波性能研究. 宇
     航材料工艺. 2000, (5): 53~57
    40. P.Kumurdjian. Microwave Absorbent Coating of Composite Material ——
     Formed from Binder and Chippings of Ultra-thin Multilayer Sandwich of
     Magnetic and Insulating Material. 1991, EP Number: 448426
    41. K.V.P.M.Shafi, A.Gedanken, R.B.Goldfarb and I.Felner. Sonochemical
     Preparation of Nanosized Amorphous Fe-Ni Alloys. Journal of Applied Physics.
     1997, 81(10) May: 6901~6905
    42. Charles P. Gibson and Kathy J. Putzer. Synthesis and Characterization of
     Anisometric Cobalt Nanoclusters. Science. 1995, 267(3) March: 1338~1340
    43. P.Chandrasekhar and K.Naishadham. Broadband Microwave Absorption and
     Shielding Properties of a Poly(aniline). Synthetic Metals. 1999, 105:115~120
    44. V.T.Truong, S.Z.Riddell and R.F.Muscat. Polypyrrole Based Microwave
     Absorbers. Journal of Materials Science. 1998, 33: 2471~4976
    45. N.Dishovsky and M.Grigorova. On the Correlation between Electromagnetic
     Waves Absorption and Electrical Conductivity of Carbon Black Filled
     Polyethylenes. Materials Research Bulletin. 2000, 35: 403~409
    46. Electro-conducting Composite Film for Micro-wave Absorbent Layers —— Has
     Matrix Obtd. from Film Forming Polymer and Conducting Polymer Filler. USP.:
     5104580
     112
    
    
    参考文献
    47. Chen Limin, Qi Jiazhong, Zhu Xueqin, Ge Fuding and Zhu Jing. Microstructure
     of Nanometer γ-(Fe, Ni)Alloy Particles and Their Optical and Microwave
     Properties. High Technology Letters. 1999, 5(1)June: 86~89
    48. R.W.P.King. Fundamental Electromagnetic Theory and Applications.
     Prentice-Hall, Inc., 1986: 53~69; 122~156
    49. K.Y.Wen. Advances in Electromagnetic Theory. The National Defense Industry
     Press, 1999: 199~237
    50. K.M.Polwanov. the Theory of Electromagnetic Field. Mir Publishers, 1983:
     36~154
    51. R.S.Elliott. Electromagnetics: History, Theory and Applications. Elsevier Science
     Publishing Co., Inc., 1994: 301~668
    52. C.G.Someda. Electromagnetic Waves. Princeton, NJ: D.Van Nostrand, 1998:
     233~281
    53. W.H.Hayt. Engineering Electromagnetics. Fourth Edition. McGraw-Hill Book
     Company. 1991: 375~463
    54. H.P.Neff. Introductory Electromagnetics. John Wiley & Sons, 1991: 386~402
    55. 徐永斌, 何国瑜, 卢才成, 苏东林. 工程电磁场基础. 北京航空航天大学出版
     社, 1992: 438~472
    56. K.Y.Kim, W.S.Kim and S.Y.Hong. A Study on the Behavior of Laminated
     Electromagnetic Wave Absorber. IEEE Transactions on Magnetics. 1993,
     29(3)July: 2134~2138
    57. 步文博, 徐洁. 吸波材料基础理论的探讨及展望. 江苏陶瓷.2001, 34(2): 1~4
    58. 吴晓光, 车晔秋. 国外微波吸收材料. 国防科技大学出版社, 1992: 1~27
    59. Ю.К.Ковнеристый, И.Ю.Лазарева and А.А.Раваев. 微波吸收材料. 科学出版
     社, 1985: 1~41
    60. 廖绍彬, 尹光俊. 吸波材料对电磁波的吸收与反射. 宇航材料工艺. 1992, (2):
     16~20
    61. C.T.A.Johnk. Engineering Electromagnetic Fields & Waves. Second Edition. John
     Wiley & Sons, 1981: 475~479, 311
    62. [日]正田英介, 高木正藏. 电磁学. OHM 社. 2001: 119~122
    63. 冯端, 师昌绪, 刘治国. 材料科学导论——融贯的论述. 化学工业出版社,
     2002: 283~287
    64. 钟文定. 铁磁学(中册). 科学出版社, 1987: 251~275
    65. Agilent Technologies. VEE Pro User’s Guide(Math by MATLAB).
     Hewlett-Packard Company(U.S.A.), 2000: 23~451
    66. Agilent Technologies. VEE Pro Advanced Programming Techniques.
     Hewlett-Packard Company(U.S.A.), 2000: 221~326
    67. A.Chelkovski. Dielectric Physics. Elsevier, 1986: 155~189
    68. B.K.P.Scife. Principle of dielectrics. Oxford, 1989: 232~244
    69. 廖承恩. 微波技术基础. 西安电子科技大学出版社, 2001: 65~76
     113
    
    
    北京工业大学工学博士学位论文
    70. 宋屴威. 电损耗型 SiC 吸收剂的制备及其吸波性能研究. 中国人民解放军国
     防科技大学硕士论文. 1997: 24~26
    71. SJ20155-1992: 射频辐射吸收体(微波吸收材料)的通用规范(General
     Specification for Radio Frequency Radiation Absorber(Microwave Absorbing
     Material)).
    72. 田民波. 磁性材料. 清华大学出版社, 2001: 60~62
    73. [日]本間基文, 日口章. 磁性材料讀本. 工業調查會, 1998: 122~139
    74. T.Nakamura, T.Miyamoto and Y.Yamada. Complex Permeability Spectra of
     Polycrystalline Li-Zn Ferrite and Application to EM-wave Absorber. Journal of
     Magnetism and Magnetic Materials. 2003, 256: 340~347
    75. 王军. 含过渡金属的 SiCf 的制备及其电磁性能. 中国人民解放军国防科学技
     术大学博士论文. 1997: 105~109
    76. 曾汉民. 高技术新材料要览. 中国科学技术出版社, 1993: 136~173
    77. 黄培云. 粉末冶金原理(第二版). 冶金工业出版社, 1992: 122~168
    78. 师昌绪. 材料科学技术百科全书. 中国大百科全书出版社, 1995: 786~801
    79. J.E.Japka. Microstructure and Properties of Carbonyl Iron Powder. Journal of
     Metals. 1988, 8: 18~24
    80. J.S.Marshall, T.W.R.East, K.L.S.Gunn and W.Hitschfeld. The Effect of Particle
     Shape and Composition on Microwave Attenuation and Scattering by
     Precipitation. Antennas and Propagation: Transactions of the IRE Professional
     Group. 1992, 43(1): 180 ~185
    81. K.W.Whites and F.Wu. Effects of particle shape on the effective permittivity of
     composite materials with measurements for lattices of cubes. IEEE Transactions
     on Microwave Theory and Techniques. 2002, 50(7)July: 1723~1730
    82. 葛副鼎. 一些纳米磁性材料的微结构、性能及其在吸波材料中的应用. 冶金
     工业部钢铁研究总院博士论文. 1997: 22~51
    83. 葛副鼎, 朱静, 陈利民. 吸收剂颗粒形状对吸波材料性能的影响. 宇航材料
     工艺. 1996, 5: 42~49
    84. 葛副鼎, 朱静, 陈利民. 超微颗粒吸收与散射截面. 电子学报. 1996, 24(6):
     82~86
    85. T.Chen. The Mechanical Properties and Oxidation Behavior of Nanocrystalline
     Nickel-aluminum Synthesized via Shock Consolidation of Mechanically Alloyed
     Powders of Nickel and Aluminum. The Ph.D. Dissertation of Georgia Institute of
     Technology, USA. 1999: 102~114
    86. K.H.J.Buschow and E.P.Wohlfarth. Ferromagnetic Materials, Volume5. Elsevier
     Science Publishers B.V., 1990: 240~247
    87. E.P.Wohlfarth. Ferromagnetic Materials, Volume3. North-Holland Publishing
     Company, 1982: 12~117
    88. [日]近角聡信. 磁性体手册(下册). 冶金工业出版社, 1985: 490~425
    89. R.Boll. Soft Magnetic Materials. Beilin and Munich: Siemens Aktiengesellschaft,
     1989: 151~183
     114
    
    
    参考文献
    90. 周美玲, 谢建新, 朱宝泉. 材料工程基础. 北京工业大学出版社, 2001: 69~97
    91. E.Gaffet, M.Abdellaoui and N.Malhouroux. Formation of Nanostructural
     Materials Induced by Mechanical Processings. Mater.Trans.JIM. 1995, 36(2):
     198~205
    92. P.L.Brun, L.Froyen and L.Delaey. The Modeling of the Mechanical Alloying
     Process in a Planetary Ball Mill: Comparison between Theory and In-situ
     Observations. Material Science and Engineering. 1993, A161: 75~82
    93. 朱心昆, 林秋实, 陈铁力, 程抱昌, 曹建春. 机械合金化的研究及进展. 粉末
     冶金技术. 1999, 17(4): 291~296
    94. G.B.Schaffer and P.G..McCormick. Displacement Reactions during Mechanical
     Alloying. Metall.Trans. 1990, A21: 2789~2793
    95. G.B.Schaffer and P.G..McCormick. On the Kinetics of Mechanical Alloying.
     Metall Trans. 1992, A23: 1285~1292
    96. B.J.M.Akin and T.H.Courtency. Metall.Trans., 1993, 25A: 647~652
    97. R.S.Mishra, S.L.Semiatin, C.Suryanarayana, N.N.Thadhani and T.C.Lowe.
     Ultrafine Grained Materials. The Minerals, Metals & Materials Society, 2000:
     246~250
    98. [德]R.波尔. 软磁材料(基础、合金、特性、产品、用途). 冶金工业出版
     社, 1985: 157~166
    99. 张世远, 路权, 薛荣华, 都有为. 磁性材料基础. 科学出版社, 1988: 181~184
    100.陈利民, 亓家钟, 朱雪琴, 葛副鼎. 纳米 γ-(Fe,Ni)合金颗粒的微观结构及其微
     波吸收特性. 兵器材料科学与工程. 1999, 22(4): 3~6
    101.J.Ding, Y.Shi, L.F.Chen, C.R.Deng, S.H.Fuh and Y.Li. A Structural, Magnetic and
     Microwave Study on Mechanically Milled Fe-based Alloy Powders. Journal of
     Magnetism and Magnetic Materials. 2002, 247: 249~256
    102.J.J.Su?ol, N.Clavaguera and M.T.Clavaguera-Mora. Comparison of Fe-Ni-P-Si
     Alloys Prepared by Ball Milling. Journal of Non-crystalline Solids. 2001, 287:
     114~119
    103.V.V.Tcherdyntsev, S.D.Kaloshkin, I.A.Tomilin, E.V.Shelekhov and Y.V.Baldokhin.
     Formation of Iron-nickel Nanocrystalline Alloy by Mechanical Alloying.
     NanoStructured Materials. 1999, 12: 139~142
    104.范景莲, 黄伯云, 曲选辉, 赵幕岳. 高能球磨合成 W-Ni-Fe 纳米复合粉末特性.
     稀有金属材料与工程. 2001, 30(3): 208~211
    105.潘金生, 田民波. 材料科学基础. 清华大学出版社, 1998: 527
    106.吴华武, 黄红花. 含四针状ZnO晶须的高分子导电膜的研制. 功能材料. 1999,
     30(4): 389~391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700